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Summary. Random-graph mixture models are very popular for modelling real data networks.
Parameter estimation procedures usually rely on variational approximations, either combined
with the expectation—maximization (EM) algorithm or with Bayesian approaches. Despite good
results on synthetic data, the validity of the variational approximation is, however, not estab-
lished. Moreover, these variational approaches aim at approximating the maximum likelihood
or the maximum a posteriori estimators, whose behaviour in an asymptotic framework (as the
sample size increases to oo) remains unknown for these models. In this work, we show that, in
many different affiliation contexts (for binary or weighted graphs), parameter estimators based
either on moment equations or on the maximization of some composite likelihood are strongly
consistent and ,/n convergent, when the number n of nodes increases to co. As a consequence,
our result establishes that the overall structure of an affiliation model can be (asymptotically)
caught by the description of the network in terms of its number of triads (order 3 structures) and
edges (order 2 structures). Moreover, these parameter estimates are either explicit (as for the
moment estimators) or may be approximated by using a simple EM algorithm, whose conver-
gence properties are known. We illustrate the efficiency of our method on simulated data and
compare its performances with other existing procedures. A data set of cross-citations among
economics journals is also analysed.
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1. Introduction

The analysis of network data appears in different scientific fields, such as social sciences, com-
munication networks and many others, including a recent explosion in the field of molecular
biology (with the study of metabolic networks, transcriptional regulatory networks and protein
interactions networks). The literature is vast, and we refer for instance to Boccaletti ez al. (2006),
Goldenberg et al. (2010) and Kolaczyk (2009) for interesting introductions to networks.

Erdos and Rényi (1959) introduced one of the earliest and most studied random-graph models,
in which binary random graphs are considered as a set of independent and identically distributed
(IID) Bernoulli edge variables over a fixed set of nodes. This model is, however, too homo-
geneous to capture some important features of real networks, such as the presence of ‘hubs’,
namely highly connected nodes. This lack of heterogeneity led to the introduction of mix-
ture versions of the simple Erdos—Rényi model. So-called ‘stochastic block models’ (Daudin
et al., 2008; Frank and Harary, 1982; Holland et al., 1983; Snijders and Nowicki, 1997) were
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introduced in various forms, primarily in social sciences to study relational data. In this context,
the nodes are partitioned into latent groups (blocks) characterizing the relationships between
nodes. Block modelling thus refers to the particular structure of the adjacency matrix of the
graph (i.e. the matrix containing the edge indicators). By reordering the nodes with respect to
the groups that they belong to, this matrix exhibits blocks. Diagonal and off-diagonal blocks
respectively represent intragroup and intergroup connections. Where blocks exhibit the same
behaviour within their type (diagonal or off diagonal), we further obtain what we call an affilia-
tion structure. Affiliation structures are parsimonious in the number of parameters that they use
and may model many situations. For instance, affiliation models encompass both community
structures and disassortative mixing (Newman and Leicht, 2007). In the first case (community
structure) the intragroup connectivities are high whereas the intergroup connectivities are low.
Disassortative mixing, rather, corresponds to high intergroup connectivities and low intragroup
connectivities.

Many networks are or can be weighted (or in other words valued). Those weights are precious
additional information on the graph and should be taken into account in their analysis. Well-
known examples of weighted networks include airline traffic data between airports, co-author-
ship networks of scientists (Barrat et al., 2004) or, when rather considering the corresponding
adjacency matrix, financial correlation matrices (Laloux et al, 1999). Whereas the two first
examples correspond to sparse weighted networks, the last concerns dense (or complete) weighted
graphs. Weighted networks are a way of integrating heterogeneous data and their analysis is
thus of primary importance (Newman, 2004). Community detection (i.e. the problem of finding
clusters of nodes with many edges joining vertices of the same cluster and comparatively few
edges joining vertices of different clusters) has been widely considered in the context of weighted
graphs (see for instance Fortunato (2010)). Whereas community detection methods are mainly
algorithmic, another approach is to rely on generative models and random-graph mixtures.
Stochastic block models for analysing random graphs with non-binary relationships between
nodes have been considered either in the case of a finite number of possible relationships (Now-
icki and Snijders, 2001) or for more general weighted graphs (Mariadassou et al., 2010). Our
approach builds on these latter references. We also point out the existence of generalized block
models for valued networks (Ziberna, 2007; Doreian et al., 2005) which, however, do not rely
on a probabilistic model as we shall do here.

In this article we shall be interested in both binary and weighted random graphs and we shall
focus on mixture models. We mention the existence of an increasing literature on two different
related concepts: mixed membership (Airoldi et al., 2008; Erosheva et al., 2004) and overlap-
ping (Latouche et al., 2011a) stochastic block models for binary networks, in which nodes may
belong to several classes. However, these models are beyond the scope of the present work.

Current parameter estimation procedures in random-graph mixture models rely on approxi-
mation of the likelihood, which is itself intractable owing to the presence of the non-observed
groups. Either the expectation—-maximization (EM) algorithm (Dempster ez al., 1977) or Bayes-
ian approaches are at the core of these strategies. Both rely on the computation of the distribution
of the hidden node states, conditional on the observed edge variables. However, in the particular
case of random-graph mixtures, the exact computation of this conditional distribution cannot
be obtained, owing to its non-factorized form. Thus, approximate computations are made, lead-
ing to what is called ‘variational’ EM or Bayes strategies (Daudin et al., 2008; Latouche et al.,
2011b; Picard et al., 2009; Zanghi et al., 2008). The major drawback of these methods is their
relatively large computational time. Besides, even if these methods exhibit good behaviour on
simulated data, they suffer from a lack of theoretical support. Indeed, two major features of
these procedures still lack understanding. First, the quality of the variational approximation
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is not known, and this approximation may even prevent convergence to local maxima of the
likelihood (Gunawardana and Byrne, 2005). Second, the consistency of the maximum likelihood
or of the maximum a posteriori estimators is still an open question in these models.

Here, we propose simple strategies for estimating the parameters of mixture random-graph
models, in the particular affiliation case. The methods not only rely on established convergence
results but are also simpler than variational approaches. By focusing on small structures (edges
and triads) and treating these as if they were (but never assuming that they are) independent,
we prove that we may recover the main features of an affiliation model. We adopt strategies that
are based on either solving moment equations or maximizing a composite marginal likelihood.
A composite marginal likelihood consists in the product of marginal distributions and may
replace the likelihood in models with some dependence structure (see for instance Cox and Reid
(2004) and Varin (2008)). In the weighted random-graphs case, our result shows that parameters
may be estimated relying on a composite likelihood of univariate marginals. This is not so for
binary random graphs, because parameters of mixtures of univariate Bernoulli distributions are
not identifiable. However, parameters of mixtures of three-variate Bernoulli distributions are
identifiable (see Allman et al. (2009), corollary 5). Thus, in the binary random-graph case, we
develop moment or composite likelihood methods based on the marginals of triads, namely the
three random variables (X;;, Xix, X ) induced by a set of three nodes (i, j, k).

Once the convergence of our estimators, let us say 0, to 0, has been established, the next
question of interest concerns the order at which the discrepancy 6, — 0 converges to 0. We estab-
lish asymptotic normality results, thus obtaining rates of convergence of our procedures. This
is in sharp contrast with existing methods and the first insight on the difficult issue of exhibit-
ing (optimal) rates of convergence for parameter estimation procedures in these random-graph
models. Indeed, a still open problem may be stated as follows: what is the parametric rate of
convergence when observing n(n — 1)/2 (non-independent) random variables over a set of n
nodes, distributed according to a random-graph model? Is it 1/,/n or 1/n? In other words, the
issue is whether the observation of these potentially n(n — 1) /2 dependent edge variables over a
set of n nodes enables existence of estimation procedures with rates of convergence of the order
1/n or rather 1/,/n. We obtain here theoretical results with rates of convergence of the order at
least 1/,/n (which might not be optimal). Moreover, in the degenerate case where the group
proportions are equal, the rates of convergence increase to 1/n. Our simulations seem also to
indicate rates of convergence that are faster than 1/,/n, that might be due to degeneracies in
the limiting variances of our central limit results, i.e. the fact that these variances might be 0.

Note that our results are of a very different nature from those recently obtained on clus-
tering procedures for community detection in Bickel and Chen (2009), Rohe ef al. (2011) and
Choi et al. (2010). Indeed, those references establish that, under some conditions, the number
of misclassified nodes (resulting from different algorithmic procedures) converges to 0 (as the
number of nodes increases). Moreover, these results only concern the case of binary graphs and
community detection, the latter being more restrictive than node clustering under an affiliation
structure. However, we do not provide in this work any convergence result on the clustering
procedure that we propose and rather focus on parameter estimation properties. Finally, note
that Choi et al. (2010) also proposed convergence results on parameter estimates, but in a set-up
of independent Bernoulli random variables, whereas in our context the random variables are
not independent.

The paper is organized as follows. In Section 2, we state the various notations and present the
general assumptions of our model as well as the main result: a law of large numbers and a central
limit theorem for normalized sums of functions of variables over a k-tuple of nodes. Section 3
focuses on binary random graphs: after introducing the specific model for binary variables, we
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present two different estimation procedures. The first (Section 3.1) relies on moment equations
and is restrictive as it assumes that the group proportions 7 are known. Its main interest is
that it gives some new light on the method that was proposed in the seminal article by Frank
and Harary (1982). The second (Section 3.2) is more general (it does not assume known group
proportions) and relies on composite likelihood. Section 4 presents the weighted random-graph
model as well as the parameter estimation procedure, relying also on a composite likelihood
approach. Whereas the first part of our work focuses on theoretical results about consistency
of the parameter estimation procedures, the second part is dedicated to algorithmic issues
as well as experiments. In Section 5, we present the implementation of the estimation proce-
dures. Particular attention is paid to the problem of unravelling the latent structure of the model
(Section 5.2). In Section 6, the performances of our procedures are illustrated on synthetic data
and we also provide an analysis of a real data example. Finally, all the proofs are postponed until
Appendix A.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://www.blackwellpublishing.com/rss

2. Model and main resulit

We first give some notation that will be useful throughout this article. Forany 0 > 1, let S Q de-
note the simplex {(7y,...,7g);m =>0; E “mi=1}and Vo ={(v1,...,v0),v;€{0,1}, E T vi=
1}. For simplicity, in what follows we cons1der only undirected graphs with no self- loops Easy
generalizations may be done to handle directed graphs, with or without self-loops.

In this section, we define a general mixture model of random graphs in the following way.
First, let {Z; }1<i<n, be IID vectors Z; = (Z;1, . .., Zig) € Vg, following a multinomial distribution
M(1, ), where w=(7y,...,mg) € Sp. Random variable Z; indicates to which group (among
Q possibilities) node i belongs. These random variables are used to introduce heterogeneity in
the random-graph model.

Next, the observations {X;;}1<i<j<» are indexed by the node pairs {i, j} and take values in
a general normed vector space X (in the next sections, X ={0,1} or N or RY). We then assume
that, conditional on the latent classes {Z; }1<i<», the random variables {X;;}1<i< j<, are inde-
pendent. Moreover, the conditional distribution of X;; depends only on Z; and Z; and has finite
variance. The general model may thus be summarized in the following way:

{Zi}1<i<n 11D vectors in Vg, with distribution M(1, 7r),
{Xij}1<i<j<n Observations in X,
PHXij<icj<nl{Ziti<i<n) =®1<ic j<nP(Xij|Zi, Z)),
E(IXij11%1Zi, Z;) < 0.

(D

It may be worth noting that the variables {X;;}1<i<j<» are not independent in general, but
we often make use of the fact that sets of non-adjacent edges induce independent random vari-
ables. More precisely, if I, J C {1,...,n} with INJ =0, then {Xij}(i,j)eﬂ and {Xij}(i’j)ejz are
independent.

In the next sections, we shall focus on the particular affiliation mixture model, where the
conditional distribution of an edge variable X;; depends only on whether the end points i and j
belong to the same group (i.e. Z; = Z ). We shall thus refer to the affiliation structure assumption

P(XijlZi, Zj) =P (Xijl1z,=z;), 2

where 14 is the indicator function of the set A.
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Moreover, in the particular case of equal group proportions and affiliation structure, we shall
observe some degeneracy phenomena. These are due to the fact that the distribution becomes
invariant under permutation of the specific values of the node groups (see lemma 1 in Appendix
A for more details). For later use, we thus also introduce the equal group proportions setting

Ty=1/0 foranyge{l,...,0}. 3)

We now motivate the following developments. Under the affiliation structure assumption, the
distribution of a single edge follows a two-components mixture of the form

Xij~vPXj1Zi=Z)+ (A —PX|Zi #Z)).

For weighted random graphs, we shall assume a parametric form for this absolutely continuous
conditional distribution, namely P(Xij|Zi = Zj) = P()in(xl‘j) and P(Xij|Zi #* Zj) = Peom(Xij)‘
The vast majority of families of parametric absolutely continuous distributions give finite
mixtures whose parameters are identifiable. This is equivalent to saying that E[log{~y Py, (X12) +
(1 =) Py, (X12) }]has a unique maximum at the true parameter value (fj,, Oout). This reasoning
is at the core of maximum likelihood estimation and motivates the introduction of a composite
log-likelihood

L0 = 3 log{y Py (Xi) + (1 —7) Po(Xi)},
1<i<j<n

which is not the model likelihood as the random variables X;; are not independent. Its useful-
ness to estimate the parameters relies on whether the renormalized criterion ngompo(G) /n(n—1)
converges to the expectation E[log{~y Py, (X12) + (1 —~) Py, (X12)}]. We shall prove below that
the answer is yes and, thus, maximizing Lifmp °(6) with respect to € is a good strategy.

In the binary random-graph case, however, the strategy must be modified because each ran-
dom variable X;; follows a mixture of univariate Bernoulli distributions whose parameters are
not identifiable. We thus rather consider mixtures of three-variate Bernoulli distributions which
appear to be sufficient to estimate the parameters consistently.

Thus, we are now interested more generally in the behaviour of empirical sums of functions
of the random variables induced by a k-tuple of nodes. These empirical estimators are at the
core of the estimation procedures that we shall later consider. For this, we introduce some more
notation.

Define the set of nodes Z=1{1,...,n} and the set of k distinct nodes Z = {(iy,....,ix) €
T*;i;#i for any j#1}. (Zy is also the set of injective maps from {1,...,k} to Z={1,...,n}.)
For any fixed integer £ > 1, and any k-tuple of nodes i = (i1, ..., ix) € Zy, we let Xt = Xijins -
Xiyigs Xinizs - - -» Xip_yi,) be the vector of p= (’5) random variables induced by the k-tuple of
nodes i. Moreover, for any s > 1 and any measurable function g: X7 — R®, we let

— ! .
ig= "0 T g,

ieZk

Our first theorem establishes a strong law of large numbers as well as asymptotic normality
of the estimator r,. As the random variables { X;;} are not independent, consistency (as well as
asymptotic normality) of this empirical estimator is not trivial and must be established carefully.

Theorem 1. Under the assumptions of model (1), for any k,s >1 and p= (15) and any measur-

able function g: X? — R® such that E{ [ g(X (k0 ||2} is finite, the estimator 7, is consistent
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Mg —> my almost surely,
n—oo

as well as asymptotically normal /n(rity —mg) ~>p— 00 N (0, X,). If we moreover assume an
affiliation structure (2) with equal group proportions (3), then ¥, =0 and n(m4 —mg4) con-
verges in distribution as n — co.

Let us now give some comments about the previous result. First, an expression for the
limiting covariance matrix X, is given in the proof of the theorem. Such an expression is
useful for instance in the construction of confidence intervals. However, although our esti-
mators of the model parameters are derived from estimators of the form iy, here we did
not obtain simple expressions for their limiting variance from an expression of X,. Thus,
rather than the exact form of the limiting distribution, we are more interested here in rates of
convergence.

Theorem 1 states that the convergence of i, to m, happens with a rate at least 1/,/n. In
the case where we consider an affiliation structure with equal group proportions, we prove that
the limiting variance is null (i.e. ¥, =0), meaning that \/n (4, —m,) converges in probability
to 0. We then further prove that the sequence n (i, —m,) converges in distribution (to some
non-Gaussian limit). Thus, in this degenerate case, the convergence of 1, happens at the faster
rate 1/n.

We shall see that consistency as well as rates of convergence are preserved in the estimation
procedures that we deduce from moment estimators of the form 7i,. To our knowledge, this
work is the first giving some insights about consistency and rates of convergence of parameter
estimation procedures in random-graph mixture models.

In the next sections, we consider two particular instances of the mixture model that is defined
in expression (1): the binary affiliation model (Section 3) and the weighted affiliation model
(Section 4).

3. Binary affiliation model

In the case of binary random graphs, we observe binary random variables {X;;}1<;i<j<» indi-
cating presence (1) or absence (0) of an edge between nodes i and j. The latent classes {Z; }1<i<n
are still distributed as IID multinomial vectors on V. Conditional on these latent classes
{Zi}1<i<n» we assume that {X;;}1<i<j<n are independent Bernoulli B(-) random variables,
with parameters depending on the node groups. More precisely, we restrict our attention to the
affiliation structure model (2), where nodes connect differently whether they belong to the same
group or not. We let

B(a) ifg=1,

B(5) if gL @

Vq,le{l,...,Q}, X,'.,'|Z,'qu1=1’\'{

Here, o and 3 respectively are the intragroup and the intergroup connectivities and we let py, =
aly—;+ B 14z, for any 1 <q,/< Q. In what follows, we always assume that o # 5.
The whole parameter space is given by

M={(m,a,0);7eSeN0,1)? ae(0,1),3€0,1),a#s}.
We shall use the notation b(x, p) = p*(1 — p)!=* (where x € {0, 1} and p [0, 1]) for a Bernoulli

density with respect to counting measure. Note that, in this set-up, the complete data log-likeli-
hood is simply written
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Fig. 1. Simulation of (a) binary and (b) Gaussian weighted graphs with two classes and 20 nodes: in each
case, the picture displays the graph representations with vertices tinted according to classes, as well as the
adjacency matrices where each entry Xj; of the matrix is the binary or weight value of the edge between
vertex i and vertex j; the rows and columns of these matrices are organized according to the classes

n Q
Lxz(m,a, ) =10g{Pr o s{Xij}1<i<j<n 1Zih1<i<n)} =2 > Ziglog(my)
i=1g=1

Y
+ Z Z Ziquq{Xij log(a) +(1 - Xij) log(l — Oé)}
1<i<j<n g=1

+ > Yo ZigZp{Xijlog(B)+ (1 — X)) log(1-0P)}. ®)

Ii<jsn 1<g#I<Q

Fig. 1(a) displays an example of a binary random graph distributed according to this affiliation
model.

3.1. Moment estimators in the binary affiliation model with known group proportions

The following approach based on moment equations was initially proposed by Frank and
Harary (1982) to estimate the connectivity parameters o and (3 (as well as, in some cases,
the number of groups Q). The core idea is simple: the moment equations corresponding to the
distribution of a triplet (X;;, X, X jx) give three equations which can be used to estimate the two
parameters « and (3, as soon as the group proportions (also appearing in these equations) are
known. However, this method has not been thoroughly checked by Frank and Harary and may
give rise to multiple solutions. Indeed, they did not discuss uniqueness of the solutions to the
system of (non-linear) equations that they consider. This point has been partly discussed in All-
man et al. (2011) and the estimation procedures proposed here are an echo to the identifiability
results that were obtained there.

The following method applies only when the mixture proportions 7 are known. We develop
in Section 5 an algorithmic procedure that iteratively estimates the group proportions in the first
step, and the connectivity parameters (¢, 3) in a second step. This second step uses the method
that we shall now describe.

First, we let s =%, 7T§ and s3 =23, 7r3. Then, we easily obtain the formula

mij = [E(Xl]) =5+ (1 _SZ)ﬁa
my = E(XjjXi) =530 +2(s2 — s3)a 3+ (1 — 252+ 53) 3%, ©)
my:=E(X; Xie Xj) = s30° 4+ 3(52 — s3)a 8 + (1 — 357+ 253)3°.

Since any triplet (X;;, X, Xj) takes finitely many states, its distribution is completely char-
acterized by a finite number of its moments. In the binary affiliation mixture model context,



10 C. Ambroise and C. Matias

in fact only three different moments are induced by a triplet distribution. Thus, the previous
three moment equations completely characterize the distribution of any triplet (X;;, Xk, X jx).
Note that looking at higher order motifs, namely at the distribution of a set of p= (15) random
variables over a set of k nodes for k >4, would provide more equations but would also lead to
more intricate methods (see for instance Allman et al. (2011)).

In Allman et al (2011), the possible solutions (with respect to « and () of this set of
moment equations are examined. Their result distinguishes the equal group proportions case
(mg=1/0,¥1< g < Q) where a degeneracy phenomenon takes place.

Theorem 2. (Allman et al., 2011). If m, # m%, then the m;s are unequal and we can recover the
parameters (3 and « via the rational formulae

(53— 5253)m3 + (83 — s3)mam1 + (s357 — 53)m3

g (m? —m2) (253 — 35352 153) ’ ()
gzt 2=DF
— S2 M

Ifmy= m%, then the m;s are equal and we have

3

B=mi+ (Lé__nl”)l/},

a=Q0m;+(1-0)p.
As soon as 57 and s3 are known, by plugging estimators of the moments m; into these equa-

tions, we obtain simple estimates for parameters o and 5. We thus first introduce empirical
moment estimators #1;, which are defined by

®)

1
mp=————-— Xij,
n(n_ 1) (l,.])Z€I2 Y
1
My = ————— XijXik, 9
nin—1)(n-2) (ijj’%d} e ©)
1
M= — Xii XX k.
nin—1)(n—-2) M%% R

Note that these estimators are all of the form i, for some specific function g. Thus, their
consistency is a consequence of theorem 1. We can then prove the following result.

Theorem 3. In the binary affiliation model specified by expressions (1) and (4), when the group
proportions 7 are supposed to be known, we have the following results.

(a) When the 7 s are unequal, the estimators (&, 3) defined through expression (7) where the
m;s are replaced by the m;s converge almost surely to («, 3). Moreover, the rate of this
convergence is at least 1/./n.

(b) When the ms are equal, the estimators (&, (3) defined through expression (8) where the
m;s are replaced by the ;s converge almost surely to («, 3). Moreover, the rate of this
convergence is at least 1/n.

The performances of this method, combined with an iterative procedure to uncover the latent
structure and to estimate the group proportions, are illustrated in Section 6.
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3.2. M-estimators in the binary affiliation model
We shall now describe another parameter estimation procedure based on M -estimators (see for
instance van der Vaart (1998), chapter 5), i.e. estimators maximizing some criterion (here, a
composite likelihood). This procedure is more direct than the previous moments method that
was developed in Section 3.1, as it does not assume a preliminary knowledge of the group
proportions 7.

Let us recall that X@/0 = (Xij, Xik, X jx). The random vectors XEIR form a set of
non-independent, but identically distributed vectors, with distribution of each X“/*% given
by the mixture

PrasXE2) = SN mm, b(X12, pat) B(X13> Pam) B(X23, Pim),
1<q,l,m<Q

where we recall that p,; =« 1,—; 4+ 3 14-. In this mixture, many components are in fact equal.
Indeed, the components reduce to only four (when Q =?2) or five (when Q > 3) different distri-
butions. More precisely, we may write

Pra,s(XT2) =41 b(X12,0) b(X13,0) b(X23,0) +72 b(X12, B) b(X13, B) b(X23, )
+73 b(X12, B) b(X13, @) b(X23, B) + 74 b(X 12, ) b(X13, 8) b(X23, B)
+75 b(X12, 3) b(X13, 8) b(X23, /), (10

where the five proportions v = (v1,...,7s) € Ss appearing in this mixture are related to the
original proportions 7, by the following relationships:

Q 3
Y= Zﬂ-qzs?”
q=1
vi= Y mom=sy—s3, for je{2,3,4}, (1)
1<gA<0
5= Yo mgmmm=1—3s2+2s3.
1<q,l,m<Q
|{q,[,m}\=3

When Q =2, the fifth proportion -5 is automatically equal to 0. Moreover, as soon as Q < 3, the
set of equations (11) defines a one-to-one relation between 7 and ~. However, when Q > 3, the
parameter 7 is not uniquely defined from ~ and is not identifiable from the mixture distribution
(10).

We emphasize that distribution (10) is a constrained three-variate Bernoulli mixture. Param-
eter identifiability of such a distribution is further discussed below. However, we should already
remark that, whereas parameters of mixture models may in general be identified only up to
a permutation on the node labels, the constrained form of the mixture (10) has the following
consequence: the parameters « and 5 will be exactly recovered as soon as the mixture compo-
nents are identified from equation (10) and whatever the labelling of these mixture components
is. Indeed, among the five unordered components of the mixture, only three of them will be
the product of two identical one-dimensional distributions, times a different distribution. The
parameter 3 is then the parameter appearing in exactly two marginals in any of those three
components.

Let us consider as our criterion a composite marginal log-likelihood of the observations

L (o, )= Y log{Pra.s(XEFR)}, (12)
(i,j,k)eZ;
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We stress that this quantity is not derived from the marginal of the model complete-data likeli-
hood (expressed in equation (5)) and is simpler. It would be the log-likelihood of the observations
if the triplets {X“/®}; ; )7, were independent, which is obviously not so. We now define our
estimators as

(n, G, 3,) =arg max{ LS (7, a, B) }. (13)

,,0

Note that, according to the non-uniqueness of group proportions 7 corresponding to mixture
proportions «, the maximum with respect to 7 in the above equation may not be unique. We
also let 4, be defined from 7, through expression (11).

Using theorem 1, the renormalized criterion (12) converges to a limit. The key point here is
that, under an identifiability assumption on the model parameters, this limit is a function whose
maximum is attained only at the true parameter value (v, o, 3). Using classical results from
M -estimators (van der Vaart, 1998; Wald, 1949), we can then obtain consistency and asymp-
totic normality of the estimators defined through equation (13). We thus need here to assume
the identifiability of the model parameters.

Assumption 1. The parameters -y, o and 3 of the model that is defined by equation (10) are iden-
tifiable. In other words, if there exist (7, «, ) and (7', o/, ') such that for any (x, y, z) € {0, 1}3
we have

PrasXi2=x,X13=y,X23=2)=Pr o g(X12=x,X13=y,X23=2),

then (v, a, 8) = (v, &, 3'), where v and +/ are defined through expression (11) as functions of
7 and 7’ respectively.

We now make comments on this assumption. We first mention that identifiability of all the
parameters (7, c, 3) in the model that is defined by expressions (1) and (4), i.e. relying on
the full distribution over U,>1 {0, 1}(3) (comprising the marginal distributions of the random
graphs over a set of n nodes, for any value of n), is a difficult issue, for which only partial
results have been obtained in Allman et al. (2011). Surprisingly, the results under the affiliation
assumption are more difficult to obtain than in the non-affiliation case. The question here is
slightly different and we ask whether a triplet distribution (10) is sufficient to identify only «
and (3 (as well as the corresponding proportions ). As already pointed out, distribution (10)
is a constrained distribution from the larger class of three-variate Bernoulli mixtures. In the
case of (unconstrained) finite mixtures of multivariate (or three-variate) Bernoulli distributions,
although the models have been used for decades and were strongly believed to be identifiable
(Carreira-Perpinan and Renals, 2000), the rigorous corresponding result has been established
only very recently and by using rather elaborate techniques (see Allman ez al. (2009), corollary
5). Unfortunately, this latter result does not apply directly here. Although this might be difficult
to establish, we strongly believe that v, a and 3 are identifiable from distribution (10) and we
advocate that, from the simulations that we performed, it seems a reasonable assumption to
make.

In what follows, we also restrict our attention to compact parameter spaces, as this greatly
simplifies the proofs and is not much restrictive. Generalizations could be done at the cost of
technicalities (see for instance van der Vaart (1998), chapter 5).

Assumption 2. Assume that there is some 6 > 0 such that the parameter space is restricted to
s ={(m, 0, B) TV <q< 0,7, > 6, €[6, 1 — 8], Be[6, 1 — 5]}

We can then prove the following result.
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Theorem 4. In the model defined by expressions (1) and (4), under assumptions 1 and 2, the
estimators (%,,, x, Bn) defined by expression (13) are consistent, as the sample size n grows
to co. Moreover, the rate of this convergence is at least 1/,/n and increases to 1/n in the
particular case of equal group proportions (3).

We now comment on this result. We prove that the rate of convergence of our estimators is
at least 1/./n. However, our simulations (see Section 6) seem to exhibit a faster rate, indicat-
ing that the limiting covariance matrix of the discrepancy /n(¥, —~, & — @, Bn — [3) might be
zero, even beyond the case of equal group proportions. Also, when Q < 3, a consequence of the
above result is that the estimator of the group proportions 7, defined through 4, as the unique
solution to the system of equations (11) is also consistent and converges with a rate at least
1/4/n.

As is always the case for mixture models, the (composite) log-likelihood (12) cannot be com-
puted exactly (except for very small sample sizes). Approximate computation of the estimators
in expression (13) can be done by using an EM algorithm (Dempster ez al., 1977). This procedure
is presented in Section 5.1. It is known (Wu, 1983) that, under reasonable assumptions, the EM
algorithm will give a solution converging to the estimators that are defined by expression (13),
as the number of iterates grows to oo.

4. Weighted random graphs

In this section, we focus on a particular instance of model (1) for weighted random graphs.
The observations are random variables {X;;}1<i<j<n that are either equal to 0, indicating the
absence of an edge between nodes i and j, or a non-null real number, indicating the weight of
the corresponding edge. We still assume that, conditional on the latent structure {Z;}1<i<n.
the random variables {X;;}1<;<j<n are independent, and the distribution of each X;; depends
only on Z; and Z;. We now further specify the model by assuming the following form for this
distribution:

anle{la’Q}9 X1]|Zqujl=1Npqlf(;aql)"‘(l_pql) 60()5 (14)

where { f(-,0),0 € ©} is a parametric family of distributions, &y is the Dirac measure at 0 and
pqi € (0, 1] are sparsity parameters. We let p={p,} and 8 = {6, }. The conditional distribution
of X;; is thus a mixture of a Dirac distribution at zero accounting for non-present edges, with
proportion given by the sparsity parameter p (which can be 1 in a complete weighted graph)
and a parametric distribution with density f that gives the weight of present edges. We focus on
two different sparsity structures:

(a) either the sparsity is constant across the graph, py = p,¥1<q,1< Q;
(b) or the sparsity parameters model an affiliation structure py =a 1, + 31, and we
assume that o £ 3.

We moreover assume that we know the sparsity structure type. In any case, the connectivity
parameter 6 is assumed to take exactly two different values:

9 ifg=I,
Vq,le{l,---:Q},gql:{gzlut 1fZ5£l

with 6;, # 0oyt For identifiability reasons, we also constrain the parametric family { f(-, ),0 € ©}
such that any distribution in this set admits a continuous cumulative distribution function at
zero. Indeed, if this were not so, it would not be possible to distinguish between a zero weight
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and an absent edge. Note that this model satisfies the affiliation assumption given by equation
(2). Here, the complete-data log-likelihood is simply written

n Q
Lx z(m,p,0)=10g[Prpo0({Xij}1<i<j<n {Zit1<i<)]= D > Ziglog(my)
i=1g=1

+ > > ZigZj(x,zollog{ f(Xij, 0q) } +log(pa)]
1<i<j<n 1<41<0

+1x;,=0 log(1 — pg1)). (15)

We now give some examples of parametric families { f(-, #), 0 € ©} that could be used as weights
(or values) on the edges.

(@) Example I: let 0 = (u,02) € R x (0,00) and consider f(-,0) the density of the Gaussian
distribution with mean 1 and variance 0.
(b) Example 2: let 6 € (0,00) and consider f(-, ) the density (with respect to the counting

measure) of the Poisson distribution, with parameter 6, truncated at zero. Namely,
Gk
Yk >1, f(k,H):E{exp(H)—l}_l.

In example 2, the Poisson distribution is truncated at zero because, as previously mentioned,
it would not be possible to distinguish a zero-valued weight from an absent edge. Sparsity of
the graph is modelled through the parameter p only and the density f(-, #) concerns weights on
present edges.

Fig. 1 illustrates the difference between binary and weighted random-graph affiliation models.
For example the weighted graph of Fig. 1 displays no binary affiliation structure: if the weights
were truncated by using the function x — 1,9, we would not obtain that the two groups have
different intragroup and intergroup connectivities. This means that classical community clus-
tering algorithms would fail to find any meaningful structure on this type of graph.

To our knowledge, this model has never been proposed in this form in the literature. In par-
ticular, the closest form was given in Mariadassou et al. (2010) who did not introduce a possible
Dirac mass at zero to enable sparsity of the graph.

We now describe our estimation procedure based on M-estimators and a composite likeli-
hood criterion. We proceed in two steps and first estimate the sparsity parameter, relying on an
induced binary random graph. In the second step, we plug in this estimator and focus on the
connectivity parameters 6 by relying only on the present edges.

(a) Estimating the sparsity parameter: let us first consider the case where p, = p. Then, we
naturally estimate the sparsity parameter p by

. 2
Pn nn—1) 1@'%@1 b=
The consistency, as well as the rate of convergence, of this estimator follows from
theorem 1. In the case where the sparsity parameter rather satisfies py = o 14— + 5 142,
with « # 3, we rely on the underlying binary random graph (obtained by setting
Y;j=1x,,20) and apply the results of Sections 3.1 or 3.2 to estimate « and 3 consistently.
(b) Estimating the connectivity parameter 0: the present edges X;; (Where i and j are such that
X;;j#0) are non-independent random variables, distributed according to a simple uni-
variate mixture model Xy 7w,m pg f(-, 841). For classical distributions f{(-, ), it is possible
to estimate the connectivity parameters 6 of this univariate mixture directly. In fact,
we prove that, as soon as the parameters {6} are uniquely identified from the mixture
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g mqmipg f(-,04) and, for regular parametric families { f(-,0),6 € ©}, a consequence
of theorem 1 is that maximizing a composite likelihood of the set of present edge vari-
ables provides a consistent estimator of the parameters. Let us introduce the assumptions
needed.

Assumption 3. The parameters of finite mixtures of the family of measures 7 ={ f(-;0); 0 € ©}
are identifiable (up to label swapping). In other words, for any integer m > 1, if

SNSCL0) =30 NS0
i=1 i=1

then
Zl i b, ()= 21 i 69 ().

Continuing examples 1 and 2, note that both the families of Gaussian and truncated Poisson
densities satisfy assumption 3. More generally, a wide range of parametric families of densities
on R satisfy assumption 3 (see section 3.1 in Titterington et al. (1985) for more details).

The next assumption deals with regularity conditions on the model. Note that this assumption
could be weakened by using the concept of differentiability in quadratic mean (see for instance
van der Vaart (1998)).

Assumption 4. The functions 0 f(-, 0) are twice continuously differentiable on ©.

This assumption is only technical and not very restrictive. It requires the parameter set to be
compact and could be weakened at the cost of some technicalities.

Assumption 5. Assume that there is some 6 >0 and some compact subset ©. C © such that
the parameter space is restricted to the set {(m,p,0);V1<¢g< Q,m; >6,p€[6,1—-6],0€0.}.

Now, each present edge variable X;; such that X;;#0 is distributed according to the mixture
Y1<q,1<0TqT1Pq f(-; 04). As there are only two different components in this mixture, we express
it in the more convenient form

0
Prp.o(Xij) = (2 nﬁpqq> f(Xij:0in) + ( ) wqmpqz>f(x,»j;90ut>
q=1

1<q#I<0
*="%in f(Xij;ein)+'Yout f(Xij;eout)- (16)

We consider a composite log-likelihood of present edges defined by

LY p, 0= > log{vin f(Xij;0in) +Your f(Xij;O0u)}- (17
1<i<j<n

We stress that this quantity is not derived from the marginal of the model complete-data likeli-
hood (expressed in equation (15)) and is simpler. We now define estimators as

B = {in. Dout ) = arg max{ L™ (. p,. )}, {1s)
0

where p,, is a preliminary step estimator of p. Note that, owing to the label swapping issue on
the hidden states, we estimate the set of values {0;,, fout } and cannot distinguish 6y, from 6oy.
Section 5.2 deals further with this issue.
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We can now prove the following theorem.

Theorem 5. In the model defined by expressions (1) and (14), under assumptions 3-5, the set of
unordered M -estimators én = {éin, @Out} defined by equation (18) is consistent, as the sample
size n grows to co. Moreover, the rate of this convergence is at least 1/,/n and increases to
1/n in the particular case of equal group proportions (3).

The proof mainly relies on the consistency of the normalized criterion (17). This point is a
direct consequence of theorem 1. Then, from the criterion consistency, the identifiability and
the regularity assumptions, one can derive the consistency of the corresponding M -estimator
from classical theory (van der Vaart, 1998; Wald, 1949).

As already noted in the case of theorem 4, our result establishes a rate of convergence that
is equal at least to 1/4/n. The simulations (Section 6) seem to indicate that the rate may in fact
be faster, which is something that may be due to the degeneracy of the limiting variance of
J/n(6, —0).

As for M-estimators in the binary case, we shall approximate this maximum (composite)
likelihood estimator by using an EM procedure (Dempster ez al., 1977) whose convergence
properties are well established (Wu, 1983). In contrast with the procedure that was presented in
Section 3.2 where we need to adapt the EM framework to our specific model, we rely here on
the classical EM algorithm and thus do not recall it.

5. Algorithms

In this section, we provide tools to implement the procedures that were described previously, as
well as a complement to the issue of recovering the latent structure of a graph.

5.1. Expectation—maximization algorithm with triplets
In this section we describe the EM algorithm that was developed to approximate the estimators
defined by expression (13).

In what follows, each set of three nodes {i, j, k} corresponds to an index i ranging over the set
{1,..., N}, where N =n(n— 1)(n —2) is the total number of triplets. We let Xi= (X1, x1-2, x1-3)
be one of the observed triplets (namely each X/ for 1 < j <3 corresponds to some former
random variable X, for some 1 <s,¢<n) and U; ~ M(1,~) is the vector encoding the corres-
ponding hidden state, namely, U;j € V5. We also denote by 73 the posterior probability of node
triplet i being in state k, conditional on the observation xi, namely 7 = P(Uj = 1|Xi), for
1 <k<5and 1<i<N. Moreover, we encode the fact that, conditional on the five different
hidden states of U, each co-ordinate of X is distributed according to either B(a) or B(5), using
the notation

1 2
Ojk= (6jk’ 5jk) = (Lxi |y =1~B(a)» lxia./\Uik=1~B(/3))a

forall 1< j<3,1<k<5andany 1 <i<N. Note that ¢ j is deterministic and that 6 j € V. With
this notation, we are in the situation where we consider a composite likelihood (12) of random
vectors { X'} i<y from the mixture of five different three-dimensional Bernoulli distributions,
the latent classes being the random vectors {Uj }1<i<n-

The EM algorithm is intended to compute and optimize iteratively, with respect to (v, «, 3),
the function

0{(7. . 3); (¥, 0, BN} = o0 g 10g[Pry, o, s({ Ui h<ien- X H<iem) {X H<ien D,
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using the current value of the parameter (v, a®, 3©)). If we let 72 k =P 40 g0 Uik = 111,
we can write

N

0{(y, . 8); (Y, aW, g} =3 Z 7 log () + z z e Z 8 A X" log(cr)
i=1k=1 i=1k= '
+(1 - X")log(l — a)}

+62{X" log(B) + (1 — X)) log(1 — B} (19)

Starting from an initial value (v, a1, 3(V), the EM algorithm proceeds in two iterative steps.
At iteration s, the E-step computes the posterior distribution of U; conditional on X', namely

3 ..
’VIES) H b(XJ, 5}]{0[(5) 4 6?kﬁ(5))
j=1

Z 'Y(s> H b(Xi-J 6lla(s) + (5 6(3))

j=1
for every 1 <i< N and every 1 <k < 5. By using equation (19), we then obtain the value of
o{(v,a, B); (7(”, a®, )1 In the M-step, this quantity is maximized with respect to (v, o, 3)
and the maximizer gives the next value of the parameter (D, a6+D g6+Dy) This step relies
on the following equations:

Y= Py o, g0 (Ui = 11X =

2

W =N D, k=1,5,
i=1

N
7£s+1) _ (3N)_1 D 7_i(zs) (Y) +T(Y), k=234,
i=1

a(S"r]):{ZTl(f)(Xl,l +Xl,2+Xl,3)+7_l(23)Xl,3 +T](§)xl,2+7_l€45)xl,l}
i=1

-1
(Y) (Y) (5) (s)
<Z 37—11 Ti2 +7 i3 +7 Tia ) 2

ﬁ(SJr]) — {Z 7.1(23) (Xl,l + Xl,2) +Ti(§)(Xl°1 +Xl’3) +7_i(4~.‘)(xl,2 +X1,3) +Ti(53)(xl’1 + X1,2 +Xl,3)}
i=1

-1

(Z ZT(Y) +27'i(3s) +27'(Y) + 37'(?))

The sum over all the N possible triplets reduces in fact to a sum over eight different possible
patterns for the values of X'. Indeed, the posterior probabilities 73 are constant across triplets
with the same observed value.

5.2. Unravelling the latent structure

The general method that we develop in this section aims at recovering the latent structure
{Z;}1<i<n on the graph nodes. Indeed, the procedures that were developed in the previous
sections focus only on estimating the parameters and do not directly provide an estimate for the
node groups.

We rely here on a simple method: we plug in the estimators that were obtained from the
previous sections in the complete-data likelihood of the model (namely the likelihood of the
observations {X;;}1<i<j<n and the latent classes {Z;}1<i<x). As we do not have estimates of
the mixture proportions 7r, we simply remove this part from the expression of the complete-data
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likelihood. Then, we simply maximize this criterion (which we call a classification likelihood)
with respect to the latent structure {Z; }1<;<,. In a latter step, we then estimate the unknown
proportions 7r by the frequencies that are observed on the estimated groups Z;.

5.2.1. Criterion in the binary case

In this set-up, we introduce a criterion C, which is built on the complete-data likelihood, where
we plugged in the estimators of a and 8 and removed the dependence on 7. This criterion is
simply written

[¢]
CUZh<i<cn) = 2 2 ZigZjg{Xijlog(®) + (1 —X;)log(1—-a)}
1<i<j<ng=1

+ 3 S ZigZa{Xijlog(B) + (1 —X;)log(1—B)}.

Ii<jsn 1<g#ISQ

5.2.2.  Criterion in the weighted case
Recall that the estimation procedure from Section 4 recovers only the set of unordered values
{0in,Oout }- As we know these parameters up to permutation only, let {01,6>} be any choice
of label for the corresponding estimators. We can consider two different criteria, denoted C!-2
and C%1, as follows:
C'(Zih<isc= Y. ZigZp(lx, llog{ f(Xij:0.)} +1log(p,)]+ 1x,,—0 log(1 — p,))
1<i<j<n
1<g#I<0
+ Y ZigZjg(ly, llog{ f(Xij; 00)} +108(p, )]+ 1x,,—0 log(1 — p,)).
1<i<j<n
1<¢<Q

where {u v} ={1,2}. For each of these criteria, we can select the latent structure Z
(Z1,..., 2" max1m121ng it. Then, choosing the couple (u*,v*) maximizing the resultmg
quantlty cv(Z"") seems to be an 1nterest1ng strategy. We thus finally define our estimated
latent structure (Z1,. .., Z,) as 7"

5.2.3.  [Iterative estimation of the latent structure
In any case (elther binary or weighted), we propose to use an iterative procedure to compute
the maximum Z of the criterion C({Z;};). Starting from an initial value Z(" = (Z(l) ,ZD)
of the latent structure, we iterate the following steps. At step s, we (uniformly) choose a node io
and select Z; 6D 3
ZESH) =arg max[C({ Z" }iig» Ziy = )]

1<¢<0
and let Z(SH) Z;S) for j#ip. At each time step, we increase the classification likelihood
C{z; }1<l<n) and thus the procedure eventually converges to a (local) maximum. By using
different initial values ZV = (Z] (.., ZM), we should finally find the global maximum. Once
we estimated the latent groups Zl, we may obtain an estimate of the group proportions 7
by simply taking the corresponding frequencies. The procedure is summarized in function
latent.structure (graph, parameters):

input : observed graph and parameter values;
output : latent structure and group proportions.
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Start from latent structure {Z;} :
while convergence is not attained,
choose node iy and
replace Z;, with arg maxq[C({Zi},'#io, Zi,=q)]
Compute group proportions 7 from {Z;}.

5.3. Description of complete algorithm

The following algorithm describes the procedures for analysing binary or weighted random
graphs. We introduce a variable ‘method’ which can take three different values: ‘moments’ or
‘tripletEM” in the binary case and ‘weighted’ for weighted random graphs. In the weighted case,
we moreover use a second variable called ‘sparsity’ to indicate whether we estimate a global
sparsity parameter p (‘sparsity=global’) or two parameters « and [ from an affiliation struc-
ture (‘sparsity=affiliation’). The performances of the procedures proposed in the current section
are illustrated in the following section.

If method="moments’ then
compute m;, i =1,2,3, from expression (9).
Initialization—
start from latent structure {Z;} with proportions 7 and compute s, and s3:
while convergence is not attained,
update parameters—
if abs (1iiy —m?) < e then
compute «, 3 through expression (8);
otherwise
compute «, 8 through expression (7);
update latent structure—
apply latent.structure to the current parameter values.

If method = ‘tripletEM’ then
estimate «, 3 from the EM algorithm with triplets (Section 5.1),
apply latent.structure to the parameter values.

If method = ‘weighted’ then—

sparsity parameters—

transform weights X;; into binary variables ¥;; =1y

if sparsity="global’ then
compute p={2/n(n—1)}X;.;Y;j;

otherwise

estimate «, § from the EM algorithm with triplets (Section 5.1)—
connectivity parameters—

estimate {6, Oout } from the EM algorithm with present edges (Section 4)—
latent structure—

apply latent.structure to the parameter values.

ij#0°

6. Numerical experiments

We carried out a simulation study to examine the bias and variance of the estimators proposed.
In the binary affiliation model, we also compared the performance of our proposal with the
variational EM (VEM) strategy that was proposed by Daudin et al. (2008). Note that Gibbs
sampling has already been compared with VEM strategies in Zanghi et al. (2010) and gave
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very similar results. Note also that the weighted affiliation model that is proposed here is orig-
inal and we thus cannot compare our results in this case with any other existing implemented
method.

6.1.  Binary affiliation model: simulations set-up

In these experiments, we assumed that edges are distributed according to the binary affiliation
model that was described in Section 3. The data were generated in various settings, with the
number of groups Q € {2, 5} and the number of vertices n € {20, 50, 100, 500, 1000}. For each of
these cases, we created three settings corresponding to models with different ratios of intragroup
and intergroup connectivity parameters (Fig. 2). Moreover, we considered two different cases:
equal or free group proportions 7.

In each of these settings, we applied three different methods for estimating the model param-
eters: the moment method (corresponding to Section 3.1), the triplet EM method (corresponding
to Section 3.2) and the VEM strategy proposed by Daudin et al. (2008), which we adapted to
constrain it to an affiliation structure. The results for equal or free group proportions were
similar and we thus present only the equal group proportions case.

Fig. 3 shows the estimated density (over 100 graphs simulations) of the estimators & and
(3 for the three algorithms and the three models for graphs with 500 vertices. We see that for
a given model the three methods produce estimators with similar densities. In particular, the
estimators of « and 3 seem to have little or no bias and the variances are of the same order
of magnitude for the three estimation methods. As the behaviours of the estimators of o and
[ are comparable over all the simulations, we focus the discussion on the estimation of the
parameter a.

Figs 4(a)-4(c) display the estimations of « averaged over 100 graph simulations as a function
of the number of graph vertices on a log-scale. For all three models, we see that all the algorithms
produce unbiased estimation when the number of vertices is sufficiently large. In addition to
the asymptotically unbiased estimation, we observe agreement in the sign of the bias among
all algorithms, when the graphs are small. For example, when estimating o in model 1 where
(a=0.3, 3=0.03), all methods underestimate - and overestimate 3.

To compare the dispersion of all the estimators, we consider their empirical standard deviation
computed over 100 simulations. Figs 4(d)—4(f) show the evolution of the logarithm of the
empirical standard deviation of & when the size of the graphs grows from 20 vertices up to 1000
vertices. We see a linear dependence between the logarithm of the graph size and the log-standard-

0 o)
o Q
R\Ne
o)
Q
o0 o @ o)
Q ® '.
.' ® ° "
o0 e
® o o o5 o © o} °
o % 5 S0
[ 5 @ e ®°
{ J 0©° o o

(a) (b) ()
Fig. 2. (a) Low intergroup connectivity and strong intragroup connectivity (model 1;«=0.3 and 5 =0.03),
(b) strong intergroup connectivity and low intragroup connectivity (model 2;« =0.03 and 5 =0.3) and (c)
model without structure close to the Erdés—Rényi random-graph model (model 3; « =0.55 and 3 = 0.45): the
figure displays an example with Q =2 groups
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Fig. 3. Empirical joint distribution of the estimators & and 3, computed over 100 simulations of graphs with
500 vertices, Q =2 groups and equal group proportions (-, true values of « and 3): (a) model 1; (b) model 2;
(c) model 3

deviation. The slope of the lines is about —1, which indicates that the standard deviation de-
creases with rate of the order 1/n (where n is the number of vertices of the graph). The dif-
ferences between the intercepts relate to constant factors driving the relationships between all
rates of convergence. When Q =2, we observe very similar intercepts for all methods, both for
model 1 and for model 2. When Q =5, the VEM algorithm appears to converge faster but
the orders of the standard deviations remain comparable among all estimation methods. For
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model 3, the moment-based estimations have greater dispersion but still decrease with the same
rate.

We use the adjusted Rand index (Hubert and Arabie, 1985) to evaluate the agreement between
the estimated and the true latent structure. The computation of the Rand index is based on a
ratio between the number of node pairs belonging to the same and to different classes when
considering the actual latent structure versus the estimated structure. This index lies between 0
and 1, two identical latent structures having an adjusted Rand index equal to 1. Fig. 5 displays
the Rand index for the three models and five different graph sizes. It appears that the three
algorithms allow a reasonable recovery of the latent structure, for models 1 and 2, when the
graphs considered have more than 100 vertices. As expected, the larger the number of nodes,
the better the recovery of the latent structure that we observe. We also note that our proposed
strategy for recovering the latent structure performs as well as or better than the variational
approach in all cases.

The previous experiments show that the two estimation procedures proposed in this work
behave as well as or better than the variational-based algorithm, both for the parameter estima-
tion and for the recovery of the latent structure. Note also that the moment-based method does
not depend on any sort of initialization, since it relies on the analytical resolution of a simple
system based on triads (order 3 structures).

6.2. Weighted affiliation model: simulations set-up

In the following experiments, we use a sparsity parameter constant across the graph and non-
missing edges are distributed according to a Gaussian model as described in Section 4, with
different means p, and iouc and equal variance o2. The intricacy of a model is inversely related
to the ‘distance’ between the parameters 6;, and 6,,;. We use the Mahalanobis distance A =
| (tin — pout)/o|. Three models are considered with different levels of intricacy: we fix puj, =2 and
tout = 1; thus A =|(in — tout) /ol = 1/0, which takes the values A =10 (model A), A =2 (model
B) and A =1 (model C). We fix the number of groups Q =2, take equal group proportions and
consider various numbers of vertices n € {20, 100, 500, 1000}.

We computed bias and empirical standard deviations over 100 simulations. As illustrated
by Fig. 6(a) in the case of [i;,, the method recovers the parameters with no bias, except for
model C where a small bias occurs due to the high level of intricacy of the model. Fig. 6(b)
displays the evolution of the logarithm of the empirical standard deviation of i;, when the size
of the graphs grows from 20 vertices up to 1000 vertices. As for the binary affiliation model
estimators, we observe a linear dependence between the logarithm of the graph size and the
log-standard-deviation, the slope of the lines lying in [—%, —1].

Fig. 6(b) displays the Rand index for the three different models (A,B,C) and four different
graph sizes. When graphs have more than 100 nodes, recovery of the hidden structure is almost
perfect in all situations as previously observed in the binary case.

The previous experiments show that, when dealing with weighted affiliation graphs, the esti-
mation of the parameters and of the graph latent structure can be efficiently achieved considering
only edges (order 2 structures).

6.3. Cross-citations of economics journals

We illustrate the difference between weighted and binary models for graph clustering by using
a real data example. We consider cross-citations of 42 economics journals over the years 1995-
1997 (Pieters and Baumgartner, 2002). The raw data correspond to a weighted non-symmetric
graph where vertices are journals and directed edges the number of citations from one journal
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Fig. 6. Evaluation of the estimation of the parameters of a weighted graph: (a) /i, and (b) logarithm of its
empirical standard deviation, both as functions of the number of graph vertices, expressed on a log-scale
(each estimation is averaged over 100 graph simulations; -- ¢ -, model A; A, model B; —¢—, model C) and
(c) Rand index computation comparing the true latent structure with the estimated one for the three models
(columns A, B and C) and four graph sizes (rows n=20,100, 500,1000)

to another. We first take the mean value of citations between each pair of journals (leading
to a symmetric adjacency matrix) and work with its normalized Laplacian. Fig. 7 displays the
affiliation matrices structured according to a partition in four classes. Clustering based on the
binary model and on the weighted model (respectively Fig. 7(a) and Fig. 7(b)) exhibit very
different cluster structures. The binary model finds classes which tend to be homogeneous in
terms of probability of intragroup and intergroup connections, whereas the weighted model
finds classes which are homogeneous in terms of intragroup and intergroup connection weights.
This distinction results in completely different interpretations.
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Fig. 7. Matrices of cross-citations between 42 economics journals with rows and columns reorganized
according to groups found by the binary random-graph mixture model (a) compared with groups found with
the weighted random-graph mixture model (b)
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The binary model finds two groups of nodes which are strongly connected within their groups
but also with nodes from the other groups. It also exhibit two other smaller classes with low
intragroup connectivity and nodes that preferentially link to the first class which plays the role
of a reference class. Indeed the first class (top left) found by the binary model is composed of
journals with high impact factors: the American Economic Review, AER, Econometrica, E, the
Journal of Economic Literature, JEL, the Journal of Economic Perspectives, JEP, the Journal
of Political Economy, JPE, the Quarterly Journal of Economics, QJE, the Review of Economic
Studies, RES, and the Review of Economics and Statistics, RES2.

The result produced by the weighted model shows a main class of strongly interconnected
journals and three smaller classes of journals, which weakly cross-cite each other:

(a) class I (health), Health Economics, HE, and the Journal of Health Economics, JHE;

(b) class 2 (natural resources), the Journal of Agricultural Economics, AJAE, Land Economics,
LAE, and the Journal of Environmental Economics and Management, JEEM;

(¢) class 3 (economic history), Exploration of Economic History, EEH, the Journal of Eco-
nomic History, JEH, and the Economic History Review, EHR.

Each of these three classes is composed of journals that are dedicated to similar topics (respec-
tively health, natural resources and economic history). They preferentially cite journals from
the first class which contains journals with less specific topics.
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Appendix A: Proofs

A.1.  Proof of theorem 1
To facilitate the reading of the proof, we decompose it into several stages.

A.1.1. Preliminaries
Wefixk,s>1and p= (;) Recall that V), is the set of Q-size vectors such that, for any v=(vy, ..., vg) € Vo,
we have v; € {0, 1} and Eigzl vi=1. Wealso let Q={1,..., O}. We then consider the set

(n—k)!
n'

(n—k)!
Z:{ZEVN;Vq:(ql,...,qk)EQk, oy ng:=

k k
E Hzilqz ,:o H Ty }
=1

ieZy =1

Moreover, we let Ny = Sicz, 115, Z;,,,. The strong law of large numbers gives the almost sure convergence,
as n — 0o, of {(n —k)!/n!} Ny to II;_, m,,. This implies that P({Z, },>1 € 2)=1.

A.1.2.  Consistency of ni, '
We first introduce the conditional mean of g(X") given that the hidden groups at position i are given by q

mg(q) = [E{go@

k
[1 Zig = 1}'
=1

Using the equalities
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k
ViEIk, Z H Zi/q, = 1,
qe0 i=1

k
mg= 3 (H 7qu> my(q),

qeok \i=l

(20)

we may write the decomposition

k
Mg —mg= ('l Z > HZIMIQ(X)_ > <H7qu)mg(q)
quklEIk qEQk —
—k)! —k)! k
= [(Vl | ) > (H sz){‘J(X)_ q(Q)}+mq(Q){( ! ) Nq_Hqu}:| : @n
qeQk n. ieZ; \I=1 =1

To establish the consistency of iz, we rely on a conditioning argument. Let 4 be theevent lim sup,,_, ., 77, —
mgy|=0. We then have

P(A) =EHE{1s{Z }uz1}]- (22)

Now, conditional on {Z,},>1 =z, the random variables {Xi;i €T, 11X, z;, =1} form an ng-sample of
independent and identically distributed random variables. Letting B be the event
the strong law of large numbers yields that, for any z € Z,

-
E{1s{Zu}nz1=2}=1.

Conditional on {Z, },>1 =z € Z, we may thus rewrite the decomposition (21) as

> {gOH—my@}

n—00 €T Ziyg, =1

. 1
limsup| —
q

—k 1
Mg—mg= 3 |:(nn|) ng X — Z {g(xl) mq(q)}+mq(q){

qeQk nq i€Zy; H, =1

=)

which establishes that, for any z € Z, we have E{14]{Z, },>1 =z} =1. Coming back to equation (22), we
thus obtain

1591 =

P{ lim (i) =m,} = 1.

A.1.3.  Asymptotic normality of m,.
We now prove a central limit result for /n (1, —m,). First, the central limit theorem applied to the O-size
vector X!, (Z; —)/4/n gives the convergence

1 n
—>(Zi—m)~N(,Y), asn— oo, (23)
«/ ni=i
where ¥, =m,(1 —7,) and ¥, = —m,m when g #1.
Now, consider the second term appearing on the right-hand side of decomposition (21). To establish a
central limit theorem for Ny, we decompose the sum of products

> HZWII > H(Zuqz g +Tg)

ie€Zy =1 i€Zy =1

into sums of products of centred terms Z;,, — m,,. This leads to

ilqr

(n—hK)! k k (n—u)!
N Hﬂ'qz Z Z | H gy Z H(Zilql - 7711/)’
n! u=1 Lc{l,.k}Ll=u - I¢L ieZy leL
where |L| denotes the cardinality of the set L and Z, denotes the set of injective maps from L to Z =
{1,...,n}. In this expression, the leading term (obtained for singleton sets L, i.e. when u =1) gives the
rate of convergence in the central limit theorem. In other words,
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{(n —k)'N rkIqu }Jn—z (Hﬂq]) %lﬁ:(zw, —Tq)

J#

k |
+> > \/n(n| u (lgﬂql) > [ Zig — 7). (24)

u=2 Lc{l, ... k};|L|=u n: icZy leL

The first term on the right-hand side of equation (24) converges to a linear combination of the co-ordinates
of an (0, X) vector, whereas the second term converges to 0. Indeed, for any value u > 2 and any set L
of cardinality u, we may write

1
\/n(n Z H(letn qu) Z H(Zi/qz _7Tq1)

ieZy icL S nn=D...(n—u+1) e

which converges to 0. Thus we obtain

9

Z(thz ) + Rug s

[Im
DY g(q){( Ll Nq— Hﬁqz} > my(q) i e

qeQk qeQk =1 \/

where R, q=o0p(1) are negligible terms converging in probability to 0, as n — co. According to expression
(23), we obtain that

(n—kK)!
N J(q){ Nq— Hﬂql} ~ 30 J“DZ(HW%) ar
qe Ok n—00 qe ok
where W= (W, ..., W) ~N(0,%).

To obtain a central limit theorem for 7, it now suffices to prove that the first term on the right-hand
side of equation (21) is negligible, when scaled by the rate of convergence +/n. Indeed, we may write this

term as
< (n—k)!}'/z{(n—k)! }'/2 1 i
R, = N O )
qEXQ:k { (l’l - 1)’ n! 4 \/Nq iEIk:rgz: :l{g( ) mg(q)}

na

which satisfies, for any k >2, any e >0 and any z € Z,
Ip(li\:‘n| >8|{Zn}n>l :Z)r;)oo

Using dominated convergence, we also have P(|R,| = &) =100 0, for any ¢ > (0. Now, going back to
equation (21), we finally obtain

k
n(mg — y) ~ 0 J(q)Z(Hﬂq,>Wq/NN(0’Ey)'
=1 \ j#l

 qe Ok

A.1.4.  Expression for the limiting variance ¥,
The computation of the variance X, could be done by using the above expression, but this leads to tedious
formulae. A simpler expression of the limiting variance is obtained in the following way. We prove that
U,/n:= (iy —my)/n has a bounded third-order moment. This is sufficient to claim that ¥, can be
obtained as the limiting variance of U, /n.

First, since non-adjacent edges form independent variates, it is easy to see that we have

-3 . .
[E(IIUn«/nII3)<{L_)l),} > E{lgC) —mg g —mgllllg(X*) —my |1},

J/nn i, kinjNk£0

where iNj stands for the intersection of i and j viewed as index sets (instead of k-tuples). The above sum
contains at most kn{(n —1)...(n —k+1)}* terms, which are bounded (there are finitely many of them).
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Thus this quantity converges to 0 as n — oo . Moreover,

(RE N
var(U,/n) = { m} iJ%;MCOV{Q(X ), g(XhH}.

This sum may be decomposed according to the cardinality of the set iNj. It is then easy to see that the
dominating term is obtained when |[iNj| =1, whereas the other terms converge to 0, namely

2
var(U,/n) = { — k! } S cov{g(Xh), g(XH}+o(1).
Jnm—=DV] e

To describe all the possible configurations where [iNj| =1, we may fix the first index i to (1,...,k) and
let the second index j describe the set of indices where some position s takes one of the values {1,...,k}
(corresponding to the intersection iNj) and, at any other position, there is some value in {k+1,...,n}.
For any s,t€{1,...,k}, we thus let ¢! € Z; satisfying e’ (s) =7 and e’ (j) e {k+1,...,n} for any j#s. With
this notation, we obtain

s=1r=1

In the case of an affiliation structure with equal group proportions, we could prove from this expression
that ¥, =0 (using for instance the results of lemma 1 that are presented below). Anyway this will be a
consequence of the following developments.

A.1.5. Degenerate case
We now finish this proof by considering the specific case where we have an affiliation structure (2) and
equal group proportions (3). Coming back to equation (21), we write 7ty —m, =T, + T, where

(n—k)! K i
= Z Z HZi,q, {Q(X)—mg(Q)},
qeQk n! ieZy \I=
(n—hK)!

=Y q(q){ Ny — Hﬁq,}

qeQk
We first deal with the second term 7,. According to equation (24), we have
k n—u)! 1
=3 m J(q)Z - 1*Z(Z,q, T)+ > > ' — 3 [1(Zig — 7)== Ta + Do
qe ok 10 et 4 T V1) AR [ B O v

We now prove that the first term on the right-hand side of this equality, namely 75, is 0. This result relies
on the following lemma, stating that the model is invariant under a permutation of the values of the node
groups.

Lemma 1. Under the assumptions and notation of theorem 1, assuming moreover expressions (2) and
(3), for any o € Sg the set of permutations of Q, we have

({Zi}lgigm {Xij}lgiqgn) g({U(Zi)}lgign, {Xij}1<i<j<n),

where =% means equality in distribution. As a consequence, for any value q € Q*, the conditional
expectation m,(q) is constant along the orbit (induced by So) of the point q, i.e. the set of values
{m,{o(q)};0€So} is a singleton for any fixed q € OF.

Indeed, according to expressions (1)—(3), and using that any permutation o is a one-to-one application,
we have

PHZh<isor {Xijh<ici<) =11PZ) T PXijlz=z,)
ol

1<i<j<n

1
= Qn 1<H.< P(Xijuﬂ(zi):t'f(zj)):P({J(Zi)}1<i§n: {Xij}1<i<j<n).
Si<jsn
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As a consequence, for any o € Sg and any value q € O, the conditional expectation m,{c(q)} satisfies
m{o@}=E{gX"(Z1,.... Z)=0@} =EHgX" )@ (Z)),....0(Z)) = 0@} =my(Q).
Thus the set of values {m,{o(q)};0 € Sg} is reduced to a singleton. This finishes the proof of lemma 1.
Now, going back to the term 75, the set QF may be partitioned into the disjoint union of the orbits

induced by Sg, namely QF = Upoi O, with q — mg4(q) being constant on each orbit O. We let m, » denote
the value of the function q — m,(q) on the orbit O. Then we write

] k n
Tz,IZW > Myo > > (Zig —my).

Oorbit I=1i=1qeO
For each orbit O and any position / € {1,...,k}, if we fix some q € O, then we argue that O contains all
the points of the form (gy,...,q_1, J, qis1-. .., qx) for any 1< j< Q. Indeed, all these points are images

of q by the simple transpositions (g; j). Thus, the sum X4c0 (Z
which is 0. This proves that 7,; =0 and thus

iq — Tg) contains the sum X, co(Ziy, — 7)),

. n—=Kk! ,, 1 .
g—my)=n(T; +Tn)= n___ X — m,
n(mj mj) n( 1+ 2,2) qEXQ:k (n—l)' q N‘i/z ieXI:k {g( ) mj((l)}

nlezllqlzl
1

+

=2 (Zig =) (Zy—m) +o(D),
Qk—2 QIO 1 — 1 lgggn q q Jl 1

where, as in the non-degenerate case, we argued that the terms in 7, involving sets L with cardinality
u > 3 are negligible. We then obtain that, for k =2, we have

N 1
n(mg_mg) o Z Vql+ Z (qu-i—fz),

n>o0 Q S0 4.1€Q.q#l 0

where, for any 1< ¢,/ < Q, the random variables V, are independent, with distribution A0,

var{g(X2)|Z1,Zy=1}] and W= (W,,..., Wp) is independent from the Vs, with distribution Ny (0, ¥),

and in the equal group proportions case 3 simplifies to ¥,; = —1/0* when g#/ and £, =(Q — 1)/ 0.
In the same way, whenever k > 3, all the terms appearing in 7} are now negligible and we obtain

1
n(mg—mg) ~> > (WqW1—|——).

"0 41 g 0

A.2. Proof of theorem 3
Following the proof of theorem 1, we can easily write a joint central limit theorem for the triplet (i1, m,, m3),
namely

n”11—m1
«/”(’flz —m2>n:‘>oo/\/’3(0, V),

13 —m3

with some covariance matrix V. Thus, we can apply a delta method (see for instance van der Vaart
(1998), chapter 3) to the estimators 3= ¢ (111, 11, 1it3) and & =1 (i, mit2, vi3) where the functions ¢ and
4 are differentiable. This gives the convergence of the estimators (&, 3) and guarantees the same rates of
convergence for & and § as for the ri;s.

A.3. Proof of theorem 4

Following the classical proof of Wald (1949) (see also van der Vaart (1998)), we may obtain the almost sure
convergence of (4,, &, 3,) to the true value of the parameter (v*, a*, 3*), provided that the parameter
space is compact and the three following assumptions are satisfied:
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(a) convergence of the criterion
1
ln(ﬂ-’ «, ﬁ)zi lo Pﬂ,a,s’ (X,", Xi :X' )
nn—1)(n—-2) (i,_i%l} el AR il Tk )

o H{(m, o, B); (%, ™, B5)} i=Err o 5+ [L0g{ P 5 (X12, X13, X23) },

P s o g+ almost surely;
(b) identification of the parameter (v, «, [3)

H{(m, a, B); (w*, o, B5)} <H{(w*, o™, 3%); (=¥, a*, B)},

with equality if and only if (v, o, 8) = (v*, a™*, 3*), where ~ and 7 are related through equation
(10);

(c) uniform equicontinuity of the family of functions (=, «, 5) — I, (7, o, 3), namely, for any € >0,
there is some v > 0 such that, for all » > 1 and as soon as ||(7, o, 8) — (7', &, ) |lec < v, We have
[l (7, a, B) =L, (7', o, )| <&

Item (a) follows from theorem 1, whereas (b) follows from Jensen’s inequality and identifiability of the
parameters, i.e. assumption 1. Let us now establish (c). We fix for the moment some » >0 and consider
n=(m o, B) and n' = (7', o/, 3) such that || —7n'|lo <v. We recall that (X;;, Xy, X ) = X We then
write

110g{P,(ZigZ 1 Zimm =1, X )} —log{ Py (ZiyZ Zimn =1, X ) }|
< [log(my) —log(my)| + | log(m) —log(m))| + | log () —log(r,,)]
+11og{P, (X" ZiyZjZin =1} ~1og{P,y (X" Ziy Z Zy = D} .
The second term on the right-hand side of this inequality may be bounded as follows:
| IOg{lpn(X(i’j'k) |Ziqulem = 1)} - IOg{P”r (X(i’j’k) |Ziqulem = 1)}|
< 3max{|log(e) —log(a)], [log(l — a) —log(l — )], [log(B) —log(3)I,
|log(1 - 3) —log(1 = )1}

We now make use of the fact that we restricted our attention to the parameter space Il;, in which all
the parameters are lower bounded by ¢ (assumption 2). Moreover, for any x, y >0, we may use | log(x) —
log(y)| < |x — y|/ min(x, y). This finally leads to

110g{P(Ziy Z i Zim =1, X"} —10g{Py (Ziy Z i Zipn =1, X} <66~ v
Now, we obtain

Py (X)) =3P (ZiyZ i Zion = 1, X)) <exp(66~' ) " Py (Ziy Zji Ziw = 1, X WD)

aim gim
=exp(66~'v) [FD,,/(X("J”‘)),
and thus
log{ P, (X“*)} < 61/6 +log{P, (X“*)},

As this inequality is symmetric with respect to n and 7/, we further obtain
| log{P, (X"} —log{P, (X“*)}| < 6r/é.
Finally,

|ln (77) - ln (7]/)| < ; Z | IOg{PU(XUJ’k))} - IOg{P'r/’(X(i‘j’k))H < 61//(55
nn—1)(n—-2) ik

which establishes assumption (c).
To obtain further the rates of convergence of the estimators, one usually proceeds to a Taylor series
expansion of the derivative al, (7*, o*, 3%) near the estimator (#,, 4,, 3,). Write

0=,(Rn, G, B,) = 8, (7%, 0*, B*) + { (R0, G, B,) — (7%, 0*, %)} L, (R Gy B,),
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where (7, G, [;’,,) is some point between (7, A,,, ﬁn) and (*, o™, *). Applying theorem 1 to the quantity
o, (m*, o*, B*), we obtain its almost sure convergence to Epx o+ 5+ [010g{Prx o 5+ (X 12, X13, X23)}] =0, as
well as the asymptotic normality

Sl (¥, 0%, ) v N, D).

Now, at a fixed point (m,«,(3), the Hessian matrix 8°,(m, c, 3) converges from theorem 1 to
Ert ot 5+ [02 10g{ P 05(X12, X13, X23)}]. Combining the almost sure convergence of (#,,4,,3,) to
(*, o*, %), with uniform equicontinuity of the family of functions (7, a, 3) — 3L, (7, i, 8) (the proof is

similar to point (c) above and is therefore omitted), we obtain the almost sure convergence

P (s Gy B,) > Ere o0 [0° 10g {Presan e (X12, X135, Xon) }] 1= = K.

If the Fisher information matrix K is invertible, we obtain
{FRnr G, B,) — (%, 0%, ) }/n ~ NO, K IK™).

In this case, the inverse of the limiting variance is known as Godambe information (Varin, 2008). Its
form is due to the fact that K~' # J in general, resulting in a loss of efficiency of the estimators. In cases
where K is not invertible, or when J =0, the rate of convergence of the estimators is faster than 1/,/n. In
particular, when the group proportions are equal, we know from theorem 1 that ndl, (7*, o*, 3*) converges
in distribution and then the rate of convergence of (%, &,, 5,) is at least 1/n.

A.4. Proof of theorem 5

The proof of theorem 5 follows the scheme that was described in the proof of theorem 4. We denote by
(*, p*, 0%) the true value of the parameter and by P* and E* the corresponding probability and expec-
tation. First, we establish the consistency of the normalized composite likelihood (point (a)). According
to theorem 1, we have, for any fixed value of (w, p, ),

2
nn—1) ]<Z< lxlﬁéo log{[p'/r,p,ﬂ(xij)} njm E*[lxmﬁo IOg{Pn,p,e(xlz)}]
i<jsn

= H{(m,p,0); (=*,p*,0%)}, P* almost surely.

Here, we need to deal with the fact that we use a random value for p (a preliminary step estimate) in the
definition of 6. It is thus necessary to prove that this convergence happens uniformly with respect to p.
But this will be a consequence of point (c) below. Combining this with the almost sure convergence of p,
to the true value p* (this is either a consequence of theorem 1 when p = p is constant, or a consequence of
Sections 3.1 and 3.2 when p=(«, 7)), we obtain

2
nn—1)

Moreover, we assumed that f{(-, #) has a continuous cumulative distribution function and the distribution
of a present edge is given by equation (16), so we have

L™ (7,5,,0) —> H{(m.p,0); (x*,p*. 0%}, P* almost surely.

H{(m,p,0); (", p*,6™)} = / log{in fx;0in) +Your £ ou) H{vim fOx;050) + 75, fx; 030} dx,

where (Vin, Your) as wellas (5, 4% ) are defined through (7, p) and (7™, p*) respectively. Thus, the difference
H{(w*,p*,0%); (x*,p*,0")} — H{(m,p, 0); (=*,p*,6™)}

is a Kullback—Leibler divergence between two mixture distributions of the form (16). This entails positivity
of this difference. Moreover, assumption 3 ensures that the difference is 0 if and only if

Yin00,, + Yout 0oy = Ton 69;‘: +You 59;““‘ >

which establishes point (b), up to a permutation on the label parameters {in, out}. Finally, the proof of
point (¢) follows the same lines as in the proof of theorem 4, and uses the continuity of the map 6+ f(-, 6),
which is a consequence of assumption 4.
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To obtain further the rates of convergence of our estimators, we proceed exactly as we did in the proof
of theorem 4.
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