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Notation

» G = (V,E)is agraph withnodesset V ={1,...,n} and
edges set E,

» For any 7,j € V, random variable Xij = 1{(i,j) € E} is the
edge indicator (binary graph). Sometimes, we will
consider weighted graphs and then X;; € R is a weight on
edge (i,j) € E.

» X = (Xjj)1<ij<n is the adjacency matrix of the graph.

» Graphs may be undirected (Xj; = Xj;,1 <i<j<n)or
directed (Xj; # Xj;, 1 <i,j < n). They may admit self-loops
(random variables Xj;) or not (then set X;; = 0).

> For undirected graphs, D; = }.j,; Xj; is the degree of node i.

> For directed graphs, D_, ; = }.i; Xji is the incoming degree
of node i (resp. D ; = };5; Xjj outcoming degree).



Erd6s Rényi random graph
Erd6s Rényi model
Undirected graph with no self-loops, where {Xjj}1<i<j<, arei.i.d.
with distribution B(p).
Characteristics

» Formulated by Erd6s and Rényi in the late 50’s,

» Huge literature, describing phase transitions behaviors as
n — oo and p — 0 (existence of a giant component).

» Many links with branching processes.

Q R. Durrett.
Random Graph Dynamics. Cambridge University Press, 2006.

Drawbacks
» Independence and identical distribution hypothesis both
are not realistic.

» The degree distribution is Bin(n, p) ~ P(A) where A = np
and thus does not follow a power law.



Degree distribution (power law, fixed degree . ..)

The power-law phenomenon (or scale free distribution)

» During the 00’s, many authors focused on the degree
distribution of observed networks and claimed it always
follows a power law

P(D; = d) = cd™ , a being the exponent of the power law.
» Some (few) nodes have a very large degree: hubs.

» They started describing networks distributions by
specifying the distribution of {D;};cy.



Degree distribution (power law, fixed degree . ..)

Fixed degree distribution

» Let (dy,...,d,) be the degrees of an observed graph,

» The null model is obtained by sampling in the set of graphs
with the same degree distribution ~» rewiring algorithm.
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Degree distribution (power law, fixed degree . ..)

Fixed degree distribution

» Let (dy,...,d,) be the degrees of an observed graph,

» The null model is obtained by sampling in the set of graphs
with the same degree distribution ~» rewiring algorithm.

Note that sampling in this model is expensive. Alternative?



Degree distribution (power law, fixed degree . ..)

Mean degree distribution

» Let (dy,...,d,) be the degrees of an observed graph and
dy =), di.

> Let {Xjj}1<i<j<n be independent with X;; ~ B(p;;) and
pij = @, where C is a normalizing cst s.t. p;; € (0,1). For
instance C = max;; d;d;.

» Contrarily to "fixed-degree” model, we do not have D; = d;.

» Instead, E(D;) = di“i*—gdi). Ideally, 4; is not too large and
C = d,, then E(D;) = d,.

» If the d;’s are not too large with respect to 7, then one can
take C = Cp := }; di(dji—:di). Then, one gets exactly
1Y, E(D) =%



Degree distribution (power law, fixed degree . ..)

Advantages and drawbacks of degree distributions

» Mean degree distribution induces independent but non i.d.
edges X;; ~ B(pij)- Too many parameters to be fitted to data
I Mean degree fixed them to pjj oc d;d;.

» Degree distribution alone does not capture all the
information encoded in the graph.



Preferential attachment (dynamic) I

» Start with a small initial graph Gy = (Vo, Eo),

» at time ¢, add a new node i;. For each previous node
j € VoUliy, ..., i1}, draw edge (it,j) with prob. d;;/d. s,
where d;; is the degree of j at time ¢.

8 R Albert & A.L. Barabasi.
Statistical mechanics of complex networks, Reviews of modern physics, 2002.



Preferential attachment (dynamic) II

Advantages and drawbacks

» Generative model,
» Explains the power law distribution,

» Pbm of parameter choice (Vy, Eo, t,...).



Probabilistic models

Here, we are going to focus on (static) "statistical’ models,
» Exponential random graph model (ERGM).
» Stochastic block model (SBM) or MixNet.
» Overlapping stochastic block models (OSBM) or mixed
membership SBM.
» Latent space models.

Some recent reviews

@ [Matias & Robin 14] C. Matias and S. Robin.
Modeling heterogeneity in random graphs: a selective review, http
://hal.archives-ouvertes.fr/hal-00948421 , 2014.

@ [Goldenberg et al. 10] A. Goldenberg, A.X. Zheng, S.E. Fienberg and E.M. Airoldi.
A Survey of Statistical Network Models, Found. Trends Mach. Learn., 2010.



Exponential random graphs I

Notation
» X = (Xjj)1<ij<n the (binary) adjacency matrix,
» 5(X) a known vector of graph statistics on X

» 0 a vector of unknown parameters

Po(X = x) = 75, exp(07S(x)),  €(0) = Lgrapnsy xp(OTS(Y))-
Statistics
» 5(X) is a vector of sufficient statistics. It may contain
number of edges, triangles, k-stars, ... and also covariates.
> Note that ¢(0) is not computable.

» Example: If 5(x) = (x;j)1<ij<n then
Po(X = x) eXP(Zz’,j 0jjx;j), i.e. X;; are independent non i.d.
Xij ~ B(pij) with pj; = exp(6)/(1 + exp(05)).



Exponential random graphs II

More examples

» Imposing the constraint 0;; = 6, one recovers Erdds Rényi
model: Pg(X = x) oc exp(0S1(x)), where S1(x) = Zi,j xij, the

total number of edges is a sufficient stat. and p = n(il—(f))/z'

» If S(x) = (51(x), S2(x)) with Sy (x) = Zl-,]-’k XijXi then the
variables Xj; are non independent.

» Markov random graph: Let Si(x) be the number of k-stars
and T(x) = Zi,j,k XjXjkXr; the number of triangles. For
S=(51,...,5.-1,T) we get
Po(X = x) o exp(L{2; OkSk(x) + 0,T(x)

@ O. Frank & D. Strauss
Markov Graphs, JASA, 1986.

» In practice, use only S = (Sy,..., S, T) fork <<n-1.



Exponential random graphs III
Issues on parameter estimation

>

>

Maximum likelihood estimation is difficult

Maximum pseudo-likelihood estimators may be used [1].
Quality of approximation ?

MCMC approaches [Hunter et al. 11]: may be slow to
converge.

Very different values of 0 can give rise to essentially the
same distribution.

[CD11] established a ‘degeneracy” of these models, which
are ill-posed’.

[CD11] S. Chatterjee and P. Diaconis

Estimating and understanding exponential random graph models,
arXiv:1102.2650, 2011.

[Hunter et al. 11] D. R. Hunter, S. M. Goodreau and M. S. Handcock
ergm.userterms: A Template Package for Extending statnet.
Journal of Statistical Software, 52(2), 2013.



Stochastic block models: some motivations

» Previous models do not provide a clustering of the nodes,

» Erdds Rényi model is too homogeneous: introduce
heterogeneity by using groups (cheaper than having a
parameter p;; for each r.v. Xj).

» Groups could be put on edges, but does not take advantage
of the graph structure. Rather put the groups on the nodes.



Stochastic block model (binary graphs)
p..

P

Binary case

» 1=10,Z5, = 1
» X12=1,X1;5=0

» Q groups (=colors «ee).

» {Zih<i<n iid. vectors Z; = (Zy, ..., Zig) ~ M(1, ), where
m = (1my,...,TQ) group proportions. Z; is not observed,

» Observations: edges indicator X;;, 1 <i<j<mn,

» Conditional on the {Z;}’s, the random variables Xj; are
independent B(pz,z,).



Stochastic block model (weighted graphs)

7 n=10,7Z5, =1
X1 €eR,Xi5=0

Weighted case

» Observations: weights Xj; , where X;; = 0 or X;; € R*\ {0},

» Conditional on the {Z;}’s, the random variables X;; are
independent with distribution

tzz,() = pzizf(:, 0z2) + (1 = pz,2,)00(")

(Assumption: f has continuous cdf at zero).



SBM properties

Results

» Identifiability of parameters [AMR09, AMR11].

» Parameter estimation / node clustering procedures:
computation of the likelihood is not feasible (sum over Q"
terms),
exact EM approach is not possible,
instead, variational EM or variants.

In some cases, other specific methods may be developed
(ex: [AM12])

» Model selection: ICL criteria.

@ [AMRO09] E.S. Allman, C. Matias and J.A. Rhodes.
Identifiability of parameters in latent structure models with many observed variables, Ann. Statist., 2009.

@ [AMR11] E.S. Allman, C. Matias and J.A. Rhodes.
Parameter identifiability in a class of random graph mixture models, JSPI, 2011.

@ [AM12] C. Ambroise and C. Matias.
New consistent and asymptotically normal estimators for random graph mixture models, JRSSB, 2012.



Variational EM algorithm in SBM
Let £7,(0) := log Pg(Z1.1, {Xij};j) be the complete log-likelihood of
the model.

Why EM is not possible

» EM algorithm computes Q(6, 0) := Eo (£;,(0){Xij}ij),

» Requires the knowledge of the distribution of Z.,
conditional on {Xj};

» In many setups (mixtures, HMM)), this distribution
factorizes: P(Z1.,|{Xii}ij) = 1=y P(Zel{Xi}ij)

» This is not the case in SBM. Because of the structure of the
DAG



Variational EM algorithm in SBM

Principle of the variational EM

» Idea: Replace P(Z1.,[{X;j};j) by its best approximation
among the factorized distributions g(Z1.,) := [T;_; qx(Z).
» More rigorously, for any distribution g on {1,...,Q}", let

Po(z1:0AXijlif)

L(q,6) = L., 4(z1) log =—¢—~"". Then we have
log Po({Xi}y) = L(q, 0) + KLGIPe(Z1.n = -{Xi}i)) = L(q, 0).

» Minimizing KL w.r.t. g <> Maximizing the lower bound
L(q,0) w.rt. g.

Algorithm description

» Initialize the parameter 6°,
> Iterate:

» E-step: O is fixed, maximize £(g, 0) w.r.t. g,
» M-step: q is fixed, maximize L(g, 0) w.r.t. 0.



Variational EM algorithm in SBM

References
@ [DPRO8] J-J. Daudin, E. Picard and S. Robin.
A mixture model for random graphs, Statist. Comput., 2008.

@ [PMDCRO09] E. Picard, V. Miele, ]J-J. Daudin, L. Cottret and S. Robin.
Deciphering the connectivity structure of biological networks using MixNet,
Bioinformatics, 2009.

Variants
» Variational Bayes

@ [LBA12] P. Latouche, E. Birmelé and C. Ambroise.
Variational Bayesian Inference and Complexity Control for Stochastic Block
Models, Statistical Modelling, 2012.

» Online variational EM

@ H. Zanghi, C. Ambroise and V. Miele.
Fast online graph clustering via Erd6s Rényi mixture, Pattern Recognition,
2008.



Model selection criteria in SBM ([ppros, 1BA12])
» BIC can not be computed as the maximum likelihood is
still unknown
» Replace the likelihood by another (close) quantity

Integrated classification likelihood (ICL)

When convergence of variational EM is attained (step K), fix
0:=6%andletZ; = (Zy,..., Zig) == (qlK(l),...,qlK(Q)) be the
estimated posterior distribution of node i. Then define

5 N
ICL(Q) = log Pg(Z1, (X)) = *5> log,
where N(Q) is the number of parameters of SBM with Q
groups. Then
Q := Argmin,ICL(Q).
@ C. Biernacki, G. Celeux and G. Govaert
Assessing a Mixture Model for Clustering with the Integrated Completed

Likelihood, IEEE Transactions on Pattern Analysis and Machine Intelligence,
2000.



SBM

Other properties

» Behavior of the nodes posterior dist. / Quality of
variational approx. ?
— the groups posterior distribution converges to a Dirac
mass at the true groups values

» Consistency of the MLE ?
— the MLE of the parameter converges to the true
parameter value.

@ A. Celisse, J.-J. Daudin and L. Pierre
Consistency of maximum-likelihood and variational estimators in the
Stochastic Block Model, Elec. J. of Statistics, 2012.

@ Mariadassou, M. and Matias, C. Convergence of the groups posterior
distribution in latent or stochastic block models, Bernoulli, to appear 2014.



Overlapping SBM / Mixed membership SBM

Figure : Overlapping mixture model. source: Palla et al,, Nature, 2005.

Nodes may belong to many classes.

[Airoldi ef al. 08] E.M. Airoldi, D.M. Blei, S.E. Fienberg and E.P. Xing.
Mixed Membership Stochastic Blockmodels, J. Mach. Learn. Res., 2008.

[Latouche et al. 11a] P. Latouche, E. Birmelé and C. Ambroise.
Overlapping Stochastic Block Models With Application to the French Political
Blogosphere, Annals of Applied Statistics, 2011.



OSBM [Latouche et al. 11a]

Model
> Zi=(Zit, . Zig) ~ TIS, B(my)
> XillZi, Zj ~ B(g(pz,z;)) where g(x) = (1 + e™)~! (logistic
function) and
pziz; = ZIWZi+ ZITU+ VT Zj+ @
Wis a Q X Q real matrix while U and V are Q-dimensional
real vectors and w real number.

Results [Latouche et al. 11a]
» Parameter’s identifiability
» Variational Bayes approach + variational logistic Bayes

» Model selection criterion

Issues
» Quality of (double) variational approximation ?



Latent space models [Handcock et at. 07]

Model

» Z;iid. vectors in a latent space R?.
» Conditional on {Z;}, the {Xj;} are independent Bernoulli
log-OddS(XZ‘j =1|Z,, Zj, uij/ 9) Oy + QT 1] —|1Z; — Z il,
where log-odds(A) = logIP(A)/(1 — P(A)) ; {U;;} set of
covariate vectors and 0 parameters vector.

» This may be extended to weighted networks



Latent space models [Handcock et at. 07]

Results [Handcock et al. 07]

» Two-stage maximum likelihood or MCMC procedures are
used to infer the model’s parameters

» Assuming Z; sampled from mixture of multivariate
normal, one may obtain a clustering of the nodes.

Issues
» No model selection procedure to infer the "effective’

dimension d of latent space and the number of groups.

@ [Handcock ef al. 07] M.S. Handcock, A.E. Raftery and ].M. Tantrum
Model-based clustering for social networks, J. R. Statist. Soc. A., 2007.
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Analyzing networks: (probabilistic) node clustering



Clustering the nodes of a network

Probabilistic approach

» Using either mixture or overlapping mixture models, one
may recover nodes groups.

» These groups reflect a common ’"connectivity behaviour’.

Non probabilistic approach = community detection

» Many clustering methods try to group the nodes that
belong to the same clique.

» Here the nodes in the same groups tend to be connected
with each other.



Major difference between probabilistic/non
probabilistic approach

may lead to either

MixNet model Clustering based on cliques

Observation of




Remaining challenges

» Dynamic clustering of networks
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Applications to biological networks



Transcription regulatory network (TRN) of E. coli
[PMDCRO9]

TRN description

» nodes = operon (groups of genes acting together)

» link if one operon encodes a transcription factor that
directly regulates another operon
Analysis

» Clustering of the graph with SBM, using 5 groups (ICL
criterion)



TRN of E. coli [PmMDpcro9]




TRN of E. coli [Pmpcro9]

Summarized through

Summary graph structure indicates that the majority of operons
are regulated by very few nodes: At this resolution level, the
network is summarized into regulated operons (groups 1 and
4), which receive edges only. These two groups are
distinguished based on their regulatory elements: operons of
group 4 are regulated by crp only (which makes its own group),
whereas operons of group 1 are regulated by many
cross-talking elements (group 2, 3, and 5).



TRN of E. coli [Pmpcro9]
Estimated connectivity matrix

Table I: Connectivity matrix for E. Coli TRN with 5 classes. The
probabilities of connexion are given in percentage, and
probabilities lower than 1% are not displayed.

MixNet Classes

[ 2 3 4 5
[ . . .
2 6.40 .50 1.34
3 121
4 . . ) . )
5 8.64 17.65 ) 72.87 1.0l
alpha 65.49 518 792 21.10 030

» empty rows : some groups are made of strictly regulated
operons (nodes that receive edges only),

» small diagonal elements : no community structure.
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