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Outline

When and where it all started



More than 10 years ago, in Evry...

MAMAs (marches aléatoires en milieu aléatoire) met Statistics

» Francis was a driving force to
bridge the gap between probability
and statistics

» In the context of MAMAs, only the
work of [Adelman & Enriquez (04)]
touched on this issue

» We started as an initial group of 5 J
authors ...



Biophysical context for Statistics in MAMAs: DNA
unzipping

» MAMA's introduced by [Chernov(67)] to model DNA

replication
» By the end of 90’s, various DNA unzipping experiments
appeared
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Fig. 1. DNA unzipping
Goals

» DNA sequencing (exploratory),

» Study the structural properties of the molecule.



Statistics for MAMASs

General idea

Assume you observe a single (arbitrarily long) trajectory from a
(one-dimensional) MAMA, what can you say about the underlying
environment?
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Overview of the results

Stat Estim Proba set. Results Tools
set. type
Param. MLE transient, ballistic consist.+AN+-eff. BPIRE
[Comets et al.(14),
Falconnet et al.(14b)]
trans. ball.4+ Markov env consist.+AN+-eff. . .
[Andreoletti et al.(15)] + link with HMM
transient, sub-ballistic consistency+AN
[Falconnet et al.(14a)] BPIRE
recurrent, finite unknown support consistency  (+ loc. in the infinite valley
[Comets et al.(16)] AN ongoing) (+law env. seen from par-
ticle)
Non Moment] general state space consist. reinforced RW
param. based [Adelman & Enriquez (04)]
rec. or right-transient consist. + risk
[Diel & Lerasle(18), bounds BPIRE

Havet et al.(19)]




Outline

Nearest-neighbour one-dimensional random walk in random
environment



Model description |

Random environment on Z
» w={wy}rez ii.d. with w, € (0,1) and w, ~ v,
» v € M a class of distributions on (0, 1)
» P, = v%% law on (0,1)% of w and E,, expectation,

Markov process conditional on the environment

For fixed w, let X = {X}}+cn be the Markov chain on Z starting at
Xo = 0 and with transitions

W ify=x+1,
P,(Xim1=ylXi=2)=Q 1—w, fy=x-1,
0 otherwise.

P, is the measure on the path space of X given w (quenched law)
and E,, corresponding expectation.



Model description |l

Random walk in random environment (MAMA)
The (unconditional) law of X is the annealed law

P() = / Po(-)dP, (w),

with E for the corresponding expectation.

Note that X is not a Markov process.



Limiting behaviour of X

Let 1
Pz = wx, x € 7.
Wy

[Solomon(75)] proved the classification:
(a) Recurrent case: If E,(logpg) = 0, then
msup X; = 400, [P-almost surely.

—o0 = liminf X; < li
t—o0 t—o0

(b) Transient case: if E,(logpg) < 0, then

lim X; = +o00, P-almost surely.
t—o00

If we moreover let T, = inf{t € N : X; = n}, then
(b1) Ballistic case: if E,(po) < 1, then, P-almost surely, T}, /n — ¢

P-a.s.
(b2) Sub-ballistic case: If E,(pg) > 1, then T,,/n — +00

P-almost surely, when n — oo



Statistical estimation of the law of the environment

Goal and context

» Goal: Estimate the distribution v relying on the observation of
a trajectory Xio1,]-

» In a much more general setting, [Adelman & Enriquez (04)]
provide a link between the MAMA and the environment,
leading to moment estimators for the distribution v.

» Drawback of [Adelman & Enriquez (04)]: In a parametric
setting, estimate some moments first and then invert a
function to recover the parameters . May induce a loss of
efficiency.

» In a series of papers, Francis and his co-authors have focused
on maximum likelihood estimation (MLE).

» Later, a similar (to [Adelman & Enriquez (04)]) moment
approach has been successfully used to estimate the law of the
environment in a non-parametric setting
[Diel & Lerasle(18), Havet et al.(19)].



Outline

Estimator’s construction and link with a branching process with
immigration in random environment (BPIRE)



Estimator's construction |

Recall that T, = inf{t € N : X; =n}. We let

Tn—1

L= 3 (X, Xou1) = (2 — 1))

s=0

and R? := " Tn 1 1{(X,, X 11) = (z,2 4+ 1)}, the number of left
steps (resp. right steps) from site z. Then,

Po(Xpr,) = [ ws® (1 —wa)™
TEZL
and P(X(o1,) H/ *(1—a)l=dv(a).
TEZ

Note that
» Only the visited sites contribute in this product.



Estimator's construction |l

» Moreover, L' = 0 and

o [ L if 2 < 0
Tl Ly, +1 ifre0n—1]

Hence, the likelihood function v +— ¢, (v) is defined as

1
lo(v) =) log /0 alentHe=0q _ g)le qu(a).

rz<n—1

(the sequence (L7),<n is an exhaustive stat).



Underlying BPIRE

From [Kesten et al.(75)], under the annealed law PP, the sequence

L} LZ 1, ..., L{ has the same distribution as a BPIRE denoted
Zy,...,2Zy,, and defined by
Zp=0, andfork=0,...,n—1, Zx= ngﬂl’

with {fl/c,z’}kGN*;iGN independent and
VmeN,  Py(&; =m) = (1 - wp)"wp,

Under annealed law P, {Z,,},en is @ homogeneous Markov chain
with transition kernel

= ("7 [ L1 a)du(a).

X



Back to the estimators |

Parametric setting: MLE

In a parametric setting, v = vy and we have an equality in
P-distribution (for some explicit function ¢g)

U (vp) = > 60(Zk, Ziia)

k<n—1
Then we let 8, € Argmaxycg £r(vp) and the right-hand side is the
likelihood of

» a Markov chain (when environment is iid)
» a hidden Markov chain (HMM, when environment is Markov)



Back to the estimators Il

Challenges in the parametric setting: transient case

In the transient regime, the chain is positive recurrent aperiodic
with unique stationary distribution 7, characterized by
7, (k) = E,[S(1 — S)¥], where

Si=1+p1+pip2+-+pi...pnt+...) " €(0,1).

Tools:
> LLN for n= '3, h(Z, Zis1)
> TCL for n=Y2 3", W(Zk, Zi+1) — E[h(Zk, Zis1)| Fromi]



Back to the estimators ||

Challenges in the parametric setting: recurrent case
In the recurrent regime, BPIRE explodes and is useless. What can
we do instead?

» [Comets et al.(16)] restrict to v with finite unknown support,
things can be written explicitely. Assume v(:) = Zlepiéai(-).
Now the parameter is (a;, pi)i1<i<d

» Consistency relies on Sinai's localisation of the walk in the
infinite valley [Sinai(83)] and result of [Gantert et al.(10)]
about the convergence of centered (with respect to the
bottom of the valley) local times.

» AN requires limit theorems for normalised functionals of the
type > f(wx,, Xi11 — Xi). Here wx;, is the zero
coordinate of the environment seen from the particle.



Back to the estimators |V

Non parametric setting: moment estimator
[Diel & Lerasle(18)] estimate the moment quantity

1
meP = /0 a®(1— a)ﬁdu(a) =E,[wi(1 - wo)l_ﬁ]a

through its empirical counterpart (for some explicit function A, g),

n

Mo ? =" o g(Zi, Zrsr).
k=1

(recurrent or transient to the right cases). This is later used to
construct an estimator of the cdf of v [Diel & Lerasle(18)] and of
its density [Havet et al.(19)].



Back to the estimators V

Challenges in non parametric setting

» Cdf and density of v can be consistently estimated from the
above moments, indifferently in recurrent or right-transient
case. Rates of convergence are provided.

» Tool: Concentration inequalities for >~} h(Zy, Z+1)

» However no minimax rate is known in this context: are those
rates of convergence optimal?



Some remaining challenges

» In the parametric, transient, sub-ballistic case, under Temkin's
model (finite and unknown support of size 2) Fisher's
information is infinite. Actual rate of convergence of MLE
might be faster than 1/y/n;

» In the recurrent and parametric case

» prove AN of MLE when v has finite support, (preliminary
results by Comets, Loukianova, Loukianov)
» build a MLE when v is absolutely continuous;

» In the Markov environment case, [Andreoletti et al.(15)]
worked under a (technical) assumption that v is reversible: go
beyond that;

» In the non parametric setting, what are the minimax rates of
convergence? And can they be achieved?



My personal recordings on this tremendous time

» Francis has been a driving force in the development of
statistical results for estimating the environment law of a
MAMA;

» Our group meetings mixing probabilists and statisticians were
enriching for all of us as well as for our disciplines;

» Following Francis heritage, we hope many researchers will
follow this fruitful path of mixing our sub-disciplines

» Quoting one of my favourite colleagues at LPSM: "We are all
probabilists" and | would add "we also are all statisticians".



My personal recordings on this tremendous time

» Francis has been a driving force in the development of
statistical results for estimating the environment law of a
MAMA,;

» Our group meetings mixing probabilists and statisticians were
enriching for all of us as well as for our disciplines;

» Following Francis heritage, we hope many researchers will
follow this fruitful path of mixing our sub-disciplines

» Quoting one of my favourite colleagues at LPSM: "We are all
probabilists" and | would add "we also are all statisticians".

Thank you !

And if you have questions, Dasha & Oleg will be happy to answer
them ;)
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Three examples



Examples of environment distributions |

Example 1: Finite and known support
> Fix a1 < az € (0,1) and let v, = pdg, + (1 — p)da,, where &,
is the Dirac mass located at value a.
» Unknown parameter p € © C (0,1) (namely 6 = p)
» Assume that a1, as and © are such that the process is
transient and ballistic.
Then, the assumptions are satisfied and one can estimate p
consistently and efficiently.
» May be generalised to k > 2 fixed and known support points
and 0 = (p1,...,px—1)



Examples of environment distributions

Example 2: Two unknown support points (Temkin's model)

» vy = pdg, + (1 — p)da, and unknown parameter
0 = (p,a1,az) € ©, where O is a compact subset of

(O, 1) X {(al,ag) S (0, 1)2 rag < CLQ}

such that the process is transient and ballistic.

Then, the assumptions are satisfied and one can estimate 6
consistently. Moreover, if Ee(pg) < 1, the MLE estimator is
asymptotically normal and efficient.



Examples of environment distributions Il

Example 3: Beta distribution
» dv(a) = ﬁaa_l(l —a)?~da,

» Unknown parameter § = (a, ) € © where © is a compact
subset of

{(a, 8) € (0,+00)* : a > f+1}.
> As E%(py) = 3/(a — 1), the constraint o > 3+ 1 ensures that
the process is transient and ballistic.

Then, the assumptions are satisfied and one can estimate 6
consistently and efficiently.



Outline

Simulations



Simulations protocol

» Three models corresponding to the previous 3 examples, with
0* as in Table 1.
» In each model, 1,000 repeats of the following procedure
» Generate a random environment according to distribution g«
on the set of sites {—10%,...,10%}.
» Run a random walk in this environment and stop it successively
at the hitting times 7T},, with n € {103k;1 < k < 10}.
» For each value of n,
> Estimate 8" with MLE and [Adelman & Enriquez (04)]'s
procedure

» Estimate the Fisher information matrix ¢« and compute a
confidence interval for 6*

Simulation Fixed parameter Estimated parameter
Example 1 | (a1, az2) = (0.4,0.7) p*=0.3
Example 2 - (a},a5,p*) = (0.4,0.7,0.3)
Example 3 - (a*, 5*) = (5,1)

Table: Parameter values for each experiment.



Lengths of the walks
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Figure: Histograms of the hitting times T}, for values n equal to 1 000
(white), 5 000 (grey) and 10 000 (hatched). Top panel: Example 1;
middle panel: Example 2; bottom panel: Example 3.



Boxplots of MLE (white) and [Adelman & Enriquez (04)]'s
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Boxplots of MLE - Ex

% 013 M o o

0 8 wmoomooow

[V I I ']

.2 (]37 &17d2)

i : )
v i ‘ * + E kS - s
= =] =] =i =2 = = s =
s : T I I 1 B i i *
i .
: i N
‘ i T t i T + £ i i
H B8 B 2 =52 85 = = = =
i | £ - - + + + - +
i : .
F I S T A S S S SR
H 8 8 8 B 8 8 25 = =
T i ; i L < + - + +

o wao




Estimation of the Fisher information matrix - Ex 1
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Figure: Boxplot of the estimator 3,, obtained from 1000 iterations and
for values n ranging in {103k : 1 < k < 10} in the case of Ex. 1.



Estimation of the Fisher information matrix - Ex 2
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Figure: Boxplots of the values of the matrix ¥,, obtained from 1000
iterations and for values n ranging in {103k : 1 < k < 10} in the case of
Ex. 2. The parameter is ordered as 0 = (61,0,03) = (p, a1, az) and the
figure displays the values: 3,(1,1); 2,(2,2); £.(3,3); 2n(1,2); S,(1, 3)
and 3,,(2,3), from left to right and top to bottom.



Estimation of the Fisher information matrix - Ex 3
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Figure: Boxplots of the values of the matrix ¥,, obtained from 1000
iterations and for values n ranging in {103k : 1 < k < 10} in the case of
Ex. 3. The parameter is ordered as 8 = (61, 62) = («, 8) and the figure
displays the values: 3,,(1,1);%,(2,2) and £,(1,2), from left to right.



Empirical coverages of confidence regions

Ex. 1 Ex. 2 Ex. 3

n 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
1000 | 0.994 0.952 0.899 | 0.992 0.953 0.909 | 0.977 0.942 0.901
2000 | 0.989 0.952 0.903 | 0.994 0.953 0.910 | 0.978 0.928 0.884
3000 | 0.988 0.942 0901 | 0.990 0.938 0.886 | 0.981 0.940 0.889
4000 | 0.991 0.944 0.896 | 0.991 0.951 0.894 | 0.988 0.945 0.900
5000 | 0.990 0.942 0.896 | 0.993 0.942 0.891 | 0.986 0.941 0.883
6000 | 0.983 0.948 0.901 | 0.987 0.951 0.888 | 0.988 0.937 0.897
7000 | 0.986 0.950 0.900 | 0.992 0.951 0.900 | 0.986 0.942 0.898
8000 | 0.987 0.956 0.898 | 0.988 0.950 0.903 | 0.981 0.946 0.903
9000 | 0.990 0.959 0913 | 0.990 0.949 0.893 | 0.985 0.939 0.901
10000 | 0.987 0.954 0.908 | 0.990 0.949 0.899 | 0.983 0.944 0.892

Table: Empirical coverages of (1 — «) asymptotic level confidence regions,

for v € {0.01,0.05,0.1} and relying on 1000 iterations.




Conclusions from the simulations

» Good performances of @L on simulated data

» Unbiased estimator (like [Adelman & Enriquez (04)]'s one)
» Less spread out than [Adelman & Enriquez (04)]'s one (in fact

efficient)
> Easier to compute (Ex. 2 [Adelman & Enriquez (04)]'s

estimate is out of reach)
» Confidence regions build from 6,, have accurate empirical

coverage.
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