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catherine.matias@math.cnrs.fr

http://cmatias.perso.math.cnrs.fr/

ENSAE - 2014/2015

http://cmatias.perso.math.cnrs.fr/


Sommaire

Some statistical networks models
The ’most famous’ ones
Exponential random graphs
(Overlapping) Stochastic block models
Latent space models

Analyzing networks: (probabilistic) node clustering

Applications to biological networks



Outline

Some statistical networks models
The ’most famous’ ones
Exponential random graphs
(Overlapping) Stochastic block models
Latent space models

Analyzing networks: (probabilistic) node clustering

Applications to biological networks



Notation

I G = (V,E) is a graph with nodes set V = {1, . . . ,n} and
edges set E,

I For any i, j ∈ V, random variable Xij = 1{(i, j) ∈ E} is the
edge indicator (binary graph). Sometimes, we will
consider weighted graphs and then Xij ∈ R is a weight on
edge (i, j) ∈ E.

I X = (Xij)1≤i,j≤n is the adjacency matrix of the graph.
I Graphs may be undirected (Xij = Xji, 1 ≤ i ≤ j ≤ n) or

directed (Xij , Xji, 1 ≤ i, j ≤ n). They may admit self-loops
(random variables Xii) or not (then set Xii = 0).

I For undirected graphs, Di =
∑

j,i Xij is the degree of node i.
I For directed graphs, D→,i =

∑
j,i Xji is the incoming degree

of node i (resp. D←,i =
∑

j,i Xij outcoming degree).



Erdős Rényi random graph
Erdős Rényi model
Undirected graph with no self-loops, where {Xij}1≤i<j≤n are i.i.d.
with distribution B(p).

Characteristics
I Formulated by Erdős and Rényi in the late 50’s,
I Huge literature, describing phase transitions behaviors as

n→∞ and p→ 0 (existence of a giant component).
I Many links with branching processes.

R. Durrett.
Random Graph Dynamics. Cambridge University Press, 2006.

Drawbacks
I Independence and identical distribution hypothesis both

are not realistic.
I The degree distribution is Bin(n, p) ≈ P(λ) where λ = np

and thus does not follow a power law.



Degree distribution (power law, fixed degree . . .)

The power-law phenomenon (or scale free distribution)

I During the 00’s, many authors focused on the degree
distribution of observed networks and claimed it always
follows a power law
P(Di = d) = cd−α , α being the exponent of the power law.

I Some (few) nodes have a very large degree: hubs.
I They started describing networks distributions by

specifying the distribution of {Di}i∈V.



Degree distribution (power law, fixed degree . . .)

Fixed degree distribution

I Let (d1, . . . , dn) be the degrees of an observed graph,
I The null model is obtained by sampling in the set of graphs

with the same degree distribution rewiring algorithm.
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Degree distribution (power law, fixed degree . . .)

Fixed degree distribution

I Let (d1, . . . , dn) be the degrees of an observed graph,
I The null model is obtained by sampling in the set of graphs

with the same degree distribution rewiring algorithm.

1 2 · · · i · · · j · · · n

Note that sampling in this model is expensive. Alternative?



Degree distribution (power law, fixed degree . . .)

Mean degree distribution

I Let (d1, . . . , dn) be the degrees of an observed graph and
d+ =

∑
i di.

I Let {Xij}1≤i<j≤n be independent with Xij ∼ B(pij) and

pij =
didj

C , where C is a normalizing cst s.t. pij ∈ (0, 1). For
instance C = maxi,j didj.

I Contrarily to ’fixed-degree’ model, we do not have Di = di.

I Instead, E(Di) = di
(d+−di)

C . Ideally, di is not too large and
C ' d+, then E(Di) ' di.

I If the di’s are not too large with respect to n, then one can
take C = C0 :=

∑
i di

(d+−di)
d+

. Then, one gets exactly
1
n
∑

iE(Di) = d+

n .



Degree distribution (power law, fixed degree . . .)

Advantages and drawbacks of degree distributions

I Mean degree distribution induces independent but non i.d.
edges Xij ∼ B(pij). Too many parameters to be fitted to data
! Mean degree fixed them to pij ∝ didj.

I Degree distribution alone does not capture all the
information encoded in the graph.



Preferential attachment (dynamic) I

I Start with a small initial graph G0 = (V0,E0),
I at time t, add a new node it. For each previous node

j ∈ V0 ∪ {i1, . . . , it−1}, draw edge (it, j) with prob. dj,t/d+,t,
where dj,t is the degree of j at time t.

R. Albert & A.L. Barabási.
Statistical mechanics of complex networks, Reviews of modern physics, 2002.



Preferential attachment (dynamic) II

Advantages and drawbacks

I Generative model,
I Explains the power law distribution,
I Pbm of parameter choice (V0,E0, t, . . .).



Probabilistic models

Here, we are going to focus on (static) ’statistical’ models,
I Exponential random graph model (ERGM).
I Stochastic block model (SBM) or MixNet.
I Overlapping stochastic block models (OSBM) or mixed

membership SBM.
I Latent space models.

Some recent reviews
[Matias & Robin 14] C. Matias and S. Robin.
Modeling heterogeneity in random graphs: a selective review, http
://hal.archives-ouvertes.fr/hal-00948421 , 2014.

[Goldenberg et al. 10] A. Goldenberg, A.X. Zheng, S.E. Fienberg and E.M. Airoldi.
A Survey of Statistical Network Models, Found. Trends Mach. Learn., 2010.



Exponential random graphs I

Notation
I X = (Xij)1≤i,j≤n the (binary) adjacency matrix,
I S(X) a known vector of graph statistics on X
I θ a vector of unknown parameters

Pθ(X = x) = 1
c(θ) exp(θᵀS(x)), c(θ) =

∑
graphs y exp(θᵀS(y)).

Statistics
I S(X) is a vector of sufficient statistics. It may contain

number of edges, triangles, k-stars, . . . and also covariates.
I Note that c(θ) is not computable.
I Example: If S(x) = (xij)1≤i,j≤n then
Pθ(X = x) ∝ exp(

∑
i,j θijxij), i.e. Xij are independent non i.d.

Xij ∼ B(pij) with pij = exp(θij)/(1 + exp(θij)).



Exponential random graphs II

More examples

I Imposing the constraint θij = θ, one recovers Erdős Rényi
model: Pθ(X = x) ∝ exp(θS1(x)), where S1(x) =

∑
i,j xij, the

total number of edges is a sufficient stat. and p̂ =
S1(X)

n(n−1)/2 .
I If S(x) = (S1(x),S2(x)) with S2(x) =

∑
i,j,k XijXik then the

variables Xij are non independent.
I Markov random graph: Let Sk(x) be the number of k-stars

and T(x) =
∑

i,j,k xijxjkxki the number of triangles. For
S = (S1, . . . ,Sn−1,T) we get
Pθ(X = x) ∝ exp(

∑n−1
k=1 θkSk(x) + θnT(x))

O. Frank & D. Strauss
Markov Graphs, JASA, 1986.

I In practice, use only S = (S1, . . . ,Sk,T) for k << n − 1.



Exponential random graphs III
Issues on parameter estimation

I Maximum likelihood estimation is difficult
I Maximum pseudo-likelihood estimators may be used [1].

Quality of approximation ?
I MCMC approaches [Hunter et al. 11]: may be slow to

converge.
I Very different values of θ can give rise to essentially the

same distribution.
I [CD11] established a ’degeneracy’ of these models, which

are ’ill-posed’.

[CD11] S. Chatterjee and P. Diaconis
Estimating and understanding exponential random graph models,
arXiv:1102.2650, 2011.

[Hunter et al. 11] D. R. Hunter, S. M. Goodreau and M. S. Handcock
ergm.userterms: A Template Package for Extending statnet.
Journal of Statistical Software, 52(2), 2013.



Stochastic block models: some motivations

I Previous models do not provide a clustering of the nodes,
I Erdős Rényi model is too homogeneous: introduce

heterogeneity by using groups (cheaper than having a
parameter pij for each r.v. Xij).

I Groups could be put on edges, but does not take advantage
of the graph structure. Rather put the groups on the nodes.



Stochastic block model (binary graphs)
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Binary case

I Q groups (=colors •••).
I {Zi}1≤i≤n i.i.d. vectors Zi = (Zi1, . . . ,ZiQ) ∼ M(1,π), where
π = (π1, . . . , πQ) group proportions. Zi is not observed,

I Observations: edges indicator Xij , 1 ≤ i < j ≤ n,
I Conditional on the {Zi}’s, the random variables Xij are

independent B(pZiZj).



Stochastic block model (weighted graphs)
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Weighted case

I Observations: weights Xij , where Xij = 0 or Xij ∈ R
s
\ {0},

I Conditional on the {Zi}’s, the random variables Xij are
independent with distribution

µZiZj(·) = pZiZj f (·, θZiZj) + (1 − pZiZj)δ0(·)

(Assumption: f has continuous cdf at zero).



SBM properties

Results
I Identifiability of parameters [AMR09, AMR11].
I Parameter estimation / node clustering procedures:

computation of the likelihood is not feasible (sum over Qn

terms),
exact EM approach is not possible,
instead, variational EM or variants.
In some cases, other specific methods may be developed
(ex: [AM12])

I Model selection: ICL criteria.

[AMR09] E.S. Allman, C. Matias and J.A. Rhodes.
Identifiability of parameters in latent structure models with many observed variables, Ann. Statist., 2009.

[AMR11] E.S. Allman, C. Matias and J.A. Rhodes.
Parameter identifiability in a class of random graph mixture models, JSPI, 2011.

[AM12] C. Ambroise and C. Matias.
New consistent and asymptotically normal estimators for random graph mixture models, JRSSB, 2012.



Variational EM algorithm in SBM
Let `c

n(θ) := logPθ(Z1:n, {Xij}ij) be the complete log-likelihood of
the model.

Why EM is not possible

I EM algorithm computes Q(θ, θ′) := Eθ′(`c
n(θ)|{Xij}ij),

I Requires the knowledge of the distribution of Z1:n
conditional on {Xij}ij

I In many setups (mixtures, HMM), this distribution
factorizes: P(Z1:n|{Xij}ij) =

∏n
k=1P(Zk|{Xij}ij)

I This is not the case in SBM. Because of the structure of the
DAG

· · · Zi Zj Zk · · ·

Xij XjkXik



Variational EM algorithm in SBM
Principle of the variational EM

I Idea: Replace P(Z1:n|{Xij}ij) by its best approximation
among the factorized distributions q(Z1:n) :=

∏n
k=1 qk(Zk).

I More rigorously, for any distribution q on {1, . . . ,Q}n, let
L(q, θ) =

∑
z1:n

q(z1:n) log
Pθ(z1:n ,{Xij}ij)

q(z1:n) . Then we have

logPθ({Xij}ij) = L(q, θ) + KL(q(·)‖Pθ(Z1:n = ·|{Xij}ij)) ≥ L(q, θ).

I Minimizing KL w.r.t. q↔Maximizing the lower bound
L(q, θ) w.r.t. q.

Algorithm description

I Initialize the parameter θ0,
I Iterate:

I E-step: θ is fixed, maximize L(q, θ) w.r.t. q,
I M-step: q is fixed, maximize L(q, θ) w.r.t. θ.



Variational EM algorithm in SBM

References
[DPR08] J-J. Daudin, F. Picard and S. Robin.
A mixture model for random graphs, Statist. Comput., 2008.

[PMDCR09] F. Picard, V. Miele, J-J. Daudin, L. Cottret and S. Robin.
Deciphering the connectivity structure of biological networks using MixNet,
Bioinformatics, 2009.

Variants
I Variational Bayes

[LBA12] P. Latouche, E. Birmelé and C. Ambroise.
Variational Bayesian Inference and Complexity Control for Stochastic Block
Models, Statistical Modelling, 2012.

I Online variational EM
H. Zanghi, C. Ambroise and V. Miele.
Fast online graph clustering via Erdős Rényi mixture, Pattern Recognition,
2008.



Model selection criteria in SBM ([DPR08, LBA12])
I BIC can not be computed as the maximum likelihood is

still unknown
I Replace the likelihood by another (close) quantity

Integrated classification likelihood (ICL)
When convergence of variational EM is attained (step K), fix
θ̂ := θK and let Ẑi = (Ẑi1, . . . , ẐiQ) := (qK

i (1), . . . , qK
i (Q)) be the

estimated posterior distribution of node i. Then define

ICL(Q) := logPθ̂(Ẑ1:n, {Xij}ij) −
N(Q)

2 log n,

where N(Q) is the number of parameters of SBM with Q
groups. Then

Q̂ := ArgminQICL(Q).

C. Biernacki, G. Celeux and G. Govaert
Assessing a Mixture Model for Clustering with the Integrated Completed
Likelihood, IEEE Transactions on Pattern Analysis and Machine Intelligence,
2000.



SBM

Other properties

I Behavior of the nodes posterior dist. / Quality of
variational approx. ?
→ the groups posterior distribution converges to a Dirac
mass at the true groups values

I Consistency of the MLE ?
→ the MLE of the parameter converges to the true
parameter value.

A. Celisse, J.-J. Daudin and L. Pierre
Consistency of maximum-likelihood and variational estimators in the
Stochastic Block Model, Elec. J. of Statistics, 2012.

Mariadassou, M. and Matias, C. Convergence of the groups posterior
distribution in latent or stochastic block models, Bernoulli, to appear 2014.



Overlapping SBM / Mixed membership SBM

Figure : Overlapping mixture model. Source: Palla et al., Nature, 2005.

Nodes may belong to many classes.
[Airoldi et al. 08] E.M. Airoldi, D.M. Blei, S.E. Fienberg and E.P. Xing.
Mixed Membership Stochastic Blockmodels, J. Mach. Learn. Res., 2008.

[Latouche et al. 11a] P. Latouche, E. Birmelé and C. Ambroise.
Overlapping Stochastic Block Models With Application to the French Political
Blogosphere, Annals of Applied Statistics, 2011.



OSBM [Latouche et al. 11a]

Model
I Zi = (Zi1, . . . ,ZiQ) ∼

∏Q
q=1B(πq)

I Xij|Zi,Zj ∼ B(g(pZiZj)) where g(x) = (1 + e−x)−1 (logistic
function) and

pZiZj = Zᵀi WZj + Zᵀi U + VᵀZj + ω

W is a Q ×Q real matrix while U and V are Q-dimensional
real vectors and ω real number.

Results [Latouche et al. 11a]
I Parameter’s identifiability
I Variational Bayes approach + variational logistic Bayes
I Model selection criterion

Issues
I Quality of (double) variational approximation ?



Latent space models [Handcock et al. 07]

Model
I Zi i.i.d. vectors in a latent space Rd.
I Conditional on {Zi}, the {Xij} are independent Bernoulli

log-odds(Xij = 1|Zi,Zj,Uij, θ) = θ0 + θᵀ1 Uij − ‖Zi − Zj‖,

where log-odds(A) = logP(A)/(1 − P(A)) ; {Uij} set of
covariate vectors and θ parameters vector.

I This may be extended to weighted networks



Latent space models [Handcock et al. 07]

Results [Handcock et al. 07]

I Two-stage maximum likelihood or MCMC procedures are
used to infer the model’s parameters

I Assuming Zi sampled from mixture of multivariate
normal, one may obtain a clustering of the nodes.

Issues
I No model selection procedure to infer the ’effective’

dimension d of latent space and the number of groups.

[Handcock et al. 07] M.S. Handcock, A.E. Raftery and J.M. Tantrum
Model-based clustering for social networks, J. R. Statist. Soc. A., 2007.
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Clustering the nodes of a network

Probabilistic approach

I Using either mixture or overlapping mixture models, one
may recover nodes groups.

I These groups reflect a common ’connectivity behaviour’.

Non probabilistic approach = community detection

I Many clustering methods try to group the nodes that
belong to the same clique.

I Here the nodes in the same groups tend to be connected
with each other.



Major difference between probabilistic/non
probabilistic approach

Observation of

may lead to either

MixNet model Clustering based on cliques



Remaining challenges

I Dynamic clustering of networks
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Transcription regulatory network (TRN) of E. coli
[PMDCR09]

TRN description

I nodes = operon (groups of genes acting together)
I link if one operon encodes a transcription factor that

directly regulates another operon

Analysis

I Clustering of the graph with SBM, using 5 groups (ICL
criterion)
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another operon. Such networks have been shown to share
some important properties, such as a relative sparseness, a
very low number of feed back circuits, and a hierarchical
organization [13]. Thus grouping operons based on their
connectivity structure appears essential to understand the
wiring diagram of such complex networks. In this para-
graph, we consider the connex component of the the E.
Coli TRN [14].

Summarizing regulatory structure: the MixNet representation
The clustering results with 5 classes (given by the ICL cri-
terion) gives a rough picture of the network's structure.
The connectivity matrix  of the TRN is characterized by
(i) empty rows and (ii) small diagonal elements (Table 1):
(i) means that some groups are made of strictly regulated
operons (nodes that receive edges only), and (ii) that
there is no community structure, i.e. there is no group
which is heavily intra-connected and poorly inter-con-
nected. This result is coherent with the structure of regula-
tory circuits which form cascades of regulations without
feedback [13], meaning that nodes do not share modular-
ity patterns in this regulatory network. Figure 1 indicates
that the majority of operons are regulated by very few
nodes. At this resolution level, the network is summarized
into regulated operons (groups 1 and 4), which receive
edges only. These two groups are distinguished based on
their regulatory elements: operons of group 4 are regu-
lated by crp only (which makes its own group), whereas
operons of group 1 are regulated by many cross-talking
elements (group 2, 3, and 5).

Meta Motifs of regulation
It has been shown that some motifs like the popular Feed
Forward Loop constituted a core structure of the E. Coli
regulatory network [14]. When looking at Figure 1, it
appears that MixNet exhibits the same global structures at
the group level. Groups 5 and 4 form a Single Input Mod-
ule (SIM), i.e. one TF regulating other operons that do not
communicate . Similarly, groups 2-3-1 and 2-

5-1 form a "meta" Feed-Forward loop. In both cases the
effector group is group 1, and groups 2 and 3 can be
viewed as information relays.

Getting a more detailed picture
The adaptive strategy selects 12 groups which highlight
the hierarchical structure of the regulation wiring diagram
(Figure 2). The majority of nodes are strictly regulated
operons (groups 1, 3, 5, 8, 10), whereas regulators are
clustered into small groups that are distinguished based
on their connectivity patterns and on their targets. For
example yhdG_fis (group 2) regulates nodes of groups 1
and 8, operons of group 9 (fnr, narL) regulate operons of
group 8. MixNet can also be used to detect operons that
act as global TF from the connectivity point of view. For
instance, rpo operons are clustered in "regulatory" classes
(operon rpoE_rseABC forms group 7 on its own). This
result is not surprising though, as rpo operons are
involved in the  unit of the RNA polymerase. More gen-
erally, beyond groups that are made of unique major reg-
ulatory elements, MixNet gather "regulatory-like"
elements together. For instance, group 4 is made of both
global TF and  factors (Table 2).

( %),4 4 1<

Table 1: Connectivity matrix for E. Coli TRN with 5 classes. The 
probabilities of connexion are given in percentage, and 
probabilities lower than 1% are not displayed.

MixNet Classes
1 2 3 4 5

1 . . . . .
2 6.40 1.50 1.34 . .
3 1.21 . . . .
4 . . . . .
5 8.64 17.65 . 72.87 11.01

alpha 65.49 5.18 7.92 21.10 0.30

E. Coli TRN with 5 MixNet classes with proportionsFigure 1
E. Coli TRN with 5 MixNet classes with proportions. 

 = 65.49,  = 5.18,  = 7.92,  = 21.10,  = 0.30ˆ1 ˆ 2 ˆ3 ˆ 4 ˆ5
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another operon. Such networks have been shown to share
some important properties, such as a relative sparseness, a
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organization [13]. Thus grouping operons based on their
connectivity structure appears essential to understand the
wiring diagram of such complex networks. In this para-
graph, we consider the connex component of the the E.
Coli TRN [14].
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The clustering results with 5 classes (given by the ICL cri-
terion) gives a rough picture of the network's structure.
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operons (nodes that receive edges only), and (ii) that
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which is heavily intra-connected and poorly inter-con-
nected. This result is coherent with the structure of regula-
tory circuits which form cascades of regulations without
feedback [13], meaning that nodes do not share modular-
ity patterns in this regulatory network. Figure 1 indicates
that the majority of operons are regulated by very few
nodes. At this resolution level, the network is summarized
into regulated operons (groups 1 and 4), which receive
edges only. These two groups are distinguished based on
their regulatory elements: operons of group 4 are regu-
lated by crp only (which makes its own group), whereas
operons of group 1 are regulated by many cross-talking
elements (group 2, 3, and 5).

Meta Motifs of regulation
It has been shown that some motifs like the popular Feed
Forward Loop constituted a core structure of the E. Coli
regulatory network [14]. When looking at Figure 1, it
appears that MixNet exhibits the same global structures at
the group level. Groups 5 and 4 form a Single Input Mod-
ule (SIM), i.e. one TF regulating other operons that do not
communicate . Similarly, groups 2-3-1 and 2-

5-1 form a "meta" Feed-Forward loop. In both cases the
effector group is group 1, and groups 2 and 3 can be
viewed as information relays.

Getting a more detailed picture
The adaptive strategy selects 12 groups which highlight
the hierarchical structure of the regulation wiring diagram
(Figure 2). The majority of nodes are strictly regulated
operons (groups 1, 3, 5, 8, 10), whereas regulators are
clustered into small groups that are distinguished based
on their connectivity patterns and on their targets. For
example yhdG_fis (group 2) regulates nodes of groups 1
and 8, operons of group 9 (fnr, narL) regulate operons of
group 8. MixNet can also be used to detect operons that
act as global TF from the connectivity point of view. For
instance, rpo operons are clustered in "regulatory" classes
(operon rpoE_rseABC forms group 7 on its own). This
result is not surprising though, as rpo operons are
involved in the  unit of the RNA polymerase. More gen-
erally, beyond groups that are made of unique major reg-
ulatory elements, MixNet gather "regulatory-like"
elements together. For instance, group 4 is made of both
global TF and  factors (Table 2).
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E. Coli TRN with 5 MixNet classes with proportions. 

 = 65.49,  = 5.18,  = 7.92,  = 21.10,  = 0.30ˆ1 ˆ 2 ˆ3 ˆ 4 ˆ5

Summary graph structure indicates that the majority of operons
are regulated by very few nodes: At this resolution level, the
network is summarized into regulated operons (groups 1 and
4), which receive edges only. These two groups are
distinguished based on their regulatory elements: operons of
group 4 are regulated by crp only (which makes its own group),
whereas operons of group 1 are regulated by many
cross-talking elements (group 2, 3, and 5).



TRN of E. coli [PMDCR09]

Estimated connectivity matrix
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another operon. Such networks have been shown to share
some important properties, such as a relative sparseness, a
very low number of feed back circuits, and a hierarchical
organization [13]. Thus grouping operons based on their
connectivity structure appears essential to understand the
wiring diagram of such complex networks. In this para-
graph, we consider the connex component of the the E.
Coli TRN [14].

Summarizing regulatory structure: the MixNet representation
The clustering results with 5 classes (given by the ICL cri-
terion) gives a rough picture of the network's structure.
The connectivity matrix  of the TRN is characterized by
(i) empty rows and (ii) small diagonal elements (Table 1):
(i) means that some groups are made of strictly regulated
operons (nodes that receive edges only), and (ii) that
there is no community structure, i.e. there is no group
which is heavily intra-connected and poorly inter-con-
nected. This result is coherent with the structure of regula-
tory circuits which form cascades of regulations without
feedback [13], meaning that nodes do not share modular-
ity patterns in this regulatory network. Figure 1 indicates
that the majority of operons are regulated by very few
nodes. At this resolution level, the network is summarized
into regulated operons (groups 1 and 4), which receive
edges only. These two groups are distinguished based on
their regulatory elements: operons of group 4 are regu-
lated by crp only (which makes its own group), whereas
operons of group 1 are regulated by many cross-talking
elements (group 2, 3, and 5).

Meta Motifs of regulation
It has been shown that some motifs like the popular Feed
Forward Loop constituted a core structure of the E. Coli
regulatory network [14]. When looking at Figure 1, it
appears that MixNet exhibits the same global structures at
the group level. Groups 5 and 4 form a Single Input Mod-
ule (SIM), i.e. one TF regulating other operons that do not
communicate . Similarly, groups 2-3-1 and 2-

5-1 form a "meta" Feed-Forward loop. In both cases the
effector group is group 1, and groups 2 and 3 can be
viewed as information relays.

Getting a more detailed picture
The adaptive strategy selects 12 groups which highlight
the hierarchical structure of the regulation wiring diagram
(Figure 2). The majority of nodes are strictly regulated
operons (groups 1, 3, 5, 8, 10), whereas regulators are
clustered into small groups that are distinguished based
on their connectivity patterns and on their targets. For
example yhdG_fis (group 2) regulates nodes of groups 1
and 8, operons of group 9 (fnr, narL) regulate operons of
group 8. MixNet can also be used to detect operons that
act as global TF from the connectivity point of view. For
instance, rpo operons are clustered in "regulatory" classes
(operon rpoE_rseABC forms group 7 on its own). This
result is not surprising though, as rpo operons are
involved in the  unit of the RNA polymerase. More gen-
erally, beyond groups that are made of unique major reg-
ulatory elements, MixNet gather "regulatory-like"
elements together. For instance, group 4 is made of both
global TF and  factors (Table 2).

( %),4 4 1<

Table 1: Connectivity matrix for E. Coli TRN with 5 classes. The 
probabilities of connexion are given in percentage, and 
probabilities lower than 1% are not displayed.

MixNet Classes
1 2 3 4 5

1 . . . . .
2 6.40 1.50 1.34 . .
3 1.21 . . . .
4 . . . . .
5 8.64 17.65 . 72.87 11.01

alpha 65.49 5.18 7.92 21.10 0.30

E. Coli TRN with 5 MixNet classes with proportionsFigure 1
E. Coli TRN with 5 MixNet classes with proportions. 

 = 65.49,  = 5.18,  = 7.92,  = 21.10,  = 0.30ˆ1 ˆ 2 ˆ3 ˆ 4 ˆ5

I empty rows : some groups are made of strictly regulated
operons (nodes that receive edges only),

I small diagonal elements : no community structure.
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