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When and where it all started

Nearest-neighbour one-dimensional random walk in random
environment

Estimator’s construction and link with a branching process with
immigration in random environment (BPIRE)



More than 10 years ago, in Évry...
MAMAs (marches aléatoires en milieu aléatoire) met Statistics

▶ Francis was a driving force to
bridge the gap between probability
and statistics

▶ In the context of MAMAs, only the
work of [Adelman & Enriquez (04)]
touched on this issue

▶ We started as an initial group of 5
authors . . .



Biophysical context for Statistics in MAMAs: DNA
unzipping

▶ MAMA’s introduced by [Chernov(67)] to model DNA
replication

▶ By the end of 90’s, various DNA unzipping experiments
appeared
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Fig. 1. DNA unzipping.

In the DNA unzipping experiment as sketched in Fig. 1, two complementary strands of a DNA
molecule are pulled apart at a constant force, which is chosen in such a way that the molecule
can be totally unzipped. However it is also not too strong so that naturally the molecule rebuilds
itself. Therefore there is a back-and-forth movement of the fork of the molecule (the boundary
between the paired and unpaired regions on the molecules) resulting in a variation of the number
of open base pairs. The mathematical modeling of this experiment, carried out in [6,5,9], reveals
that the number Xt of base pairs opened at time t obeys a nearest neighbor RWRE on Z+, where
the random environment !x in the site x 2 Z+ is the probability for the x th base to be opened.
The authors derive the expression of the one-step transition probability !x in terms of the binding
energies gx

0 of the pair bx , the work of the force g1( f ) when unzipping an extra pair and of the
temperature 1

� :

!x =
1

1 + exp(�(gx
0 � g1( f )))

. (2)

The binding energy gx
0 depends on the type (A � T or G � C) of the pair bx and hence the

law of !x has two point support. In this precise example, the estimation of the support gives the
binding energies for fixed temperature and force, and the estimation of the support mass gives
the proportion of A � T or C � G bases.

1.3. Overview of the results

The behavior of the process X is related to the ratio sequence

⇢x =
1 � !x

!x
, x 2 Z+, (3)

and we refer to [20] for the classification of X between transient or recurrent cases according
to whether E✓ (log ⇢0) is different or not from zero. The transient case may be further split
into two sub-cases, called ballistic and sub-ballistic that correspond to a linear and a sub-linear
displacement for the walk, respectively.

Comets et al. [10] introduced a maximum likelihood estimator (MLE) of the parameter ✓

in the transient ballistic case, establishes the consistency of MLE while asymptotic normality
together with asymptotic efficiency is investigated in [12]. Falconnet et al. provided a necessary
modification of the above criterion in order to obtain a well-designed limiting function in the
sub-ballistic case. The case of Markov environment was considered in [4]. In all these works, the
results rely on the branching structure of the sequence of the number of left steps performed by

Goals
▶ DNA sequencing (exploratory),
▶ Study the structural properties of the molecule.
▶ . . .



Statistics for MAMAs
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Model description I

Random environment on Z
▶ ω = {ωx}x∈Z i.i.d. with ωx ∈ (0, 1) and ωx ∼ ν,
▶ ν ∈ M a class of distributions on (0, 1)

▶ Pν = ν⊗Z law on (0, 1)Z of ω and Eν expectation,

Markov process conditional on the environment
For fixed ω, let X = {Xt}t∈N be the Markov chain on Z starting at
X0 = 0 and with transitions

Pω(Xt+1 = y|Xt = x) =


ωx if y = x+ 1,
1− ωx if y = x− 1,
0 otherwise.

Pω is the measure on the path space of X given ω (quenched law)
and Eω corresponding expectation.



Model description II

Random walk in random environment (MAMA)
The (unconditional) law of X is the annealed law

P(·) =
∫

Pω(·)dPν(ω),

with E for the corresponding expectation.

Note that X is not a Markov process.



Limiting behaviour of X
Let

ρx =
1− ωx

ωx
, x ∈ Z.

[Solomon(75)] proved the classification:
(a) Recurrent case: If Eν(log ρ0) = 0, then

−∞ = lim inf
t→∞

Xt < lim sup
t→∞

Xt = +∞, P-almost surely.

(b) Transient case: if Eν(log ρ0) < 0, then

lim
t→∞

Xt = +∞, P-almost surely.

If we moreover let Tn = inf{t ∈ N : Xt = n}, then
(b1) Ballistic case: if Eν(ρ0) < 1, then, P-almost surely, Tn/n → c,

P-a.s.
(b2) Sub-ballistic case: If Eν(ρ0) ≥ 1, then Tn/n → +∞

P-almost surely, when n → ∞



Statistical estimation of the law of the environment
Goal and context
▶ Goal: Estimate the distribution ν relying on the observation of

a trajectory X[0,Tn].
▶ In a much more general setting, [Adelman & Enriquez (04)]

provide a link between the MAMA and the environment,
leading to moment estimators for the distribution ν.

▶ Drawback of [Adelman & Enriquez (04)]: In a parametric
setting, estimate some moments first and then invert a
function to recover the parameters θ. May induce a loss of
efficiency.

▶ In a series of papers, Francis and his co-authors have focused
on maximum likelihood estimation (MLE).

▶ Later, a similar (to [Adelman & Enriquez (04)]) moment
approach has been successfully used to estimate the law of the
environment in a non-parametric setting
[Diel & Lerasle(18), Havet et al.(19)].
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Estimator’s construction I

Recall that Tn = inf{t ∈ N : Xt = n}. We let

Ln
x :=

Tn−1∑
s=0

1{(Xs, Xs+1) = (x, x− 1)}

and Rn
x :=

∑Tn−1
s=0 1{(Xs, Xs+1) = (x, x+ 1)}, the number of left

steps (resp. right steps) from site x. Then,

Pω(X[0,Tn]) =
∏
x∈Z

ωRn
x

x (1− ωx)
Ln
x

and P(X[0,Tn]) =
∏
x∈Z

∫ 1

0
aR

n
x (1− a)L

n
xdν(a).

Note that
▶ Only the visited sites contribute in this product.



Estimator’s construction II

▶ Moreover, Ln
n = 0 and

Rn
x =

{
Ln
x+1 if x < 0

Ln
x+1 + 1 if x ∈ [0, n− 1]

Hence, the likelihood function ν 7→ ℓn(ν) is defined as

ℓn(ν) =
∑

x≤n−1

log

∫ 1

0
aL

n
x+1+1{x≥0}(1− a)L

n
xdν(a).

(the sequence (Ln
x)x≤n is an exhaustive stat).



Underlying BPIRE

From [Kesten et al.(75)], under the annealed law P, the sequence
Ln
n, L

n
n−1, . . . , L

n
0 has the same distribution as a BPIRE denoted

Z0, . . . , Zn, and defined by

Z0 = 0, and for k = 0, . . . , n− 1, Zk+1 =

Zk∑
i=0

ξ′k+1,i,

with {ξ′k,i}k∈N∗;i∈N independent and

∀m ∈ N, Pω(ξ
′
k,i = m) = (1− ωk)

mωk,

Under annealed law P, {Zn}n∈N is a homogeneous Markov chain
with transition kernel

Qν(x, y) =

(
x+ y

x

)∫ 1

0
ax+1(1− a)ydν(a).



Back to the estimators I

Parametric setting: MLE
In a parametric setting, ν = νθ and we have an equality in
P-distribution (for some explicit function ϕθ)

ℓn(νθ)
dist.
=

∑
k≤n−1

ϕθ(Zk, Zk+1)

Then we let θ̂n ∈ Argmaxθ∈Θ ℓn(νθ) and the right-hand side is the
likelihood of
▶ a Markov chain (when environment is iid)
▶ a hidden Markov chain (HMM, when environment is Markov)



Back to the estimators II

Challenges in the parametric setting: transient case
In the transient regime, the chain is positive recurrent aperiodic
with unique stationary distribution πν characterized by
πν(k) = Eν [S(1− S)k], where

S := (1 + ρ1 + ρ1ρ2 + · · ·+ ρ1 . . . ρn + . . . )−1 ∈ (0, 1).

Tools:
▶ LLN for n−1

∑
k h(Zk, Zk+1)

▶ TCL for n−1/2
∑

k h(Zk, Zk+1)− E[h(Zk, Zk+1)|Fk−1]



Back to the estimators III

Challenges in the parametric setting: recurrent case
In the recurrent regime, BPIRE explodes and is useless. What can
we do instead?
▶ [Comets et al.(16)] restrict to ν with finite unknown support,

things can be written explicitely. Assume ν(·) =
∑d

i=1 piδai(·).
Now the parameter is (ai, pi)1≤i≤d

▶ Consistency relies on Sinai’s localisation of the walk in the
infinite valley [Sinai(83)] and result of [Gantert et al.(10)]
about the convergence of centered (with respect to the
bottom of the valley) local times.

▶ AN requires limit theorems for normalised functionals of the
type

∑n
t=1 f(wXt , Xt+1 −Xt). Here wXt is the zero

coordinate of the environment seen from the particle.



Back to the estimators IV

Non parametric setting: moment estimator
[Diel & Lerasle(18)] estimate the moment quantity

mα,β =

∫ 1

0
aα(1− a)βdν(a) = Eν [ω

α
0 (1− ω0)

1−β],

through its empirical counterpart (for some explicit function hα,β),

m̂α,β
n =

n∑
k=1

hα,β(Zk, Zk+1).

(recurrent or transient to the right cases). This is later used to
construct an estimator of the cdf of ν [Diel & Lerasle(18)] and of
its density [Havet et al.(19)].



Back to the estimators V

Challenges in non parametric setting
▶ Cdf and density of ν can be consistently estimated from the

above moments, indifferently in recurrent or right-transient
case. Rates of convergence are provided.

▶ Tool: Concentration inequalities for
∑n

k=1 h(Zk, Zk+1)

▶ However no minimax rate is known in this context: are those
rates of convergence optimal?



Some remaining challenges

▶ In the parametric, transient, sub-ballistic case, under Temkin’s
model (finite and unknown support of size 2) Fisher’s
information is infinite. Actual rate of convergence of MLE
might be faster than 1/

√
n;

▶ In the recurrent and parametric case
▶ prove AN of MLE when ν has finite support, (preliminary

results by Comets, Loukianova, Loukianov)
▶ build a MLE when ν is absolutely continuous;

▶ In the Markov environment case, [Andreoletti et al.(15)]
worked under a (technical) assumption that ν is reversible: go
beyond that;

▶ In the non parametric setting, what are the minimax rates of
convergence? And can they be achieved?



My personal recordings on this tremendous time
▶ Francis has been a driving force in the development of

statistical results for estimating the environment law of a
MAMA;

▶ Our group meetings mixing probabilists and statisticians were
enriching for all of us as well as for our disciplines;

▶ Following Francis heritage, we hope many researchers will
follow this fruitful path of mixing our sub-disciplines

▶ Quoting one of my favourite colleagues at LPSM: "We are all
probabilists" and I would add "we also are all statisticians".

Thank you !

And if you have questions, Dasha & Oleg will be happy to answer
them ;)
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Examples of environment distributions I

Example 1: Finite and known support
▶ Fix a1 < a2 ∈ (0, 1) and let νp = pδa1 + (1− p)δa2 , where δa

is the Dirac mass located at value a.
▶ Unknown parameter p ∈ Θ ⊂ (0, 1) (namely θ = p)
▶ Assume that a1, a2 and Θ are such that the process is

transient and ballistic.
Then, the assumptions are satisfied and one can estimate p
consistently and efficiently.
▶ May be generalised to k > 2 fixed and known support points

and θ = (p1, . . . , pK−1).



Examples of environment distributions II

Example 2: Two unknown support points (Temkin’s model)
▶ νθ = pδa1 + (1− p)δa2 and unknown parameter

θ = (p, a1, a2) ∈ Θ, where Θ is a compact subset of

(0, 1)× {(a1, a2) ∈ (0, 1)2 : a1 < a2}

such that the process is transient and ballistic.
Then, the assumptions are satisfied and one can estimate θ
consistently. Moreover, if Eθ(ρ30) < 1, the MLE estimator is
asymptotically normal and efficient.



Examples of environment distributions III

Example 3: Beta distribution
▶ dν(a) = 1

B(α,β)a
α−1(1− a)β−1da,

▶ Unknown parameter θ = (α, β) ∈ Θ where Θ is a compact
subset of

{(α, β) ∈ (0,+∞)2 : α > β + 1}.

▶ As Eθ(ρ0) = β/(α− 1), the constraint α > β + 1 ensures that
the process is transient and ballistic.

Then, the assumptions are satisfied and one can estimate θ
consistently and efficiently.
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Simulations protocol
▶ Three models corresponding to the previous 3 examples, with

θ⋆ as in Table 1.
▶ In each model, 1, 000 repeats of the following procedure

▶ Generate a random environment according to distribution νθ⋆

on the set of sites {−104, . . . , 104}.
▶ Run a random walk in this environment and stop it successively

at the hitting times Tn, with n ∈ {103k; 1 ≤ k ≤ 10}.
▶ For each value of n,

▶ Estimate θ⋆ with MLE and [Adelman & Enriquez (04)]’s
procedure

▶ Estimate the Fisher information matrix Σθ⋆ and compute a
confidence interval for θ⋆

Simulation Fixed parameter Estimated parameter
Example 1 (a1, a2) = (0.4, 0.7) p⋆ = 0.3

Example 2 - (a⋆1, a
⋆
2, p

⋆) = (0.4, 0.7, 0.3)

Example 3 - (α⋆, β⋆) = (5, 1)

Table: Parameter values for each experiment.



Lengths of the walks
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Figure: Histograms of the hitting times Tn for values n equal to 1 000
(white), 5 000 (grey) and 10 000 (hatched). Top panel: Example 1;
middle panel: Example 2; bottom panel: Example 3.



Boxplots of MLE (white) and [Adelman & Enriquez (04)]’s
estimate (grey) - Ex. 1 (p̂) and 3 (α̂, β̂)
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Boxplots of MLE - Ex. 2 (p̂, â1, â2)
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Estimation of the Fisher information matrix - Ex 1
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Figure: Boxplot of the estimator Σ̂n obtained from 1000 iterations and
for values n ranging in {103k : 1 ≤ k ≤ 10} in the case of Ex. 1.



Estimation of the Fisher information matrix - Ex 2
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Figure: Boxplots of the values of the matrix Σ̂n obtained from 1000
iterations and for values n ranging in {103k : 1 ≤ k ≤ 10} in the case of
Ex. 2. The parameter is ordered as θ = (θ1, θ2, θ3) = (p, a1, a2) and the
figure displays the values: Σ̂n(1, 1); Σ̂n(2, 2); Σ̂n(3, 3); Σ̂n(1, 2); Σ̂n(1, 3)
and Σ̂n(2, 3), from left to right and top to bottom.



Estimation of the Fisher information matrix - Ex 3
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Figure: Boxplots of the values of the matrix Σ̂n obtained from 1000
iterations and for values n ranging in {103k : 1 ≤ k ≤ 10} in the case of
Ex. 3. The parameter is ordered as θ = (θ1, θ2) = (α, β) and the figure
displays the values: Σ̂n(1, 1); Σ̂n(2, 2) and Σ̂n(1, 2), from left to right.



Empirical coverages of confidence regions

Ex. 1 Ex. 2 Ex. 3
n 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

1000 0.994 0.952 0.899 0.992 0.953 0.909 0.977 0.942 0.901
2000 0.989 0.952 0.903 0.994 0.953 0.910 0.978 0.928 0.884
3000 0.988 0.942 0.901 0.990 0.938 0.886 0.981 0.940 0.889
4000 0.991 0.944 0.896 0.991 0.951 0.894 0.988 0.945 0.900
5000 0.990 0.942 0.896 0.993 0.942 0.891 0.986 0.941 0.883
6000 0.983 0.948 0.901 0.987 0.951 0.888 0.988 0.937 0.897
7000 0.986 0.950 0.900 0.992 0.951 0.900 0.986 0.942 0.898
8000 0.987 0.956 0.898 0.988 0.950 0.903 0.981 0.946 0.903
9000 0.990 0.959 0.913 0.990 0.949 0.893 0.985 0.939 0.901
10000 0.987 0.954 0.908 0.990 0.949 0.899 0.983 0.944 0.892

Table: Empirical coverages of (1− γ) asymptotic level confidence regions,
for γ ∈ {0.01, 0.05, 0.1} and relying on 1000 iterations.



Conclusions from the simulations

▶ Good performances of θ̂n on simulated data
▶ Unbiased estimator (like [Adelman & Enriquez (04)]’s one)
▶ Less spread out than [Adelman & Enriquez (04)]’s one (in fact

efficient)
▶ Easier to compute (Ex. 2 [Adelman & Enriquez (04)]’s

estimate is out of reach)

▶ Confidence regions build from θ̂n have accurate empirical
coverage.
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