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October 2014

http://cmatias.perso.math.cnrs.fr/


Outline of this course

I Part I: Introduction to sequence analysis
I Part II: Motifs detection
I Part III: Sequence evolution and alignment
I Part IV: Introduction to phylogeny



Part I

Introduction to sequence analysis



Biological sequences
What kind of sequences?

I DNA sequences (genes, regions, genomes, . . .) with
alphabetA = {A,C,G,T}.

I Protein sequences, with alphabet
A = {20 amino acids} = {Ala, Cys, Asp, Glu . . .}.

I RNA sequences, with alphabetA = {A,C,G,U}.
I Obtained from different sequencing technologies.

Examples of repositories

I Primary sequences: GenBank
I Genome databases (with annotation): Ensembl (human,

mouse, other vertebrates, eukaryotes . . .) and Ensembl
Genomes (bacteria, fungi, plants,. . .)

I Protein sequences: UniProt, Swiss-Prot, PROSITE (protein
families and domains)



Why do we need sequence analysis?
I Once the sequences are obtained, what do we learn from a

biological point of view?
I Need of statistical and computational tools to extract

biological information from these sequences.

Some of the oldest issues
I Where are the functional motifs: cross-over hotspot

instigators (chi), restriction sites, regulation motifs, binding
sites, active sites in proteins, etc.
→Motif discovery issues.

I How do we explain differences between two genome
species? → Sequence evolution models.

I How can we compare genomes of neighbour species?
→ Sequence alignment problem.

I How do we infer the ancestral relationships between
sequences/species? → Phylogenies reconstruction.



Goals and tools
Some examples of Biological issues, Statistical answers
and Corresponding tools

I Search for motifs, i.e. short sequences with unexpected
occurrence behaviour
I a) too rare or too frequent
I or b) with a different distribution from background

Define a ”null model” (=what you expect, from already
known information) and test if
I a) the number of occurrences of a word is too large or too

small w.r.t. this model
I or b) the distribution of letters in this word is different from

the model

Markov chains or hidden Markov chains
I Understand differences between 2 copies of a gene in

neighbour species, Models of sequence mutation, Markov
processes (=time continuous Markov chains)



Biological models: constraints and usefulness

I A model is never true, it only has to be useful.
I That means that it should remain simple (for mathematical

and computational issues) but also realistic: these two
properties are in contradiction and one must find a balance.

I Understanding the model, its limitations and underlying
assumptions is mandatory for correct biological
interpretation.



Recap on probability

Formulas you need for this course
Conditional probability. For any events A,B,

P(A|B) =
P(A ∩ B)
P(B)

Marginalization. For any discrete r.v. X ∈ X,Y ∈ Y,

P(X = x) =
∑
y∈Y

P(X = x,Y = y)

Expectation of an indicator function. For any sets A,B, any r.v.
X with distribution P and any other r.v. Y,

E(1A) = P(X ∈ A) and E(1A|B) = P(X ∈ A|B).
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Motifs detection
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Motifs detection

Under this name, we group different biological problems
I Find functional motifs, such as cross-over hotspot

instigators (chi), restriction sites, regulation motifs, binding
sites, active sites in proteins, etc

I Identify and annotate genes in a sequence
I Browsing all words with small specified length, find those

that behave abnormally (statistically) (for further
biological investigation)

I . . .
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Modeling a sequence I

A biological sequence may be viewed as a sequence of random
variables X1, . . . ,Xn (also denoted X1:n) with values in a finite
alphabetA.

I The simplest model on these r.v. is i.i.d. model.

→ Each site Xi behaves independently from the other sites and
takes values inAwith same distribution π = (π(x), x ∈ A).
Here, π(x) ≥ 0 and

∑
x∈A π(x) = 1.

Exercise: A = {A,C,G,T}, observe sequence AACTTTGAC.
Estimate the probabilities π(A), π(C), π(G), π(T).



Modeling a sequence II

I However, it is easily seen from real biological data that the
occurrence frequency of dinucleotides differs from the
product of corresponding nucleotides frequencies, i.e. for
any two letters a, b ∈ A, we have

fab =
N(ab)
n − 1

, fafb =
N(a)

n
N(b)

n

where N(ab) = number of dinucleotides ab, while this
should be (approximately) the case for long iid sequences.

I It seems natural to assume that the letters occurrences are
dependent. Ex: in CpG islands (= regions with high
frequency of dinucleotide CG), the probability of observing
a G coming after a C is higher than after a A.
→ gives rise to Markov chain model.



Markov chains: definition

Principle
A (homogeneous) Markov chain is a sequence of dependent
random variables such that the future state depends on the past
observations only through the present state.

Mathematical formulation
Let {Xn}n≥1 be a sequence of random variables with values in
finite or countable spaceA, s.t. ∀i ≥ 1,∀x1:i+1 ∈ A

i+1,

P(Xi+1 = xi+1|X1:i = x1:i) = P(Xi+1 = xi+1|Xi = xi) := p(xi, xi+1)

p is the transition of the chain. WhenA is finite, this is a
stochastic matrix: it has non-negative entries p(x, x′) ≥ 0 and its
rows sum to one

∑
x′∈A p(x, x′) = 1 for all x ∈ A.



Example I

Example of a transition matrix on state spaceA = {A,C,G,T}.

p =


0.7 0.1 0.1 0.1
0.2 0.4 0.3 0.1
0.25 0.25 0.25 0.25
0.05 0.25 0.4 0.3

 . (1)

In particular,
I p(2, 3) = P(Xk+1 = G|Xk = C) = 0.3.

I When Xk = A then Xk+1 =

{
A with prob. 0.7

C,G or T with prob. 0.1 .

I When Xk = G, then Xk+1 is drawn uniformly onA.



Example II

Automaton description

A

G

C

T

0.1

0.25

0.2

0.1

0.1

0.05

0.4

0.25

0.25

0.1

0.30.25



Example III

Remarks
I In the automaton, we do not draw the self-loops, but these

jumps exist.
I Exercise: What’s the transition matrix for an i.i.d. process

with distribution π?



Probability of observing a sequence I

Distribution of a Markov chain
I Need to specify distr. of X1, called initial distribution
π = {π(x), x ∈ A} s.t. π(x) ≥ 0 and

∑
x∈A π(x) = 1,

I e.g. π = (1/4, 1/4, 1/4, 1/4) gives uniform probability on
A = {A,C,G,T}, while π = (0, 0, 1, 0) gives X1 = G almost
surely.

I From initial distribution + transition, the distribution of
the chain is completely specified (see below).



Probability of observing a sequence II

Probability of a sequence
For any n ≥ 1,∀(x1, . . . , xn) ∈ An, we get

P(X1:n = x1:n) = π(x1)
n∏

i=2

p(xi−1, xi). (2)

The likelihood of an observed Markov chain is given as a
product of transitions probabilities + initial term.
Exercise: Prove (2). Hint: proceed recursively on n.
Exercise: Apply it on the sequence AACTTTGAC.



Probability of observing a sequence III

Proof.

P(X1:n = x1:n)
= P(Xn = xn|X1:n−1 = x1:n−1)P(X1:n−1 = x1:n−1) (cond. prob. formula)

= P(Xn = xn|Xn−1 = xn−1)P(X1:n−1 = x1:n−1) (Markov property)

= p(xn−1, xn)P(X1:n−1 = x1:n−1)
= . . . (induction)

= p(xn−1, xn) . . . p(x1, x2)P(X1 = x1)

= π(x1)
n∏

i=2

p(xi−1, xi)

�



Consequence: log-likelihood of an observation
Consider a sequence of observations X1:n following a Markov
chain with initial distribution π and transition p. Then the
log-likelihood of the sequence is

`n(π, p) = logP(X1:n) =
∑
x∈A

1{X1=x} logπ(x)+
∑

x,y∈A

N(xy) log p(x, y),

(3)
where N(xy) is the number of occurrences of dinucleotide xy in
the sequence X1:n.
Exercise: Prove this. Apply it on the sequence AACTTTGAC.
Hint: try first to apply (2) on the example.

Proof.
According to (2)

logP(X1:n = x1:n) = logπ(x1) +

n∑
i=2

log p(xi−1, xi)

=
∑
x∈A

1{X1=x} logπ(x) +
∑

x,y∈A

N(xy) log p(x, y).

�



Probability of state Xn
LetA = {1, . . . ,Q}, π = (π(1), . . . , π(Q)) viewed as row vector
and p = (p(i, j))1≤i,j≤Q the transition matrix. Then

P(Xn = x) = (πpn)(x), ∀x ∈ A,

where pn is a matrix power and πpn is a vector times matrix
product.

Proof.
By induction, let πn be the row vector containing the probabilities
P(Xn = x). Then

πn(x) = P(Xn = x) =
∑
y∈A

P(Xn−1 = y,Xn = x)

=
∑
y∈A

P(Xn−1 = y)P(Xn = x|Xn−1 = y)

=
∑
y∈A

πn−1(y)p(y, x) = (πn−1p)(x).

�



Markov chains: other computations

In the same way,

pn(x, y) = P(Xn = y|X1 = x)

Exercise: Take matrix p given by (1) and compute
P(X7 = C|X5 = T).



Markov chains: Stationarity I

I A sequence is stationary if each random variable Xi has
same distribution π?.

I If it exists, a stationary distr. π? must satisfy

π?p = π?,

i.e. π? is a left eigenvector of matrix p associated with
eigenvalue 1.

Exercise: Explain where this relation comes from.

Theorem
For finite state spaceA, whenever there exist some m ≥ 1 such that
∀x, y ∈ A, pm(x, y) > 0, then a stationary distr. π? exists and is
unique. Moreover, we have the convergence,

∀x, y ∈ A, pn(x, y) →
n→+∞

π?(y).



Markov chains: Stationarity II

I Consequence: Long Markov sequences forget their initial
distribution and behave in the limit as stationary Markov
seq.

I Remark: this property is at the core of MCMC techniques.

Exercise: Consider matrix p given by (1) and compute its
stationary distribution.



Parameter estimation I

Consider a sequence of observations X1:n following a Markov
chain. We want to fit a transition matrix on this sequence.

Maximum likelihood estimator
From (3), the maximum likelihood estimator of transition p(x, y)
is

p̂(x, y) =
N(xy)
N(x•)

,

where N(x•) =
∑

y∈AN(xy). Note that π may not be consistently
estimated from the sequence (only one observation X1). Often
assume stationary regime and estimate π̂(x) = N(x)/n.

Consequence: the dinucleotides counts in the observed
sequence give estimators for the transition probabilities.



Parameter estimation II

Proof.
According to (3), we want to maximise

∑
x,y∈AN(xy) log p(x, y)

with respect to {p(x, y), x, y ∈ A} under the constraint∑
y∈A p(x, y) = 1. Introducing Lagrange multipliers λx for each

constraint
∑

y∈A p(x, y) − 1 = 0, we want

sup
{λx,p(x,y)}x,y∈A

∑
x,y∈A

N(xy) log p(x, y) +
∑
x∈A

λx
(∑

y∈A

p(x, y) − 1
)
.

By deriving, we obtain the set of equations N(xy)
p(x,y) + λx = 0, ∀(x, y) ∈ A2∑

y∈A p(x, y) − 1 = 0, ∀x ∈ A

which gives the result. �



Example

Exercise:
1) Consider the observation
X1:20 = CCCACGACGTATATTTCGAC
assume a Markov model and compute the estimator p̂ of the
transition matrix p.
2) Write an R function in order to do this on any (character)
sequence (with alphabetA = {A,C,G,T} or any finite alphabet).



Outline Part 2

Markov chains (order 1)

Higher order Markov chains

Motifs detection with Markov chains

Hidden Markov models (HMMs)

Parameter estimation in HMM

Sequence segmentation with HMM

Motifs detection with HMMs



Higher order Markov chains

Motivation and underlying idea

I In coding sequences, nucleotides are organised into
codons: the frequency of third letter strongly depends on
two previous ones.

I Generalize Markov chains to case where the future state
depends on past r states, called r-order Markov chains.

I Case r = 1 is ordinary Markov chain.
I r is the length of the memory of the process.



r-order (homogeneous) Markov chain

Mathematical formulation
Let {Xn}n≥1 be a sequence of random variables with values in
finite or countable spaceA, s.t. ∀i ≥ r + 1,∀x1:i+1 ∈ A

i+1,

P(Xi+1 = xi+1|X1:i = x1:i) = P(Xi+1 = xi+1|Xi−r+1:i = xi−r+1:i)
= p(xi−r+1:i, xi+1)

p is the transition of the chain. WhenA is finite, this is a
stochastic matrix with dimension |A|r × |A|.

Distribution
I Need to specify distr. of X1:r, called initial distribution
π = {π(x1:r), x1:r ∈ A

r
} s.t. π(x1:r) ≥ 0 and

∑
x1:r∈Ar π(x1:r) = 1,

I From initial distribution + transition, the distribution of
the chain is completely specified.



Example of a 2-order Markov chain

Example of a transition matrix of a 2-order Markov chain on
state spaceA = {A,C,G,T}. The order of the rows is {AA, AC,
AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT }.

p =



0.7 0.1 0.1 0.1
0.2 0.4 0.3 0.1
0.25 0.25 0.25 0.25
0.05 0.25 0.4 0.3
0.75 0.05 0.1 0.1
0.4 0.1 0.4 0.1
0.2 0.1 0.6 0.1
0.05 0 0 0.95
0.7 0.1 0.1 0.1
0.2 0.4 0.3 0.1
0.25 0.25 0.25 0.25
0.05 0.25 0.4 0.3
0.9 0.01 0.01 0.08
0 0.65 0.3 0.05

0.2 0.2 0.55 0.05
0.15 0.25 0.45 0.15



Exercise:
I What represents p(7, 3)?
I Comment on equality

between first and third
blocks.

Initial distribution π = (1/16, . . . , 1/16).



Remarks

I An r-order Markov chain may also be viewed as an
(r + k)-order Markov chain for any k ≥ 0, i.e. the r-order
Markov chain models are embedded.

I When {Xk}k≥1 is a r-order Markov chain, the sequence
{Yk}k≥r defined by Yk = Xk−r+1:k is an order-1 Markov chain.



r-order Markov chain: transition estimation

Consider a sequence of observations X1:n and assume it follows
a r-order Markov chain.

Maximum likelihood estimator
The maximum likelihood estimator of transition p(x1:r, y) is

p̂(x1:r, y) =
N(x1:ry)
N(x1:r•)

,

where N(x1:ry) counts the number of occurrences of word x1:r
followed by letter y in X1:n and N(x1:r•) =

∑
y∈AN(x1:ry).

Consequence: the counts of (r + 1)-nucleotides (words of size
r + 1) in the observed sequence give estimators for the
transition probabilities.
Exercise: Modify the previous R function for estimating
transition matrices of r-order Markov chains.



Modeling through Markov chains
I Modeling a sequence through a r-order Markov chain is

equivalent to saying that the sequence is characterised by
the frequencies of size (r + 1)-words.
Ex: two sequences with same frequencies of di-nucleotides
are identical from modeling through a (order 1) Markov
chain point of view.

I Next issue: how to choose the value r?
I Maximum likelihood w.r.t. r does not make sense: since the

Markov chains models are embedded (i.e. a r-order MC is a
particular case of a r + 1- order MC), the larger the value r,
the larger the value of the likelihood

sup
r≥1

`n(r, πr, pr) = sup
r≥1

logPr−order Markov(X1:n) = +∞.

I However, too large values of r are not desirable because
induces many parameters and thus large variance in
estimation.

I A penalty term is needed to compensate for the model size.



Order estimation: BIC I

The Bayesian Information Criterion (BIC) of a Markov chain
model is defined as

BIC(r) = log P̂r(X1:n) −
Nr

2
log n,

where P̂r(X1:n) is the maximum likelihood of the sequence
under a r-order Markov chain model

log P̂r(X1:n) =
∑

x1:r∈Ar,y∈A

N(x1:ry) log
N(x1:ry)
N(x1:r•)

and Nr = |A|r(|A| − 1) is the number of parameters (transitions)
for this model.



Order estimation: BIC II

Theorem ([CS00])
Let X1:n be a sequence following a r?-order Markov chain, where r? is
(minimal and) unknown. Then,

r̂n = sup
r≥1

BIC(r) = sup
r≥1

log P̂r(X1:n) −
Nr

2
log n,

is a consistent estimate of r, namely limn→+∞ r̂n = r? almost surely.
Exercise: Write an R function for computing the BIC criterion
on a sequence.



Markov smoothing I

Zero counts
I As r increases, the number |A|r of size-r words becomes

huge. It often happens that in a finite sequence X1:n, a
word x1:r has zero occurrence.

I As a consequence
I N(x1:r•) = 0 or/and N(x1:ry) = 0 which causes pbm of

dividing by zero or/and taking the logarithm of zero when
computing maximum likelihood. Solution: be careful
while implementing your likelihood computation and
impose things like 0 log(0/0) = 0.

I Putting p̂(x1:r, y) = 0 is obviously an underestimate of the
transition probability p(x1:r, y). Solution: Markov
smoothing.



Markov smoothing II

Markov smoothing
Different strategies have been developed
I Pseudo-counts: artificially add 1 to every count. Thus

p̂(x1:r, y) =
1 + N(x1:ry)∑

y∈A 1 + N(x1:ry)
=

1 + N(x1:ry)
|A| +

∑
y∈AN(x1:ry)

.

See page 9 in [DEKM98]. Widely used but not the wisest.
I A review of more elaborate strategies is given in [CG98].
I A performant approach is the one by Kneser-Ney [KN95].

Exercise: Include Markov smoothing into R functions for
transition matrix estimation and BIC criterion.



Variable length Markov chains [BW99] I

VLMC principle

I When the order r increases, the number of parameters in
the r-order Markov chain model increases exponentially:
|A|

r(|A| − 1).
I For parsimony reasons, it is interesting to reduce the

number of parameters, while keeping the possibility of
looking at large memory values r.

I In VLMC, this is realised by letting the memory of the
chain vary according to the context.



Variable length Markov chains [BW99] II

Context tree representation of a Markov chain with 4
states and order 2

VARIABLE LENGTH MARKOV CHAINS 497

tency of estimators

4.2 T ! T ! ,Ž . Ž .n n

which are given as a smooth functional of a general empirical measure ! .n
Ž . Ž .The class of estimators in 4.2 is considerably larger than the class in 4.1 . It

includes as examples the maximum likelihood estimators in generalized
linear models of autoregressive type with quite general link functions; com-

Ž .pare Fahrmeir and Tutz 1994 .

4.2. Simulations. We study here the VLMC bootstrap for variance esti-
mation in various cases by simulation. We represent VLMC models by
context trees and equip terminal nodes with tuples, describing the transition

Ž . Ž . ! XX !"1probabilities. A tuple i , . . . , i corresponds to p j # w ! i $Ý i ,0 ! XX !"1 j j!0 j
# ! ! 4 Ž # ! ! 4.j % 0, . . . , XX " 1 without loss of generality we let XX ! 0, . . . , XX " 1 .

Ž .We consider the following models: M1 : full binary Markov chain of order 3;
Ž . Ž .M2 full quaternary Markov chain of order 2; M3 : semisparse binary VLMC

Ž . Ž .of order 5; M4 : semisparse quaternary VLMC of order 3; M5 : sparse binary
Ž .VLMC of order 8; M6 : sparse quaternary VLMC of order 4. The precise

specifications are given by the trees and numbers shown in Figure 3.

Ž . Ž .FIG. 3. Tree representations of the VLMC models M1 " M6 . Transition probabilities are
specified by tuples at terminal nodes.



Variable length Markov chains [BW99] III
Context tree representation of a VLMC

¨P. BUHLMANN AND A. J. WYNER494

genes are spaced apart and separated by junk DNA which we term ‘‘inter-
genes.’’ Moreover, the genes are further segmented into coding regions called
exons and noncoding regions called introns. The cell’s engine for transcribing

Ž .DNA first copies the gene both intron and exon ; it then splices out the
intron sections. Each gene is in turn subdivided into alternating stretches of
exon and intron. We form a single sequence of exons by concatenating all the

Ž .exons in the given order . Similarly, we form sequences of introns and
intergenes.

Our goal is the application of the VLMC estimation algorithm to learn the
dependence structure and to present the estimated minimal state space
graphically as a tree, whose branches are the contexts. Application of the
algorithm to each of the datasets suggests that complicated structures exist
within the exons and the introns. On the other hand, the intergenes showed

Ž .no complex structure a first-order Markov model is a good fit . That exons
exhibit such structure is not surprising due to constraints imposed by its
coding function. The introns do not have a well-understood function, but
evidence of structure suggests that the intron is constrained in some way and
is thus unable to mutate freely.

We also consider the sequences under a reduction of the quaternary
Ž .alphabet down to three possible binary alphabets, identifying 1 G with C;

Ž . Ž . Ž . Ž .2 G with A; 3 G with T. Equivalences 1 and 2 have genetic meaning, the
Ž .third has none reducing the data to random bits . As expected, this final

Ž .equivalence 3 produces sequences with no dependence structure. The most
dramatic finding was produced by the exon sequence reduced to a binary

Žalphabet by identifying the base G with its bonding pair C A is thus
.identified with T . The resulting context tree has branches of lengths 0, 3 and

6 only. Interestingly, we thus can represent it in terms of triplets, as shown
in Figure 2. Because amino acids are known to be coded by triplets of DNA
letters, the structure in Figure 2 has a beautiful biological interpretation.
Our finding suggests that the triplet coding structure is strongly present

FIG. 2. Triplet tree representation of the estimated minimal state space for exon sequence. The
Ž .Ž .triplets are denoted in reverse order, for example, the terminal node with concatenation ggt gtt

describes the context x ! g, x ! g, x ! t, x ! g, x ! t, x ! t for the variable x .0 "1 "2 "3 "4 "5 1
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Detecting rare or frequent words

Principle and method

I Due to evolution pressure, functional motifs are likely to
be more conserved than non-functional motifs.

I A natural strategy is to search for motifs which are
statistically exceptional (ex: over- or under-represented).

I Browsing all possible words w = w1:l ∈ A
l of a given length

l, say if w is statistically too rare or too frequent.
I Method has two steps

I Sequence scan: Count the number N(w) of occurrences of w
in the sequence. Efficient algorithms are required. See for
e.g. [Nue11].

I Statistical test: Define a ”null-model” (what is expected, or
already known) and look for deviations from this null
model, i.e. counts too large or too small with respect to
expected value under this null model.



Statistical test: details I

I As already mentioned, working with a r-order Markov
chain model allows to take into account the sequence
composition bias in (r + 1)-mers.

I Null modelM0: Choose a r-order Markov model with
r + 1 ≤ |w| − 1 (otherwise the count of w is automatically
included in the model and may not be exceptional).

I It is then necessary to approximate the distribution of N(w)
under modelM0. Different approximations have been
proposed
I Poisson or compound Poisson approximations;
I Gaussian or near Gaussian approximations.

I Compare the observed value N(w) to its theoretical
distribution under modelM0: if the value is below the
5%-quantile (too rare) or above the 95%- quantile (too
frequent), the word is declared statistically exceptional.



Statistical test: details II

I The simplest approximation is Gaussian and computes the
z-score

Z =
N(w) − Er(N(w))√
VarrN(w)

≈ N(0, 1)

where Er andVarr are expectation and variance under
Markov model of order r.

I Expectation easy to compute
Er(N(w)) = (n − l)Pr(w1 . . .wl) = (n − l)π(w1)

∏l−1
i=1 p(wi,wi+1)

I Variance is more tricky, especially if w can overlap itself !



Illustration: E. coli’s chi I

Context
I A ”chi” is a cross-over hotspot instigator.
I RecBCD is an enzyme in E. coli that degrades every linear

DNA strand it encounters and thus every phage.
I Remember E. coli’s DNA is circular thus has no end.

However it sometimes opens, exposing the cell to lethal
degradation.

I Whenever RecBCD encounters the chi motif, it recognises
E. coli’s DNA and stops degradation; DNA repair may
start.



Illustration: E. coli’s chi II

As a consequence,

I The chi motif is exceptionally frequent in E. coli.
I Searching for frequent motifs may help identifying chi

motifs in other organisms.



Exercise: Simple application on sequences

I Use the package seqinr and rely on function count to
obtain the counts of words in a given sequence.

I Use the function zscore to identify over- or
under-represented di-nucleotides.

I Apply this on the following sequences:

> # install.packages(’seqinr’)

> library(’seqinr’)

> choosebank("emblTP")

> query("myseqs", "sp=felis catus AND t=cds AND

o=mitochondrion") # get a list of sequences names,

here all coding seqs in the cat’s mitochondria

> seq1 <- getSequence(myseqs$req[[1]])

> closebank()



Some more complex problems
Issues to carefully deal with

I When a word is exceptional, its complement reverse
sequence is also exceptional;

I Self-overlapping words are not easy to handle, see [RS07];
I Very often, functional motifs are formed by consensus

sequences;

More complex problems

I Search for motifs composed of consensus words separated
through some varying distance: PROSITE signatures,
gapped motifs, etc
e.g.
W.(9-11)[VFY][FYW].(6-7)[GSTNE][GSTQCR][FYM]{R}{SA}P

I Take into account heterogeneity in the sequence through
HMM.



Some avalaible tools

I R’Mes, is a tool for studying word frequencies in biological
sequences. Available at
https://mulcyber.toulouse.inra.fr/projects/rmes/

I SPatt, Statistics for patterns. Available at
stat.genopole.cnrs.fr/spatt

I PROSITE is a database of protein domains, families and
functional sites http://www.expasy.org/prosite/

I Regulatory Sequence Analysis Tools is a set of methods for
finding motifs in regulatory regions
http://rsat.ulb.ac.be/rsat/

https://mulcyber.toulouse.inra.fr/projects/rmes/
stat.genopole.cnrs.fr/spatt
http: //www.expasy.org/prosite/
http://rsat.ulb.ac.be/rsat/


Exercise: More elaborate example with R’mes

I Use R’mes to find oligonucleotides over- or
under-represented.

I Apply this to the previous sequences.

First write a fasta file containing the previous sequence

> write.fasta(seq1,names=getName(myseqs$req[[1]]),

file.out="seq1.fasta")

then run rmes in a terminal

$ rmes --gauss -s seq1.fasta -l 4 -m 2 -o seq1_res

$ rmes.format < seq1_res.O > seq1_res_tab



Some more references on motifs counts

G. Nuel and B. Prum.
Analyse Statistique des Séquences Biologiques.
Hermes Sciences, 2007.

S. Schbath and S. Robin.
How can pattern statistics be useful for DNA motif
discovery?
In Joseph Glaz, Vladimir Pozdnyakov, and Sylvan
Wallenstein, editors, Scan Statistics, Statistics for Industry
and Technology, pages 319–350. Birkhäuser Boston, 2009.
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Heterogeneity and how to deal with it

Heterogeneity in sequences

I For long sequences, a Markov chain model is not adapted:
for e.g. genes, intergenic regions, CpG islands, etc, may not
be modeled with the same transition probabilities.

I The usual way to deal with heterogeneity in statistics is to
rely on mixtures: assume the observations come from a
mixture of say Q different homogeneous groups, but the
group of each observation is unknown.

I Hidden Markov models are a generalization of mixtures,
where the groups are temporally organised and dependent.



Finite mixture models

Definition
I Finite family of densities {fq; q ∈ {1, . . . ,Q}} (w.r.t. either

Lebesgue or counting measure),
I Groups proportions π = (π1, . . . , πQ), such that πq ≥ 0 and∑Q

q=1 πq = 1,

The mixture distribution is given by
∑Q

q=1 πqfq.

Advantages

I Enable modeling heterogeneity in observations: these
come from Q unobserved different groups, each group
being homogeneous (same distribution fq)

I parameters πq represent the unknown groups proportions
I parameters fq are the distribution within each

homogeneous group.



Finite mixture models: an illustration
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Figure : Histogram of a size n = 1500 sample distributed as the
mixture 2

3N(0, 1) + 1
3N(3, 2). Mixture density in blue, group densities

appear respectively in red and green.



Finite mixture models: a sub-case of HMM
Notation
Let {Sk}k≥1 i.i.d. with values in S = {1, . . . ,Q}with
P(Sk = q) = πq and {Xk}k≥1 s.t., conditional on S1, . . . ,Sn,
observations X1, . . . ,Xn are independent and distribution of
each Xk only depends on Sk

P(X1:n|S1:n) =

n∏
k=1

P(Xk|Sk), with density fSk .

Then, {Xk}k≥1 are i.i.d. with distribution
∑Q

q=1 πqfq.

Graphical representation

· · ·

· · ·

· · ·

· · ·

Sk−1 Sk Sk+1

Xk−1 Xk Xk+1

fSk



Hidden Markov models (HMMs)
Let us now introduce some dependency between hidden states

· · ·

· · ·

· · ·

· · ·

Sk−1 Sk Sk+1

Xk−1 Xk Xk+1

fSk

p

(i) {Sk} unobserved Markov chain, with values in
S = {1, . . . ,Q}, transition matrix p and initial distribution π.
It is the sequence of regimes,

(ii) {Xk} is the sequence of observations, with values in X,
(iii) Conditional on the regimes S1, . . . ,Sn, the observations

X1, . . . ,Xn are independent, with distribution of each Xk
depending only on Sk :

P(X1:n|S1:n) =

n∏
k=1

P(Xk|Sk), with density fSk .



Mixtures vs HMMs

Similarities/Differences

I In HMM, random variables {Xk}k≥1 are not independent
anymore (comparing with mixtures).
{Xk}k≥1 is not a Markov chain either! We say that the
sequence has long range dependencies.

I Observations are globally heterogeneous, but they are
temporally ordered and the model induces
homogeneously distributed zones.

I Estimating hidden states provides a segmentation of the
sequence into homogeneously distributed parts.



HMM for analysing sequences

Goals
I Sequence segmentation into different regimes
I For this, it is necessary to fit the model: i.e. estimate the

parameters (p, {fq}1≤q≤Q).

Methods
I Parameter estimation: through maximum likelihood

estimation (MLE), leading to expectation-maximization
(EM) algorithm.

I Sequence segmentation: Viterbi algorithm (widely used
but not recommended by me) or stochastic versions of EM.



Exercise: Mixtures and HMM data generation

On state space R

I Write an R function to generate a mixture model of Q
distributions, with group proportions given by parameter
π and conditional distributions are Gaussian with means
(m1, . . . ,mQ) and variance 1.

I Do the same but for HMM with Q hidden states, transition
matrix p and same conditional distributions.

Finite state space

I Same exercise but with observation state space {A,C,G,T}.

NB: pay attention to the order of the observations.
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HMM likelihood

Likelihood of the observations
Model parameter θ = (π, p, {fq}1≤q≤Q).

`n(θ) := logPθ(X1:n) = log
(∑

s1,...,sn
Pθ(X1:n,S1:n = s1:n)

)
.

I Computation requires summation over Qn terms:
impossible as soon as n is not small.

I Need to develop another strategy to compute MLE.

Models with incomplete data

I Expectation-Maximization (EM) algorithm [DLR77] is an
iterative algo. that enables maximising (locally) the
likelihood of models with incomplete data when complete
data likelihood is simple.



Expectation-Maximization (EM) algorithm I

Let X1:n be observed data and S1:n missing data. We call
complete data the set (S1:n,X1:n).
We assume that the complete data likelihood logPθ(S1:n,X1:n) is
easy to compute.

Principle

I Start with initial parameter value θ0,
I At k-th iteration, do

I Expectation-step compute
Q(θ, θk) := Eθk (logPθ(S1:n,X1:n)|X1:n).

I Maximization-step compute θk+1 := Argmaxθ Q(θ, θk).

I Stop whenever δ := ‖θk+1
− θk
‖/‖θk

‖ ≤ ε or some maximal
number of iterations is attained.



Expectation-Maximization (EM) algorithm II
Consequences

I At each iteration, the observed data likelihood (not
complete data likelihood) increases (proof based on
Jensen’s Inequality).

I Using many different initialisations, the algorithm will
eventually find the global maximiser, i.e. MLE.

Heuristics
I The complete data likelihood logPθ(S1:n,X1:n) is unknown

because S1:n are not observed.
I At E-step, the quantity Eθk(logPθ(S1:n,X1:n)|X1:n) is the

conditional expectation of the complete data likelihood,
under current parameter value θk: this is the best
knowledge we have on this complete data likelihood,
according to the observations.



EM algo: increase of (observed data) log-likelihood

Proof.
Write that Q(θk+1, θk) ≥ Q(θk, θk), i.e :

0 ≤ Eθk

[
log
Pθk+1(S1:n,X1:n)
Pθk(S1:n,X1:n)

∣∣∣∣X1:n

]
≤

Jensen
logEθk

[
Pθk+1(S1:n,X1:n)
Pθk(S1:n,X1:n)

∣∣∣∣X1:n

]
= log

∫
Sn

Pθk+1(s1:n,X1:n)
Pθk(s1:n,X1:n)

Pθk(s1:n|X1:n)ds1 . . . dsn

= log
∫
Sn

Pθk+1(s1:n,X1:n)
Pθk(X1:n)

ds1 . . . dsn = log
Pθk+1(X1:n)
Pθk(X1:n)

.

Thus, Pθk+1(X1:n) ≥ Pθk(X1:n). �



EM algo. in practice

In practice

I Need to perform E-step: compute the complete data
log-likelihood logPθ(S1:n,X1:n) and take its conditional
expectation w.r.t. observations.

I Need to perform M-step: maximisation of Q(θ, θk) w.r.t. θ,
either analytically (when possible) or numerically (grid
search for e.g.).



Exercise: EM algo. for mixture models

I Write the likelihood of a sequence on alphabet {A,C,G,T}
under a mixture model with Q hidden states.

I Write the e-step of the algorithm and equations necessary
to perform it. Take the example of a mixture of Gaussian
distributions or discrete r.v. on {A,C,G,T}.

I Write the m-step of the algorithm.
I Implement it.



EM algo for HMM (Baum-Welch algorithm) I
Complete data likelihood

logPθ(S1:n,X1:n) =

Q∑
q=1

1S1=q logπq

+

n∑
i=2

∑
1≤q,l≤Q

1Si−1=q,Si=l log p(q, l) +

n∑
i=1

Q∑
q=1

1Si=q log fq(Xi).

Cond. expectation under parameter value θk

Q(θ, θk) =

Q∑
q=1

Pθk (S1 = q|X1:n) logπq

+

n∑
i=2

∑
1≤q,l≤Q

Pθk (Si−1 = q,Si = l|X1:n) log p(q, l)

+

n∑
i=1

Q∑
q=1

Pθk (Si = q|X1:n) log fq(Xi).



EM algo for HMM (Baum-Welch algorithm) II

Algorithm

I E-step: Need to compute Pθk(Si|X1:n) and Pθk(Si−1,Si|X1:n):
done through the forward-backward equations. These are
recursive formulas.

I M-step: analytical solution is straightforward: exactly as
for MLE for Markov chains, because the complete data
{(Sk,Xk)} forms a Markov chain.



E-step for HMMs: forward-backward equations

Forward equations: computation of αk(·) := Pθ(Sk = ·,X1:k)

I Initialisation ∀q, α1(q) := Pθ(S1 = q,X1) = fq(X1)µ(q),
I For any k = 2, . . . ,n and any l, αk(l) = [

∑Q
q=1 αk−1(q)p(q, l)]fl(Xk).

Rmk: One may obtain the observations’ likelihood as
Pθ(X1:n) =

∑Q
q=1 αn(q), but then non trivial maximisation step!

Backward equations: computation of βk(·) := Pθ(Xk+1:n|Sk = ·)

I Initialisation βn(·) := 1,
I For any k = n, . . . , 2 and for any q, βk−1(q) =

∑Q
l=1 fl(Xk)βk(l)p(q, l) .

E-step quantities
P(Sk = q|X1:n) ∝ αk(q)βk(q)
and P(Sk−1 = q,Sk = l|X1:n) ∝ αk−1(q)p(q, l)fl(Xk)βk(l).



Tool: Directed acyclic graphs (DAGs, [Lau96])

The key to correctly handle conditional expectations is
understanding directed acyclic graphs (DAG).

Factorized distributions
LetV = {Vi}1≤i≤N be a set of random variables and G = (V,E) a
DAG. Distribution P onV factorizes according to G if
P(V) = P(V1:N) =

∏N
i=1P(Vi|pa(Vi,G)), where pa(Vi,G) is the set

of parents of Vi in G.

ex: HMM

S1

X1

· · ·

· · ·

· · ·

· · ·

Sk−1 Sk Sk+1

Xk−1 Xk Xk+1

P({Si,Xi}1≤i≤n) = P(S1) ×
∏n

i=2P(Si|Si−1) ×
∏n

i=1P(Xi|Si).



Properties of distributions factorized on graphs

Moral graph
The moral graph of a DAG G is obtained from G by ”marrying”
the parents and withdraw directions.
ex : Moral graph associated to a HMM

S1

X1

· · ·

· · ·

· · ·

· · ·

Sk−1 Sk Sk+1

Xk−1 Xk Xk+1

Independence properties
Let I, J,K subsets of {1, . . .N},
I In a DAG G, conditional on its parents, a variable is

independent from its non-descendants.
I In the moral graph associated to G, if all paths from I to J

go through K, then {Vi}i∈I y {Vj}j∈J | {Vk}k∈K.



Example of application: proof of forward recurrence
formula

Forward equations

αk(l) = Pθ(Sk = l,X1:k) =

Q∑
q=1

Pθ(Sk−1 = q,Sk = l,X1:k)

=

Q∑
q=1

Pθ(Xk|Sk−1 = q,Sk = l,X1:k−1)Pθ(Sk = l|Sk−1 = q,X1:k−1)Pθ(Sk−1 = q,X1:k−1)

=

Q∑
q=1

fl(Xk)p(q, l)αk−1(q).



Example of application: proof of forward recurrence
formula

Forward equations

αk(l) = Pθ(Sk = l,X1:k) =

Q∑
q=1

Pθ(Sk−1 = q,Sk = l,X1:k)

=

Q∑
q=1

Pθ(Xk|Sk−1 = q,Sk = l,X1:k−1)Pθ(Sk = l|Sk−1 = q,X1:k−1)Pθ(Sk−1 = q,X1:k−1)

=

Q∑
q=1

fl(Xk)p(q, l)αk−1(q).

DAG

· · ·

· · ·

· · ·

· · ·

Sk−1 Sk+1

Xk−1 Xk Xk+1

Sk



Example of application: proof of forward recurrence
formula

Forward equations

αk(l) = Pθ(Sk = l,X1:k) =

Q∑
q=1

Pθ(Sk−1 = q,Sk = l,X1:k)

=

Q∑
q=1

Pθ(Xk|Sk−1 = q,Sk = l,X1:k−1)Pθ(Sk = l|Sk−1 = q,X1:k−1)Pθ(Sk−1 = q,X1:k−1)

=

Q∑
q=1

fl(Xk)p(q, l)αk−1(q).

DAG

· · ·

· · ·

· · ·

· · ·

Sk+1

Xk−1 Xk Xk+1

SkSk−1



M-step for HMMs: analytical solution
We want to find

θk+1 = Argmax
θ

Q(θ, θk)

A maximisation under constraints gives

p(q, l)k+1
∝

n∑
i=2

Pθk(Si−1 = q,Si = l|X1:n)

f k+1
q (x) ∝

n∑
i=1

Pθk(Si = q|X1:n)1Xi=x

Assuming stationarity, one may moreover take

πk+1(q) =
1
n

n∑
i=1

Pθk(Si = q|X1:n).



EM algo and multiple initialisations

I In practice, it is necessary to run EM with many different
starting values θ0,

I At the end of each EM run, one may obtain the (observed
data) log-likelihood as

`n(θ̂) := logPθ̂(X1:n) =

Q∑
l=1

f̂l(X1)β̂1(l)Pθ̂(S1 = l).

I One finally selects the value θ̂ giving the largest
log-likelihood through the different runs.

Exercise: Implement EM algorithm for HMM on a sequence.
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Sequence segmentation I
We now want to reconstruct the sequence of regimes {Sk}.

Viterbi algorithm

I The most popular method. It consists in finding the
maximum a posteriori path

Ŝ1:n = Argmax
s1:n∈S

n
Pθ̂(X1:n,S1:n = s1:n), (4)

where θ̂ is the solution of EM-algorithm.
I Viterbi is an exact recursive algorithm for solving (4).
I Main drawback: unstable w.r.t. sequence length. E.g.

remove the last observation, then Ŝ1:n is completely
changed.

I Exercise: More on Viterbi algorithm: in Section 3.2 of
[DEKM98] for e.g.



Sequence segmentation II

Alternative solution
At the end of EM algorithm, one has access to
P̂(Sk = q|X1:n) ∝ α̂k(q)β̂k(q). Thus, one may consider
Ŝk = Argmax1≤q≤Q P̂(Sk = q|X1:n)

SEM (stochastic EM)
An EM variant, with 3 steps
I E-step: Compute joint distribution of {Si}i≥1 conditional on

the obs. {Xi}i≥1,under current param. value θk, cf.
Forward-backward equations.

I S-step: Independently draw each si ∼ Pθk(Si = ·|X1:n)
I M-step: θk+1 = Argmaxθ logPθ(S1:n = sk

1:n,X1:n)



Sequence segmentation III

Consequences
At the end of algo, one recovers an estimate of Pθk(Si = ·|X1:n):
either consider MAP (maximum a posteriori), or simulate var.
under this distribution.

Exercise: Add to your EM implementation a sequence
segmentation step.



Model selection: choosing the number of hidden states

I Number of hidden states Q may be motivated by the
biological pbm. E.g.: gene detection in bacteria, select
Q = 2 to model coding/non-coding regimes.

I The BIC (Bayesian Information Criterion) is consistent to
select the number of hidden states of a HMM

Q̂ = ArgminQ

{
− logPθ̂,Q(X1:n) +

NQ

2
log n

}
,

where NQ = Q(Q − 1) + Q(|A| − 1) is the number of
parameters in a HMM with Q hidden states and Pθ̂,Q(X1:n)
is the corresponding likelihood obtained through EM

algorithm.

Exercise: Implement a model selection step.



More general HMM

HMM
People regularly use Markov chains with Markov regimes (and
call them HMM). Namely, conditional on {Si}i≥1, the sequence
of observations {Xi}i≥1 is an order-k Markov chain, and the
distribution of each Xi depends on Si and Xi−k:i−1.
Ex : k = 1

· · ·

· · ·

· · ·

· · ·

Sk−1 Sk Sk+1

Xk−1 Xk Xk+1
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Genes detection in bacteria

Ex. from B. subtilis, [Nic03, NBM et al. 02].

Underlying idea
Coding sequences follow a letter distribution that should be
different than in non coding sequences: thus, running a HMM
with two states (coding/non coding) should enable to detect
genes on a sequence.



Genes detection (B. subtilis, [Nic03])

3 400 001

3 425 001

3 450 001

3 475 001 3 500 000

3 475 000

3 450 000

3 425 000

yvrD yvgL

yvgM yvgO yvaA

yvaM yvaP yvaQ yvaV yvaX yvaY yvbF yvbH yvbI

yvbK araR yvbV yvfQ yvfP

eno pgm tpi pgk gap yvbQ araE yvbT yvbU yvbW yvbX yvbY yvfW yvfV yvfU yvfT yvfS yvfR

yvaI yvaJ yvaK opuBD opuBB yvaZ opuCD opuCB yvbG yvbJ

yvgN yvgP yvgQ yvgR yvgS yvgT yvgV yvgW yvgX yvaB yvaC yvaF yvaG

yvrA yvrB yvrC yvrE yvrG yvrH yvrI

yvrK

yvrM yvrO yvrP fhuC fhuG fhuB

fhuD

yvsH

yvsG yvgJ

yvgK

100
Figure : Segmentation of a sequence from B. subtilis with 5 hidden
states [Nic03]. Posterior distributions on hidden states are close to 0
or 1.GenBank annotation are super-imposed on the sequence.



Motifs detection ([Nic03])
Ex: promoter sequence

RBSboîte 35 boîte 10

début de
transcription

sous unité Sigma

core

séquence codante

séquence modélisée (3’ >5’)

5’ 3’

ARN polymérase

Ideas
I Constrain your HMM so that it detects structures,
I Use hidden semi-Markov models (HSMM) that generalize

HMM to case where homogeneous parts do not have
geometric length (implied in HMM case).

boîte 10 boîte 35

absorbant
Etat

spacer

Début



Motifs detection ([Nic03])

Sigma B data set

full data set − model with optional "−35" box
(Sigma A binding site)

Sigma M data set

(11:13)

(15:16)

(15:17)

Figure : Exemple of a promoter motif estimated from a sequence of B.
subtilis.
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Comparative genomics
Definition and procedures

I Measure similarity between sequences.
I Through many different methods

I alignment (of genes, parts of genomes, complete
genomes. . .). This is the focus of this course,

I comparison of the order of genes (or domains),
I comparison of words’ sequence composition, . . .

Usages

I identification of functional sites,
I functional prediction,
I proteins secondary structure prediction,
I phylogenetic reconstruction, . . .

Preliminary remark
I Most of this part focuses on comparing 2 sequences first,
I Then find ways to compare sets of sequences.



What is an alignment? I

I Consider 2 (or more) sequences X1:n and Y1:m with values
in the same finite alphabetA.

I Question: are they similar?
I An alignment is a correspondence between the letters of

each sequence, respecting the letters’ order, and possibly
authorizing gaps.

Example
A = {T,C,A,G}, X1:9 = GAATCTGAC, Y1:6 = CACGTA, and a
(global) alignment of these two sequences

G A A T C − T G A C
C A − − C G T − A −



What is an alignment? II

Vocabulary

I Two facing letters are either called a match (if identical), or
mismatch (if different), or indifferently (mis)-match,

I a letter facing a gap is called an indel (insertion-deletion)
or simply gap.

First remarks
I When the sequences are highly similar, one may consider

alignment without gaps.
I Two types of alignment exist

I global alignment: sequence are entirely aligned;
I local alignment: searching for similar portions in the

sequences.



Alignment of sequences from A. tumephaciens and M.
loti.
Source : Hobolth, Jensen, JCB, 2005



What does an alignment stand for?

I Observed sequences evolved from a common ancestor
through some evolutionary process.

I Sequence evolution comprises many different local
modifications. Among the most studied one are
I mutations: a nucleotide (ie a letter) is replaced by another,
I insertions and deletions: one or many nucleotides are

inserted or deleted from the sequence.

I There are many other phenomena (duplications,
inversions, horizontal transfers, re-arrangements . . .) that
we shall not consider here.

An alignment reflects the sequences evolution thus their
underlying phylogeny. Alignment and phylogeny are highly
intertwinned.
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Some textbooks

O. Gascuel and M. A. Steel, editors.
Reconstructing evolution: new mathematical and computational
advances.
Oxford university press, Oxford, 2007.

Z. Yang.
Computational Molecular Evolution.
Oxford Series in Ecology and Evolution. Oxford University
Press, 2006.



Models of sequence evolution

Principles

I Only mutations are considered here (no indel,
duplications, inversions,. . .).

I The vast majority of models assumes that each site
(nucleotide) in the sequence evolves independently and
identically to the other sites.

I Continuous time Markov models are used to describe the
evolution of each site.

I Mutation parameter and (sometimes) evolutionary
distances may be inferred from a set of aligned sequences.



Continuous time Markov models (on alphabetA) I

Definition
A process X = {X(t)}t≥0 is a continuous time (homogeneous)
Markov process if for any t1 < t2 < . . . < tk < tk+1 and any
i1, . . . ik, ik+1 ∈ A

k+1 we have

P(X(tk+1) = ik+1|X(t1) = i1, . . . ,X(tk) = ik)
= P(X(tk+1) = ik+1|X(tk) = ik).

Future state only depends on the past through the present.



Continuous time Markov models (on alphabetA) II

Rate matrix
A rate matrix Q = (qij)i,j∈A2 satisfies
I For i , j, qij ≥ 0 is the instantaneous substitution rate from

nucleotide i to j. Thus qij∆t is the probability that
nucleotide i is substituted by j in small time interval ∆t.

I qii = −
∑

j,i qij. The total substitution rate for i is −qii > 0.
I Note that each row of the matrix sums to 0.
I In the following, the states are ordered as T,C,A,G.

Consider an initial probability distribution π onA.
Then, the process X = {X(t)}t≥0 follows a continuous time
(homogeneous) Markov distribution with parameters (π,Q) if
we have P(X(0) = i) = πi and P(X(t) = j|X(0) = i) = (eQt)ij



Continuous time Markov models (on alphabetA) III
Remarks
I Note that P(t) = eQt is a matrix exponential. Its

computation requires for e.g. diagonalization of Q.
I Also note that Pij(t) = (eQt)ij is not equal to eQijt.
I The state of the process at time t is given by
P(X(t) = j) =

∑
i∈A π(i)Pij(t), so that

P(Xt = ·) = πP(t) = πeQt

in matrix notation, where P(X(t) = ·) and π are row vectors.
I Distribution of ancestor sequence may not be estimated,

thus one often assumes that π is the stationary distribution
associated to Q.

I Replacing Q by Q/λ and t by λt does not change the
process. Sometimes Q is normalised s.t. −

∑
i πiqii = 1.



Construction of a continuous time Markov process

It can be shown that the process may be generated on [0,T] as
follows
I Start with t = 0,X(0) ∼ π = (πT, πC, πA, πG),
I While t ≤ T, iterate

I Draw U ∼ Exp(−qX(t)X(t)) (exponential distr. with mean
−1/qX(t)X(t)) and

I update t← t + U
I For any j ∈ A and such that j , X(t), replace X(t) by j with

probability −qX(t)j/qX(t)X(t).

One obtains a sequence of mutation times (the t’s) and a
sequence of states of the process (the X(t)’s).



The Jukes Cantor model [JC69]

Jukes Cantor model
Every nucleotide has same rate λ of changing into any other
and the stationary distribution π is uniform

π =
(1
4
,

1
4
,

1
4
,

1
4

)
and Q =


−3λ λ λ λ
λ −3λ λ λ
λ λ −3λ λ
λ λ λ −3λ


Exercise: Generate a continuous time Markov process from the
Jukes Cantor model.



Maximum likelihood estimation

I A continuous time stationary Markov model is
parametrized by: the substitution rates qij, i , j and
evolutionary time t, with only the product Qt identifiable.

I With 2 homologous sequences S1
1:n and S2

1:n with same
length and thus automatically aligned, the model
parameters are estimated through maximum likelihood

`n(Q, t) =

n∑
i=1

∑
a,b∈A

1{S1
i = a,S2

i = b} log[πaPab(t)]

=
∑

a,b∈A

Nab log[πa(eQt)ab],

where Nab is the number of pairs a, b in the alignment.
I In practice: align sequences and remove gaps from the

alignment.



Jukes Cantor model (follow.)

Transition probabilities
It can be shown that

Pij(t) = P(X(t) = j|X(0) = i) = (eQt)ij =

{
1
4 −

1
4 e−4λt for i , j,

1
4 + 3

4 e−4λt for i = j.

Note that only the product λt may be estimated without
additional information.

Maximum likelihood estimation
Exercise: Write the likelihood of a sequence under JC model
and estimate the value λt.



Reversibility of a Markov process
A Markov process is said to be reversible whenever for any
i, j ∈ A, and t ≥ 0,

π(i)P(X(t) = j|X(0) = i) = π(j)P(X(t) = i|X(0) = j)
⇐⇒ P((X(0),X(t)) = (i, j)) = P((X(0),X(t)) = (j, i)).

Consequence

I The direction of time has no influence on the model
I If two sequences have a common ancestor some time t/2

ago it is equivalent to consider that one is the ancestor of
the other after a time t of divergence.



Evolutionary distance between 2 sequences under JC I

I Consider 2 homologous sequences S1
1:n and S2

1:n with same
length and thus automatically aligned.

I Since JC is reversible, it is equivalent to consider that the
sequences have a common ancestor at time t/2 or that one
evolved from the other with divergence time t.

I Substitution rate is the number of substitutions per time
unit. Each nucleotide has total substitution rate 3λ = −qii.

I Thus the total number of expected substitutions per site
should be the evolutionary distance d = 3λt.

I The probability that two nucleotides differ S1
i , S2

i
corresponds to

P(X(t) , X(0)|X(0)) = 3P(X(t) = j|X(0) = i) ∀i , j

=
3
4
−

3
4

e−4λt



Evolutionary distance between 2 sequences under JC II
I Let x be the number of mismatchs in the alignment of S1

1:n
and S2

1:n. The frequency x/n estimates P(X(t) , X(0)|X(0)).

I Finally x/n = P̂(X(t) , X(0)|X(0)) gives

λ̂t = −
1
4

log
(
1 −

4x
3n

)
and thus 3λ̂t = d̂ = −

3
4

log
(
1 −

4x
3n

)
.

NB: the ”observed distance” x/n between the two
sequences underestimates the ”evolutionary distance” d.
We also recover the result from ML estimation!

Variance
Note that one may estimate the variance of d̂ as
Var(d̂) =

x/n(1−x/n)
n ×

1
[1−4x/(3n)]2 .



Distinguishing transitions and transversions I

Transitions and transversions
I Substitutions between pyrimidines (T↔C) or between

purines (A↔G) are called transitions,
I Substitutions between a pyrimidine and a purine (T,C↔

A,G) are called transversions.

Kimura (K80) [Kim80]

I α = rate for transitions; β = rate for transversions
I The rate matrix is given by (remember order T,C,A,G)

Q =


−(α + 2β) α β β

α −(α + 2β) β β
β β −(α + 2β) α
β β α −(α + 2β)


I And stationary distribution π = ( 1

4 ,
1
4 ,

1
4 ,

1
4 )



Distinguishing transitions and transversions II
K80 model properties

I Total substitution rate per nucleotide α + 2β
I Evolutionary distance between sequences separated by

time t is d = (α + 2β)t
I The model is often parametrized through (d, κ = α/β)

instead of (αt, βt).
I Let S= proportion of transitions between two aligned

sequences and V= proportion of transversions. Then

d̂ = −
1
2

log(1 − 2S − V) −
1
4

log(1 − 2V)

κ̂ =
2 log(1 − 2S − V)

log(1 − 2V)
− 1

I Formulas for variances can also be given.



Other famous models

I JC and K80 have symmetrical rates qij = qji and thus stat.
dist. π is uniform. This is unrealistic.

I [HKY85]: parameters are stationary distribution
π = (πT, πC, πA, πG), transition rate α and transversion rate
β.

I Felsentein (F84), Tamura & Nei [TN93] are further
generalisations

I · · ·



General Time Reversible model (GTR)

I All previous models are reversible
I The most general reversible Markov model has stationary

distribution π = (πT, πC, πA, πG) and rate matrix

Q =


? aπC bπA cπG

aπT ? dπA eπG
bπT dπC ? fπG
cπT eπC fπA ?


where ? are terms such that rows sum to 0.

I This model has 6+3=9 parameters.
I Reversible models are useful as they simplify phylogeny

computations. However they are not biologically funded.



More evolutionary distances I
I The analysis to derive evolutionary distance from model

parameters is not always easy as for JC and K80 models.
I The general formula relying d and the model parameters

for GTR is
d = −2trace(ΠQt),

where Π = diag(π).
I Let F be the |A| × |A|matrix containing the frequencies

Fij = Nij/N in the alignment. Here Nij is the number of
times i in first seq is aligned with j in second seq and
N =

∑
ij Nij. Then F estimates Π exp(Q2t) (note the factor

2!).
I A consequence is that one may estimate

d̂ = −trace(Π̂ log(Π̂−1F)),

where Π̂ contains the observed nucleotides frequencies in
the sequences. NB: there is a matrix logarithm!



More evolutionary distances II
Log-det and paralinear distances

I The log-det distance [Ste94] is given by

d̂ = − log det(F).

I The paralinear [Lak94] distance is given by

d̂ = −
1
4

[
log det(F) −

1
2

log(det(Π̂xΠ̂y))
]
,

where Π̂x (resp. Π̂y) is the frequency of letters in the first
(resp. second) sequence.

NB: no matrix logarithm there!
Exercise: Simulate 2 sequences evolved from a GTR model.
Compute their different distances (JC, K80, GTR formula,
log-det, paralinear) and compare them.
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Rates variation across sites I

Γ distributed rate heterogeneity [Yan94]

I Sites are heterogeneous, e.g. some sites are more conserved
and evolve more slowly;

I Introduce a rate parameter per site r, such that
instantaneous substitution rates are given by rQ (Q is a
transition matrix common to all sites);

I Recall Gamma distribution: two parameters α (shape) and
β (scale) with density

g(r;α, β) =
βα

Γ(α) e
−βrrα−1, r > 0;

I Assume that r ∼ Γ(α, α) (set α = β otherwise time could be
rescaled with no change). This induces one extra shape
parameter α (besides parameters of Q).

I In practice, many implementations of the model use a
discretized version of the Gamma distribution.



Rates variation across sites II

Invariant sites
I Some sites never vary (under some strong evolutionary

constraints)
I Introduce a latent variable per site I, with values in {0, 1}

and such that if I = 0 then the site is fixed, otherwise it
follows the substitution model;

I This corresponds to a mixture model with two groups:
invariant and non-invariant sites;

GTR + Γ +I
I One of the most widely used models of nucleotide

substitution.

Exercise: Generate sequences evolving under this model.



Relaxing independence between sites

I Different attempts have been made to relax the
independence assumption between the sites,

I In practice, these models remain largely untractable at the
moment,

I But this might change in the near future.
I A pretty good attempt is given by the model [BGP08]. See

also [BG12, Fal10, FB12].

Main issue: cone of dependencies
When looking backwards in time, the dependencies at a
specific site propagate along a cone.
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Graphical representation of a pairwise alignment I
I An alignment between two sequences with length n and m

= a path on the grid [0,n] × [0,m] constrained to three
different steps types: (1, 1), (1, 0) and (0, 1).

I steps (1, 1) correspond to matchs or mismatchs
I steps (1, 0) and (0, 1) correspond to indels

A A T G
C
T
G
G

�
�

�
�
�
�

Figure : Graphical representation of an alignment between X = AATG

and Y = CTGG. This alignment corresponds to
A
C

A-
T
T

G
G

-
G .



Graphical representation of a pairwise alignment II

Correspondence

I a global alignment = a path starting at (0, 0) and ending at
(n,m),

I local alignment = any constrained path included in
[0,n] × [0,m].

I Nota Bene: the ”best” global alignment does not necessarily
contain the best local alignment.



Graphical representation of a pairwise alignment III

X1 Xn

Y1

Ym
r(n,m)

�
�
�

�
�
�
��

•
•
•
•
•
•
•
•
•• • • ••

•
•
•
•
•

Figure : Graphical representation of best global (solid line) and best
local (dashed line) alignments of X1:n and Y1:m.
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Simplest comparison: the dotplot I

The two sequences X1:n and Y1:m are on the two axes,
similarities are highlighted with dots.



Simplest comparison: the dotplot II

I Visual comparison only,
I Simplest dotplots show identities only.
I Dotmatcher tool from Emboss : Scores are computed over

fixed size windows and thresholds are used.



Simplest comparison: the dotplot III

Exercise: Use the dotmatcher tool http:
//emboss.bioinformatics.nl/cgi-bin/emboss/dotmatcher

on two chosen sequences (obtained for e.g on Genbank).
Change the parameter values. Observe the results.

http://emboss.bioinformatics.nl/cgi-bin/emboss/dotmatcher
http://emboss.bioinformatics.nl/cgi-bin/emboss/dotmatcher
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Alignment with scores

Principle

I associate a score to each alignment, high scores
corresponding to most likely alignments,

I select the alignment with highest score.

As a consequence, one needs to be able to
I compute the score of all possible alignments;
I explore the set of alignments in an efficient way so as to

select the best one.



Which scoring functions?

I ”Site by site” scoring functions, that attribute to an
alignment the sum of individual score of each step in this
alignment,

I e.g: +1 for a match, −µ for a mismatch and −δ for an indel
(µ, δ > 0).

I More generally, consider a scoring matrix onA×A that
gives individual score s(a, b) to a position where a stands in
front of b,

I Linear or affine penalisation of indel lengths is used:
−∆ − δk with k equal to indel length. Here, ∆ ≥ 0 is the gap
opening penalty and δ > 0 is the gap widening penalty.

Note that relying on an additive scoring function corresponds
to assuming that sites evolution is independent (very rough
assumption).



Remarks

I There is a balance to achieve between (mis)-match scores
and indel scores. This has a strong influence on the
resulting alignments.

I The optimal score naturally increases with sequence
length: two phases appear, linear and logarithmic with
respect to sequence length.

I The logarithmic regime is the interesting one.
I The space of alignments is huge thus searching for an

optimal alignment is not easy. However, existence of
dynamic programming algorithms solves the problem.



Exact algorithms I

I Needleman & Wunsch for global alignment [NW70], later
improved by Gotoh [Got82].

I Smith & Waterman [SW81] for local alignment.
I Both are based on dynamic programming (thus rely on

additive form of the score).

Principle
At each step in the alignment, 3 possibilities arise. Next step
can either be
I a letter from X facing a letter from Y;
I a letter from X in front of an indel;
I a letter from Y in front of an indel.

From these 3 possibilities, keep the one that maximises the
score (= preceding score + current cost) and go on.



Exact algorithms II

Dynamic programing - global alignement - linear penalty
Let F(i, j), the optimal (global) alignment score between X1:i and
Y1:j. Construct matrix F recursively:
I F(0, 0) = 0, F(i, 0) = −δi and F(0, j) = −δj,
I

F(i − 1, j − 1) F(i − 1, j)
↘ ↓

F(i, j − 1) → F(i, j)
I

F(i, j) = max


F(i − 1, j − 1) + s(Xi,Yj)
F(i − 1, j) − δ
F(i, j − 1) − δ

Complexity: O(nm) (time and memory).



Exact algorithms III
Dynamic programing - local alignment - linear penalty
Let F(i, j), the optimal (local) alignment score between X1:i and
Y1:j. Construct matrix F recursively:
I F(0, 0) = F(i, 0) = F(0, j) = 0,
I

F(i − 1, j − 1) F(i − 1, j)
↘ ↓

F(i, j − 1) → F(i, j)
I

F(i, j) = max


0
F(i − 1, j − 1) + s(Xi,Yj)
F(i − 1, j) − δ
F(i, j − 1) − δ

Complexity: O(nm) (time and memory).
For more details, see [DEKM98].



Exact algorithms IV
(Source Durbin et al. [DEKM98])



Approximate algorithms

I Smith & Waterman’s algo is too slow to compare a
sequence to a whole database.

I Heuristics have been developed to fasten these procedures,
for instance by first searching for identical segments
(anchor points) and extend the alignment from these parts;

I These heuristics are implemented in BLAST, FASTA...

Exercise: Write an R function for computing the local alignment
between two sequences.



Substitution matrices I

I Choice of s : A×A→ R is an issue. [It’s also the case for
indels costs, but current algo are limited to cost functions
affine w.r.t. indel size].

I ForA = {A,T,G,C}, one often uses Identity matrix, or two
different values: s(X,X) = s(Y,Y) , s(X,Y) depending on
functional groups purines X = {A,G} / pyrimidines
Y = {C,T}.

I ForA = {amino acids} (size 20), there exist two main
families of substitution matrices
I PAM (“Percent Accepted Mutations”), see [DSO78].
I BLOSUM (“Blocks Substitution Matrix”), see [HH92].
I They both are based on log-odds ratios principle, but

constructed on different datasets.



Substitution matrices II
Log-odds ratios

I Take a family of proteins that have been manually aligned,
and whose evolutionary distance is rather well known.

I Obtain s(a, b) = log pab
qaqb

where qa is frequency of a in the
dataset, and pa,b frequency of (a, b) in the alignment.

I A whole family of substitution matrices is then obtained by
introducing a scale factor that accounts for different
evolutionary distances between sequences.

I It works if the set of sequences under consideration has the
”same characteristics” as the original dataset.

Alternative
An alternative to the choice of the scoring function is given by
statistical alignment, that corresponds to select scoring
functions from data through maximum likelihood.



Linear vs logarithmic regime

I For local alignments, it may be shown that a phase
transition occurs when the parameters vary, between a
linear increase of the maximal local score w.r.t. sequence
lengths and a logarithmic increase;

I The logarithmic regime is the interesting one; otherwise
long alignments would tend to have high score
independently of whether the segments aligned were
related;

I For local scores without indels, this is ensured as long as
the expected score for aligning a random pair is negative;
i.e. E(s(X,Y)) < 0.



Statistical significance of an alignment I

Statistical context
I Test the null hypothesis H0 : ”the two sequences are

independent” versus the alternative H1 : ”the two
sequences evolved from a common ancestor”.

Hypothesis testing

I If the alignement score between two sequences is very
large, then the sequences are thought to be highly similar
and the null hypothesis is rejected: the alignment is
considered to be significant.

I Relies on the knowledge of the tail distribution of the score
under the null hypothesis.



Statistical significance of an alignment II

Pitfalls
I The distribution of optimal alignments under null

hypothesis is not known;
I One may generate many independent sequences pairs

with appropriate length and sequence composition and
compute their optimal score and estimate mean value and
standard deviation. Then compute a ”z-score”;

I However this does not give a p-value because the
distribution of z-score is not Gaussian;

I There is a multiple testing issue: when testing 1000
hypotheses, an individual type I error of 10−4 is required to
guarantee an overall type I error less than 0.1 (Bonferroni
correction).



Distribution of the score under the null hypothesis I

The ”without indel” case
I In this case, the distribution of the maximal local score is

analytically well understood;
I It follows a Gumbel distribution (extreme value

distribution), with parameters that may be estimated;
I E-value(S): is defined as the expected number of

high-scoring segments pairs with score at least S (Often
used by programs when p-values unknown);

I In this case, E-value(S) = Kmne−λS, where K, λ are
parameters depending on the scoring values and m,n are
the sequences lengths;



Distribution of the score under the null hypothesis II

General case (with indels)

I In general, the tail distribution of the maximal score (local
or global) is unknown;

I E-values and p-values produced by alignment tools are
based on roughs approximations;

I Moreover, a multiple testing issue arises: when searching a
whole database for sequence similarity, one makes
thousands of tests. Alignment tools have specific
corrections of E-values and p-values w.r.t. database sizes.



Conclusions on alignment with scoring functions

I Highly dependent on the choice of the scoring function;
I Statistical significance is only roughly evaluated.

Developing alternatives
I with adaptive choice of the scores
I with better established significance statistics

is highly desirable.



Exercise: Varying the parameters of an alignment

Use the tools
http://emboss.bioinformatics.nl/cgi-bin/emboss/needle

and
http://emboss.bioinformatics.nl/cgi-bin/emboss/water

for (exact) global and local alignments of two sequences.
Modify the parameters and observe the results.

http://emboss.bioinformatics.nl/cgi-bin/emboss/needle
http://emboss.bioinformatics.nl/cgi-bin/emboss/water
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Context

Scoring alignment vs statistical alignment

I Good scoring functions should be derived from the
knowledge of the evolutionary processes at stake. A priori
choosing these induces a bias.

I Statistical alignment deals with this issue by achieving at
the same time both sequence alignment and parameter
estimation of the underlying evolutionary process.

I In practice, this relies on maximum likelihood estimation
in a pair-hidden Markov model.



Introduction to statistical alignment
Principle

I We consider a specific evolutionary model (substitution +
indel process) and observe 2 seqs.

I Try to reconstruct the homologous positions i.e. sites that
evolve from a common ancestor, by maximising the
likelihood of the sequences under the model.

Framework
I Models combining substitutions + indel processes where

first introduced by Thorne, Kishino and Felsenstein
[TKF91, TKF92], with many different generalisations (e.g.
[MLH04, AGMP09] . . .).

I This specific class of models is contained in the larger class
of pair-HMM. Probabilistic framework.

I Many advantages: parameter inference is possible, but also
hypothesis testing . . .



TKF model I

Evolutionary model
I Each site evolves independently. Two independent

processes apply on each site: a reversible substitution
process (any of those previously described)+ an indel one.

I Each site may be deleted (with some rate µ) and an
insertion may happen between two sites (with rate λ).

I The whole resulting process is reversible.

Consequences (1/2)
I Each alignment between two sequences may be coded

through a sequence with values in {H,D, I} indicating
which positions are homologous H, i.e.
matchs/mismatchs), deleted (D) in the first sequence or
inserted in (I) the first sequence.



TKF model II

Consequences (2/2)

I Under the above setup, the sequence W1:L with
Wi ∈ {H,D, I} that encodes the evolution between the two
sequences follows a Markov distribution. Here, L is the
length of the ’true’ alignment between the sequences.

I Conditional on this sequence W1:L, the model draws
independently the letters in the two sequences −→
Pair-HMM.



Pair-hidden Markov model I
Reminder: Graphical representation of an alignment

A A T G
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Pair-hidden Markov model II
Notation [AGGM06]

I A finite alphabet (e.g. {A,C,G,T}).
I {εt}t≥1 stationary and ergodic Markov chain on state space
E = {(1, 0); (0, 1); (1, 1)}, with transition matrix π and
stationary distribution µ = (p, q, r).

I At time t, conditional on
{εs, s ≤ t} draw independently
I A pair (X,Y) with law h on
A×A, whenever εt = (1, 1),

I A letter X with law f onA
whenever εt = (1, 0),

I A letter Y with law g onA
whenever εt = (0, 1). �

�
�

�
�
�

�
�
�

εt
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Pair-hidden Markov model III

I θ = (π, f , g, h) ∈ Θ is the model parameter
I Let Z0 = (0, 0) and Zt = (Nt,Mt) =

∑t
s=1 εs, the random walk

onN ×N.

We have

P(X1:Nt ,Y1:Mt |ε1:t)

=

t∏
s=1

f (XNs)
1{εs=(1,0)}g(YMs)

1{εs=(0,1)}h(XNs ,YMs)
1{εs=(1,1)}

and P(ε1:t) = µε1

t−1∏
s=1

π(εs, εs+1).



Pair-hidden Markov model IV

Representation as an automaton

M
h(a,b)

IX
f (a)

IY
g(b)

δ

δ

1 − 2δ

ε
1 − ε

ε
1 − ε

π =


ε 0 1 − ε
0 ε 1 − ε
δ δ 1 − 2δ





Likelihood

Observe two sequences X1:n and Y1:m.
I The likelihood writes as

Pθ(X1:n,Y1:m) =
∑

e∈En,m

Pθ(ε1:|e| = e1:|e|,X1:n,Y1:m)

where En,mis the set of paths from (0, 0) to (n,m).
I EM-algorithm applies to pair-HHM. The forward-backward

equations may be generalised to this context to compute
the E-step.

I It enables computing the MLE of θ.
I Moreover, one obtains a posterior distribution on the

alignments.
I (One may also use Viterbi’s algorithm to recover the

optimal alignment).



Advantages of pairHMM over scoring methods

I Parameters are estimated. This corresponds to selecting
the optimal score (from an evolutionary perspective) for
these sequences.

I PairHMM provide a posterior distribution on the
alignments.

I NB: [LDMH05] gives an interesting review about statistical
alignment issues.



Posterior probabilities on alignments
(Source Metzler et al., J. Mol. Evol. 2001)



Exercise: Running pair-HMM with fsa

I Download the two alpha-1 globin sequences of human and
mouse at
http://www.ncbi.nlm.nih.gov/nuccore/NM_000558.4

and
http://www.ncbi.nlm.nih.gov/nuccore/NM_008218.2

I Create one fasta file my seqs.fa including those two
sequences

I Run fsa with the commands
fsa --gui my_seqs.fa > result.mfa

java -jar path_to_fsa/fsa/display/mad.jar my_seqs.fa

http://www.ncbi.nlm.nih.gov/nuccore/NM_000558.4
http://www.ncbi.nlm.nih.gov/nuccore/NM_008218.2


Relaxing independence between sites
As for evolutionary models, people have tried to relax the
”independence between sites” assumption that underlines
alignment procedures.

Context-dependent scoring alignments

I Some attempts have been made
[WL84, Hua94, GTT06, GW07];

I However the choice of these scoring parameters becomes
even more problematic !

Context-dependent statistical alignment
Two different frameworks:
I [AGM12] generalise pair-HMM to handle a Markov

process conditional on the latent alignment;
I [HB11] use tree adjoining grammars (TAG).
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Multiple alignment of sequences
Alignment of Hus5/Ubc9 proteins in a set of organisms



Introduction to multiple alignment I

General remarks
I When more than 3 sequences, each site is either

I a homologous site (i.e. present in the ancestral sequence),
I or deleted (w.r.t. ancestral sequence);
I or inserted (w.r.t. ancestral sequence).

I With more than 3 sequences, the space of possible
alignments is huge. Complexity drastically increases.

Scoring alignment algorithms
Mainly 2 different types of strategies
I progressive strategies, based on pairs of aligned sequences

(Clustal W). Strong dependency on the order of the
sequences.

I with multiple anchor points (DIALIGN2, MUSCLE).



Introduction to multiple alignment II
Specific Issues

I Insertions between homologous positions are often
inserted to the right, as a convention but do not represent
homologies within clades for e.g.

I Homology may not be handled at the clade level,
I When using progressive alignment, indels inserted at an

early stage may have a big impact on the result.

Which sequences to align?

I Be careful to the heterogeneity of the sequences;
I If there is a subset of sequences that are too close, this will

induce a bias in the alignment.
I Some software weight the sequences pairs according to

their similarity.



Multiple statistical alignment

Principle

I Generalising pair-HMM to more than 2 sequences is non
trivial;

I Requires a phylogeny of the sequences to compute the
likelihood under an evolutionary model;

I Algorithms suffer the same computational problems as for
scoring-based alignment.

Some recent developments

I [FMvH05] or BaliPhy [RS05] propose to simultaneously
reconstruct the phylogeny and the sequence alignments;

I FSA: fast statistical alignment [BRS09] relies on pair-HMM
(thus on pairs of sequences);



Profile HMMs I
References [Edd98, KBM94]

A profile is a description of the consensus of a multiple sequence
alignment.

Principle

I A number of homologous positions L is a priori fixed. A
Markov chain (the profile chain) describes the succession
of states homologous, deleted or inserted.

I Conditional to the profile, the sequences are supposed to
be independent;

I Two different usages of profileHMM are made
I Training from unaligned sequences The parameters (and

underlying alignment) are estimated from the set of
unaligned sequences, through a em algorithm.

I Starting from an alignement: the parameters are adjusted
through simple counts of symbol emission and state
transitions.



Profile HMMs II
References [Edd98, KBM94]



Profile HMMs III
References [Edd98, KBM94]

Additional remarks
I L is often chosen as the mean length value of the sequences;
I May be viewed as position-specific scoring alignment;
I Generalising pairHMM to more than 2 sequences is

different from profileHMM (because in latter case,
sequences are independent conditional on profile).

Exercise: Use the software Hmmer on sequences. Follow the
tutorial from the user guide ftp://selab.janelia.org/pub/

software/hmmer3/3.1b1/Userguide.pdf

ftp://selab.janelia.org/pub/software/hmmer3/3.1b1/Userguide.pdf
ftp://selab.janelia.org/pub/software/hmmer3/3.1b1/Userguide.pdf
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Accurate estimation of substitution rates with
neighbor-dependent models in a phylogenetic context.
Systematic Biology, 61(3):510–521, 2012.

[BGP08] J. Bérard, J.-B. Gouéré, and D. Piau.
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Trees: some generalities I

Definitions
I In graphs, vertices or nodes are connected through edges

or branches. The degree of a node is the number of edges
connecting this node. Trees are graphs with no cycles;

I We consider binary trees, where each internal node has
degree 3 and the leaves have degree 1 (root has degree 2);

I The leaves represent extant species, while internal nodes
represent ancestral species;

I The tree may be rooted or unrooted: the root is the most
recent common ancestor (MRCA) of the set of extant
species;

I The molecular clock assumption states that the
evolutionary rate is constant along the tree (often violated);



Trees: some generalities II

I To root the tree, methods either use
I the molecular clock assumption (distance and ML

methods);
I or an outgroup.

I The tree contains two type of information: a topology and
branch lengths;

I A tree without branch lengths is called a cladogram;
I Branch lengths may either represent the amount of

sequence divergence or a time period;
I The number of trees on n taxons is huge: it is equal to

3 × 5 × 7 × · · · × (2n − 5) denoted by (2n − 5)!!
e.g. n = 10 gives about 2 million and n = 20 gives 2.2× 1020.

I Thus exhaustive search through the tree space is
prohibitive unless n is small.



Trees: some generalities III

Gene trees and species trees

I The phylogeny of a set of genes or sequences is a gene tree;
I For many reasons, gene trees and species trees may not be

identical: gene duplications (paralogues), losses, lateral
gene transfers, lineage sorting and estimation errors . . .

Searching the tree space

I Tree space is huge: exhaustive search is impossible and
there is a need for heuristic algorithms for exploring the
tree space;

I See [Yan06] for more details.



Newick format

Trees are encoded through Newick format indicating the clades
in the tree. Examples:
a and b: ((((A, B), C), D), E);
b: ((((A: 0.1, B: 0.2): 0.12, C: 0.3): 0.123, D: 0.4): 0.1234, E: 0.5);
c: (((A, B), C), D, E);
c: (((A: 0.1, B: 0.2): 0.12, C: 0.3): 0.123, D: 0.4, E: 0.6234);
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Fig. 3.2 The same tree shown in different styles. (a) The cladogram shows the tree topology
without branch lengths or with branch lengths ignored. (b) In a phylogram, branches are drawn
in proportion to their lengths. (c) In an unrooted tree, the location of the root is unknown or

ignored.

Branch lengths here are measured by the expected number of nucleotide substitutions
per site, like the sequence distances discussed in Chapter 1. This format is natural for
representing rooted trees. Unrooted trees are represented as rooted and the represen-
tation is not unique since the root can be placed anywhere on the tree. For example,
the tree in Figs. 3.2(c) can also be represented as ‘(A, B, (C, (D, E)));’.

3.1.1.4 Bifurcating and multifurcating trees
The number of branches connected to a node is called the degree of the node. Leaves
have a degree of 1. If the root node has a degree greater than 2 or a nonroot node
has a degree greater than 3, the node represents a polytomy or multifurcation. A tree
with no polytomies is called a binary tree, bifurcating tree, or fully resolved tree. The
most extreme unresolved tree is the star or big-bang tree, in which the root is the only
internal node (see Fig. 3.3 for examples). A polytomy representing truly simultaneous
species divergences is sometimes called a hard polytomy. It would seem extremely
unlikely for one species to diverge into several at exactly the same time, and it may be
argued that hard polytomies do not exist. Most often the polytomy represents lack of
information in the data to resolve the relationship within a clade (a group of species).
Such polytomies are called soft polytomies.

3.1.1.5 The number of trees
We can work out the total number of unrooted trees by the following stepwise addition
algorithm (Cavalli-Sforza and Edwards 1967) (Fig. 3.4). We start with the single tree
for the first three species. This tree has three branches to which the fourth species
can be added. Thus there are three possible trees for the first four species. Each four-
species tree has five branches, to which the fifth species can be added, resulting in
five different five-species trees for each four-species tree. In general, a tree of the first
n − 1 species has (2n − 5) branches, to which the nth species can be added, so that

(Source [Yan06])



Outline Part 4

Trees

Phylogenies of sequences
Introduction to sequences phylogenies
Model based phylogenies
Bootstrap support
Extensions

Species phylogenies



Outline Part 4

Trees

Phylogenies of sequences
Introduction to sequences phylogenies
Model based phylogenies
Bootstrap support
Extensions

Species phylogenies



Methods for (seqs) phylogeny reconstruction I

Principle

I Most of the methods start from a set of aligned sequences
with no indel and infer their ancestral relationships (tree);

I This is somehow circular because the construction of an
alignment should use the phylogeny between the seqs !

Different types of methods

I Parsimony: reconstruct the tree that explains the observed
alignment with minimal number of mutations;

I Distance methods: clustering methods where most similar
sequences are ”clustered” together;

I Model-based methods: infer the tree under some
evolutionary model relating these sequences; either
Maximum likelihood or Bayesian methods.



Methods for (seqs) phylogeny reconstruction II

Comments on methods
I Parsimony and model-based methods are character based

contrary to distance methods (that rely on distance).
I Parsimony and model-based methods both search for a tree

that optimizes a specific criterion. On the contrary, distance
based methods construct a tree with no explicit criterion.



Parsimony methods I
Principle
I Find the tree that explains the sequences with the most

parsimonious number of mutations;
I Possible thanks to algorithms developed in [Fit71, Har73].

Non-Informative sites
I A constant site (all seqs have same letter at this position) is

non-informative for the phylogeny.
I A singleton: a site at which exactly 2 letters are observed

and one is observed only once is non-informative.
I Other patterns appear to be non informative as any tree

requires the same amount of mutations to obtain this
pattern.

I For a site to be parsimony informative, at least 2 characters
must be observed, each being obs. at least twice.

I This concept is relevant ONLY in parsimony.



Parsimony methods II

Advantages/Inconvenients

I As for scoring alignment, requires the choice of a score for
each event (often same score); thus depends on this choice.

I The method ignores branch lengths;
I Most parsimonious scenario is not the most likely in

general. In fact the method is statistically inconsistent
under certain scenarios [Fel78];

I Suffers from the long branch attraction problem.

It’s an historical method that should’nt be used anymore.



Long branch attraction phenomenon
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Fig. 3.21 Long-branch attraction. When the correct tree (T1) has two long branches sepa-
rated by a short internal branch, parsimony tends to recover a wrong tree (T2) with the two

long branches grouped in one clade.

found that Pr(xyxy) > Pr(xxyy) when the two long branches are much longer than the
three short branches. Thus with more and more sites in the sequence, it will be more
and more certain that more sites will have pattern xyxy than pattern xxyy, in which
case parsimony will recover the wrong tree T2 instead of the true tree T1 (Fig. 3.21).
The phenomenon has been demonstrated in many real and simulated data sets (see,
e.g., Huelsenbeck 1998) and is due to the failure of parsimony to correct for parallel
changes on the two long branches. Likelihood and distance methods using simplistic
and unrealistic evolutionary models show the same behaviour.

3.4.5 Assumptions of parsimony

Some concerns may be raised about the parsimony reconstruction of ancestral states.
First, the method ignores branch lengths. Some branches on the tree are longer than
others, meaning that they have accumulated more evolutionary changes than other
branches. It is thus illogical to assume that a change is as likely to occur on a long
branch as on a short one, as parsimony does, when character states are assigned to
ancestral nodes on the tree. Second, the simple parsimony criterion ignores different
rates of changes between nucleotides. Such rate differences are taken into account
by weighted parsimony through the use of a step matrix, although determining the
appropriate weights may be nontrivial. In theory, how likely a change is to occur on a
particular branch should depend on the length of the branch as well the relative rate of
the change. Attempts to derive appropriate weights for the observed data lead naturally
to the likelihood method, which uses a Markov-chain model to describe the nucleotide
substitution process, relying on probability theory to accommodate unequal branch
lengths, unequal substitution rates between nucleotides, and any other features of the
evolutionary process. This is the topic of the next chapter.

(Source [Yan06]). Pattern: xyxy has higher probability than xxyy.



Distance methods

Principle

I Compute pairwise distances between the sequences (thus a
distance matrix);

I Use a clustering method to convert this matrix into a tree:
e.g. UPGMA (unweighted pair-group method using
arithmetic averages, [SS63]), Neighbor-Joining [SN87] and
least-squares (LS).

I UPGMA is based on molecular clock assumption and
generates rooted trees;

Distances
I Simplest case: distance = 1- percent identity;
I However some nucleotides or a.a. are ”closer” than others:

thus use a similarity score and distance =1-similarity;
I There is a large literature on the choice of distances.



Distance: UPGMA
Start with a set of distances di,j between the sequences.

Algorithm

I Initialisation: Assign each sequence i to its own cluster Ci ;
Each sequence is a leaf of T, placed at height 0;

I Iteration: Take the 2 clusters i, j for which di,j is minimal
(pick at random if multiple choices);
Define a new cluster k by union Ck = Ci ∪ Cj and set

dkl =
dil|Ci|+djl|Cj|

|Ci|+|Cj|
∀l,

Define a node k, parent of i and j, placed at height dij/2;
Add Ck to the set of clusters and remove Ci,Cj;

I Termination: When only 2 clusters i, j remain, place the
root at height dij/2

Exercise: Try it by hand on a small set of 5 sequences. Compare
the resulting and initial distances. What do you note?



Distance: Least-squares method

Start with a set of distances di,j between the sequences.

Method’s principle

I For any tree T, let d̂ij(T) be the sum of branch lengths along
the path between i and j;

I Minimize
∑

i,j(dij − d̂ij(T))2 w.r.t branch lengths and denote
by S(T) the resulting tree length (sum of branch distances);

I Choose tree T with smallest value S(T) (need to explore the
tree space).

NB: Approximate algorithms may propose solutions with
negative branch lengths.



Neighbor joining

I Method that minimizes an ”evolution criterion”: the sum
of branch lengths;

I Divisive cluster algorithm: starting with the star tree and
join two nodes, choosing the pair that achieves greatest
reduction in tree length; Iterate the procedure.
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leads to improved performance in tree reconstruction (e.g. Kuhner and Felsenstein
1994), most computer programs implement the LS method without the constraint.
It is noted that when the estimated branch lengths are negative, they are most often
close to zero.

The least-squares method described above uses equal weights for the different
pairwise distances and is known as the ordinary least squares (OLS). It is a special case
of the following generalized or weighted least squares (GLS) with weights wij = 1:

S =
∑

i<j

wij(dij − d̂ij). (3.3)

Fitch and Margoliash (1967) suggested the use of wij = 1/d2
ij, while Bulmer (1990)

used the variance: wij = 1/var(dij). However, such weighted LS methods were found
not to work well in computer simulations, especially when the distances are large,
presumably because the estimated variances are unreliable.

3.3.2 Neighbour-joining method

A criterion used for tree comparison, especially in distance methods, is the amount of
evolution measured by the sum of branch lengths in the tree (Kidd and Sgaramella-
Zonta 1971; Rzhetsky and Nei 1993). The tree with the smallest sum of branch
lengths is known as the minimum evolution tree; see Desper and Gascuel (2005) for
an excellent review of this class of methods.

Neighbour joining is a cluster algorithm based on the minimum-evolution crite-
rion proposed by Saitou and Nei (1987). Because it is computationally fast and also
produces reasonable trees, it is widely used. It is a divisive cluster algorithm (i.e. a
star-decomposition algorithm), with the tree length (the sum of branch lengths along
the tree) used as the criterion for tree selection at each step. It starts with a star tree and
then joins two nodes, choosing the pair to achieve the greatest reduction in tree length.
A new node is then created to replace the two nodes joined (Fig. 3.17), reducing the
dimension of the distance matrix by one. The procedure is repeated until the tree is
fully resolved. The branch lengths on the tree as well as the tree length are updated
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Fig. 3.17 The neighbour-joining method of tree reconstruction is a divisive cluster algorithm,
dividing taxa successively into finer groups.

(Source [Yan06]).



Advantages/Inconvenients of distance-based methods

I Fast to compute;
I Applies whenever one can define a distance between the

objects;
I Large distances are poorly estimated;
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Maximum likelihood
Principle: 2 main steps

I Step 1: For each possible tree topology T, compute the
maximum likelihood L(θ|T) of the alignment conditional
on this tree; i.e. find evolutionary parameters θ (= branch
lengths + substitution rates) that maximize the likelihood;

I Step 2: Explore the set of trees to find one with maximum
likelihood;

Step 1: computing the likelihood

I Markov evolution model i.e. Pxy(t) = P(Xt = y|X0 = x);
I Sites in the alignment are assumed i.i.d. so that the

likelihood is a product over all sites L(θ|T) =
∏n

i=1 Li(θ|T);
I The likelihood of each site is obtained through

Felsenstein’s pruning algorithm [Fel81] on rooted trees.
I Then, numerical optimization finds best parameter value.



Felsenstein’s pruning algorithm (rooted trees) I
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1: T 2: C 3: A 4: C 5: C

t1 t2 t3 t4 t5

t8
t6

t7

0

8

6

7

Fig. 4.1 A tree of five species used to demonstrate calculation of the liklihood function. The
nucleotides observed at the tips at a site are shown. Branch lengths t1–t8 are measured by the

expected number of nucleotide substitutions per site.

parameters in the model include the branch lengths and the transition/transversion
rate ratio κ , collectively denoted θ = {t1, t2, t3, t4, t5, t6, t7, t8, κ}.

Because of the assumption of independent evolution among sites, the probability
of the whole data set is the product of the probabilities of data at individual sites.
Equivalently the log likelihood is a sum over sites in the sequence

# = log(L) =
n∑

h=1

log{f (xh|θ)}. (4.1)

The ML method estimates θ by maximizing the log likelihood #, often using numerical
optimization algorithms (see Section 4.5). Here we consider calculation of # when
parameters θ are given.

We focus on one site only. We use xi to represent the state at ancestral node i, and
suppress the subscript h. Since the data at the site, xh = TCACC, can result from any
combination of ancestral nucleotides x0x6x7x8, calculation of f (xh) has to sum over
all possible nucleotide combinations for the extinct ancestors.

f (xh|θ) =
∑

x0

∑

x6

∑

x7

∑

x8

[πx0 px0x6(t6)px6x7(t7)px7T(t1)px7C(t2)

× px6A(t3)px0x8(t8)px8C(t4)px8C(t5)]. (4.2)

The quantity in the square brackets is the probability of data TCACC for the tips and
x0x6x7x8 for the ancestral nodes. This is equal to the probability that the root (node
0) has x0, which is given by πx0 = 1/4 under K80, multiplied by eight transition
probabilities along the eight branches of the tree.

(Source [Yan06]).

Computation of the likelihood Li(θ|T) at a site i requires
summing over all possible values at the (here 4) internal nodes,
which is prohibitive.

Li(θ|T) =
∑
x0

∑
x6

∑
x7

∑
x8

π(x0)Px0x6 (t6)Px6x7 (t7)Px6A(t3)Px7T (t1)Px7C(t2)Px0x8 (t8)Px8C(t4)Px8C(t5).



Felsenstein’s pruning algorithm (rooted trees) II

Method (from leaves to root)

I Li(xi) = probability of observing data at the tips that are
descendants of node i, given that nucleotide at node i is xi;

I At the leaves, Li(xi) is 1 if xi is observed, 0 otherwise;
I If i is an interior node with daughter nodes j and k and

respective branch lengths tj, tk then

Li(xi) =
(∑

x∈A Pxix(tj)Lj(x)
)
×

(∑
y∈A Pxiy(tk)Lk(y)

)
.

I Finally, the likelihood for a site is obtained as
L(θ|T) =

∑
x∈A πxLroot(x), where π is stationary distribution

of the Markov evolutionary process (estimated from extant
sequences).



Felsenstein’s pruning algorithm (rooted trees) III

Advantages

I For each site, the complexity is linear w.r.t. the number of
species (while the number of possible states for internal
nodes increases exponentially);

I The quantities Pxy(tj) are the same for all sites (only depend
on branch length) and computed once for all sites;

I If two sites are identical, their likelihood is the same: sites
are collapsed into site patterns;



Reversible models and the pulley principle [Fel81]

I For reversible models, neither direction of time nor root
positioning are relevant;

I This induces potential simplifications in likelihood
calculations;
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computationally feasible for small trees with about 20 or fewer species. We will not
discuss the details of this approach. Felsenstein (2004) and Hendy (2005) should be
consulted for excellent introductions.

4.2.3 Time reversibility, the root of the tree and the molecular clock

As discussed in Chapter 1, most substitution models used in molecular phylogenetics
describe time-reversible Markov chains. For such chains, the transition probabilities
satisfy πipij(t) = πjpji(t) for any i, j, and t. Reversibility means that the chain will
look identical probabilistically whether we view the chain with time running forward
or backward. An important consequence of reversibility is that the root can be moved
arbitrarily along the tree without affecting the likelihood. This was called the pulley
principle by Felsenstein (1981). For example, substitutingπx6px6x0(t6) forπx0 px0x6(t6)
in equation (4.2), and noting

∑
x0

px6x0(t6)px0x8(t8) = px6x8(t6 + t8), we have

f (xh|θ) =
∑

x6

∑

x7

∑

x8

πx6px6x7(t7)px6x8(t6 + t8)px7T(t1)px7C(t2)

× px6A(t3)px8C(t4)px8C(t5). (4.6)

This is the probability of the data if the root is at node 6, and the two branches 0–6
and 0–8 are merged into one branch 6–8, of length t6 + t8. The resulting tree is shown
in Fig. 4.3.

Equation (4.6) also highlights the fact that the model is over-parametrized in
Fig. 4.1, with one branch length too many. The likelihood is the same for any
combinations of t6 and t8 as long as t6 + t8 is the same. The data do not contain
information to estimate t6 and t8 separately and only their sum is estimable. Thus
another consequence of time reversibility is that only unrooted trees can be identified
if the molecular clock (rate constancy over time) is not assumed and every branch is
allowed to have its own rate.

Under the clock, however, the root of the tree can indeed be identified. With a
single rate throughout the tree, every tip is equidistant from the root, and the natural

1: T 2: C 3: A 4: C 5: C

t1 t2

t7

t
8

t
6 +

t3 t4 t4

8

6

7

Fig. 4.3 The ensuing unrooted tree when the root is moved from node 0 to node 6 in the tree
of Fig. 4.1.

(Source [Yan06]).



Extensions to more complex models

I One may assume different evolutionary models at the sites
(still independent);

I For variable rates among sites (e.g. Γ model): assume K
different (unknown) groups of sites (with homogeneous
evolution), with proportions π1, . . . , πK. Then the
likelihood is a weighted average of the likelihood within
each group L(θ, π) =

∑K
k=1 πkLmodel k(θ);

I Correlation between sites may be introduced through
HMM [Yan95, FC96].

I Covarion models: rates may vary along the branches of the
tree and switch from ”on” (sites evolves with constant rate)
to ”off”= invariable [Gal01, Hue02].



Some words on step 2

Recall: Step 2 consists in exploring the set of trees to find one
with large likelihood.

I Felsenstein’s pruning algorithm has been known from 1981
but likelihood methods have started to be used only very
recently;

I This is due to efficient implementations of the tree space
search [GG03];

I In particular, thanks to phyML [GDL10].



Bayesian methods

Bayesian paradigm

I Put a prior distribution π on the parameter θ of the model;
I Compute its posterior probability
P(θ|data) ∝ π(θ)P(data|θ), where P(data|θ) is the model
likelihood.

I See Chapter 5 in [Yan06] for more details.

Bayesian phylogenetics

I Put a prior on the set of tree topologies (e.g. uniform) and
a prior on the set of branch lengths+mutation rates;

I Compute posterior through MCMC algorithms;
I This provides posterior probabilities for trees or clades

(compare with bootstrap support values).
I But the method is criticised . . .
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Bootstrap principle

Consider a sample X = (X1, . . . ,Xn) of i.i.d. variables and a
statistic T(X).
I A bootstrap sample X? = (X?

1 , . . . ,X
?
n ) is a sample of size n,

obtained by random sampling with replacement from X.
I For 1 ≤ b ≤ B, draw Xb a bootstrap sample of X and

compute Tb = T(Xb).
I Then T = (T1, . . . ,TB) is a sample of size B drawn from the

conditional distribution of T given X.
I This sample may be used to estimate quantities on the

statistic T, such as bias, variance, etc. (valid only of B is
large).

I Based on the idea that the distr. P of Xi’s is approximated
by the empirical distribution Pn (valid if n large).



Example: bootstrap estimation of the variance of EM
estimators

Context
I Model with missing data or latent variables (ex: mixture,

HMM . . . ).
I Estimator θ̂MLE of θ does not have an analytic expression.

It is approximated through θ̂EM the result of an EM

algorithm.
I But EM algo. does not provide an estimation ofVar(θ̂EM).

Standard error of θ̂EM

I For each bootstrap sample Xb, use EM algo. to obtain θ̂EM,b.
I Then estimate sd(θ̂EM) with

ŝdboot(θ̂EM) =
{

1
B−1

∑B
b=1(θ̂EM,b

−
1
B
∑

b′ θ̂
EM,b′)2

}1/2
.



Bootstrap support of a branch [F85]
Principle
Start with an alignment and tree T inferred by any method (ML
or distance . . . ). Consider the clades induced by the branches of
this tree.
I For each 1 ≤ b ≤ B, randomly sample with replacement

among the columns of the alignment; estimate the
corresponding tree Tb with your method;

I The bootstrap support of a branch of T is the percentage of
times this branch appears in the bootstrapped trees Tb.

Approximate boostrap for ML
Many approximate methods have been proposed, to speed up
computations
I REEL: resampling estimated likelihoods [Kis90]
I RAxML: rapid bootstrap [Sta06]
I . . .

completer ca
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Attempts to infer phylogenies and alignments at the
same time I

Setup

I Reconstructed phylogenies heavily depend on alignments;
but alignments should be consequences of underlying
phylogenies!!!

I Exactly as we noticed that alignments and evolutionary
parameters should be inferred at the same time, alignments
and phylogenies (and evolutionary parameters!) should be
inferred directly from the sequences.



Attempts to infer phylogenies and alignments at the
same time II

Current proposals

I SATÉ [Liu et al.09, Liu et al.12] may be one of the most
promising methods to infer phylogenies directly from
sequences ;

I It’s an iterative method that iterates 2 steps:
I compute an alignment of the sequences using a guiding tree ;
I update the tree from the current alignment using maximum

likelihood approach.

I SATÉ appears to be powerful. First step (alignment) relies
on scoring alignment;

Exercise: Run SATÉ, following the tutorial at http:
//phylo.bio.ku.edu/software/sate/sate_tutorial.pdf

http://phylo.bio.ku.edu/software/sate/sate_tutorial.pdf
http://phylo.bio.ku.edu/software/sate/sate_tutorial.pdf


Attempts to infer phylogenies and alignments at the
same time III

Current proposals (foll.)

I An earlier reference [Fleissner et al.05] proposes a similar
approach with scoring alignment replaced by statistical
alignment (=pair-HMM for more than 2 sequences) and
tree ML search replaced by neighbor joining

I Currently less performing than SATÉ;
I Ideally, one should develop the same approach, mixing

statistical alignment (step 1) with ML methods for tree
reconstruction (step 2);
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Discrepancies between seqs/genes and species
phylogenies

I Gene duplications: genes may duplicate independently of
speciation. Pbm of distinguishing paralogs from orthologs;

I Transfers: horizontal gene transfer has to be taken into
account;

I Losses: This covers many different situations (e.g.
sampling errors, extinction . . .)

I Lineage sorting: happens when a polymorphism appears
prior to speciation. The shortest the branch lengths, the
more likely it is.
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Speciation

Speciation

(a) (b)

1a 3b2a 3a 4a 1b 2b 4b
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Fig. 3.9 Conflict between species tree and gene tree can be due to gene duplication (a) or
ancestral polymorphism (b). In (a), a gene duplicated in the past, creating paralogous copies α

and β, followed by divergences of species 1, 2, 3, and 4. If we use gene sequences 1α, 3α, 2β,
4β for phylogeny reconstruction, the true gene tree is ((1α, 3α), (2β, 4β)), different from the
species tree ((1, 2), (3, 4)). In (b), the species tree is ((human, chimpanzee), gorilla). However,
due to ancestral polymorphism or lineage sorting, the true gene tree is ((human, (chimpanzee,

gorilla)).

gene trees to be different from the species tree. An example is shown in Fig. 3.9(b).
Here the species tree for human, chimpanzee, and gorilla is ((H, C), G). However,
because of sequence variations (polymorphisms) in the extinct ancestral species, the
true gene tree is (H, (C, G)). The probability that the gene tree differs from the species
tree is greater if the speciation events are closer in time (that is, if the species tree is
almost a star tree) and if the long-term population size of the H–C common ancestor
is greater. Such information concerning the conflicts between the species tree and the
gene trees can be used to estimate the effective population sizes of extinct common
ancestors by using sequences from extant species at multiple neutral loci (Takahata
1986; Takahata et al. 1995; Yang 2002; Rannala and Yang 2003).

3.1.5 Classification of tree-reconstruction methods

Here we consider some overall features of phylogeny reconstruction methods. First,
some methods are distance based. In those methods, distances are calculated from
pairwise comparison of sequences, forming a distance matrix, which is used in sub-
sequent analysis. A clustering algorithm is often used to convert the distance matrix
into a phylogenetic tree (Everitt et al. 2001). The most popular methods in this cat-
egory include UPGMA (unweighted pair-group method using arithmetic averages)
(Sokal and Sneath 1963) and neighbour joining (Saitou and Nei 1987). Other meth-
ods are character based, and attempt to fit the characters (nucleotides or amino acids)
observed in all species at every site to a tree. Maximum parsimony (Fitch 1971b; Har-
tigan 1973), maximum likelihood (ML) (Felsenstein 1981), and Bayesian methods
(Rannala and Yang 1996; Mau and Newton 1997; Li et al. 2000) are all character
based. Distance methods are often computationally faster than character-based meth-
ods, and can be easily applied to analyse different kinds of data as long as pairwise
distances can be calculated.



Methods for species phylogenies reconstruction

Many methods exist

I Super-matrices: concatenate all genes alignments and infer
a global tree. The method may use different evolutionary
models per gene;

I Consensus trees: construct one tree per gene and use a
method to extract some ”consensus tree”;

I Coalescent-based methods: model the way genes (=
individuals) evolve in species (= populations).

I Reconciliation methods: reconciliation is a mapping
between nodes of gene trees and species trees. Those
methods try to reconstruct one or both trees by taking into
account evolutionary events such as duplication, transfers
and/or losses.



References I

[F85] J. Felsenstein.
Confidence Limits on Phylogenies: An Approach Using the
Bootstrap.
Evolution, 39:783–791, 1985.

[FC96] J. Felsenstein and G. A. Churchill.
A hidden Markov model approach to variation among sites
in rate of evolution.
Mol. Biol. Evol., 13:93–104, 1996.

[Fel78] J. Felsenstein.
Cases in which parsimony and compatibility methods will
be positively misleading.
Syst. Zool, 27:401–410, 1978.



References II

[Fel81] J. Felsenstein.
Evolutionary trees from DNA sequences: A maximum
likelihood approach.
J. Mol. Evol., 17:368–376, 1981.

[Fit71] W. M. Fitch.
Toward defining the course of evolution: minimum change
for a specific tree topology.
Syst. Zool, 20:406–416, 1971.

[Fleissner et al.05] R. Fleissner, D. Metzler and A. Von
Haeseler.
Simultaneous Statistical Multiple Alignment and
Phylogeny Reconstruction.
Syst. Biol. 54(4): 548–561, 2005.



References III

[Gal01] N. Galtier.
Maximum-likelihood phylogenetic analysis under a
covarion-like model.
Mol. Biol. Evol., 18:866–873, 2001.

[GDL et al.10] S. Guindon, J. Dufayard, V. Lefort,
M. Anisimova, W. Hordijk, and G. O.
New algorithms and methods to estimate
maximum-likelihood phylogenies: Assessing the
performance of phyml 3.0.
Systematic Biology, 59(3):307–21, 2010.

[GG03] S. Guindon and O. Gascuel.
A simple, fast, and accurate algorithm to estimate large
phylogenies by maximum likelihood.
Systematic Biology, 52(5):696–704, 2003.



References IV

[Har73] J. A. Hartigan.
Minimum evolution fits to a given tree.
Biometrics, 29:53–65, 1973.

[Hue02] J. P. Huelsenbeck.
Testing a covariotide model of DNA substitution.
Mol. Biol. Evol., 19:698–707, 2002.

[Kis90] H. Kishino and T. Miyata and M. Hasegawa.
Maximum-likelihood inference of protein phylogeny and
the origin of chloroplasts.
J. Mol. Evol., 31:151–160, 1990.

[Liuet al.09] K. Liu, S. Raghavan, S. Nelesen, C. Randal
Linder, T. Warnow.
Rapid and Accurate Large-Scale Coestimation of Sequence
Alignments and Phylogenetic Trees.
Science 324: 1561, 2009.



References V

[Liuet al.12] K. Liu, T.J. Warnow, M.T. Holder, S.M. Nelesen,
J. Yu, A.P. Stamatakis and C. Randal Linder.
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