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Abstract—We consider a one-dimensional ballistic random walk evolving in a parametric inde-
pendent and identically distributed random environment. We study the asymptotic properties of the
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it reaches a distant site. We prove asymptotic normality for this consistent estimator as the distant
site tends to infinity and establish that it achieves the Cramér–Rao bound. We also explore in a
simulation setting the numerical behavior of asymptotic confidence regions for the parameter value.
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1. INTRODUCTION

Random walks in random environments (RWRE) are stochastic models that allow two kinds of
uncertainty in physical systems: the first one is due to the heterogeneity of the environment, and the
second one to the evolution of a particle in a given environment. The first studies of one-dimensional
RWRE were done by Chernov (1967) with a model of DNA replication and by Temkin (1972) in the field
of metallurgy. From the latter work, the random media literature inherited some famous terminology
such as annealed or quenched law. The limiting behavior of the particle in Temkin’s model was
successively investigated by Kozlov (1973), Solomon (1975) and Kesten, Kozlov, and Spitzer (1975).
Since these pioneer works on one-dimensional RWRE the related literature in physics and probability
theory has become richer and source of fine probabilistic results that the reader may find in recent surveys
including Hughes (1996) and Zeitouni (2004).

The present paper deals with the one-dimensional RWRE where we investigate a different kind of
question than the limiting behavior of the walk. We adopt a statistical point of view and are interested
in inferring the distribution of the environment given the observation of a long trajectory of the random
walk. This kind of questions has already been studied in the context of random walks in random colorings
of Z (Benjamini and Kesten 1996, Matzinger 1999, Löwe and Matzinger 2002) as well as in the context
of RWRE for a characterization of the environment distribution (Adelman and Enriquez 2004, Comets et
al. 2014). Whereas Adelman and Enriquez deal with very general RWRE and present a procedure to infer
the environment distribution through a system of moment equations, Comets et al. provide a maximum
likelihood estimator (MLE) of the parameter of the environment distribution in the specific case of a
transient ballistic one-dimensional nearest neighbor path. In the latter work, the authors establish the
consistency of their estimator and provide synthetic experiments to assess its effective performance. It
turns out that this estimator exhibits a much smaller variance than the one of Adelman and Enriquez. We
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2 FALCONNET et al.

propose to establish what the numerical investigations of Comets et al. suggested, that is, the asymptotic
normality of the MLE as well as its asymptotic efficiency (namely, that it asymptotically achieves the
Cramér–Rao bound).

This paper is organized as follows. In Section 2.2.1, we introduce the framework of the one-
dimensional ballistic random walk in an independent and identically distributed (i.i.d.) parametric
environment. In Section 2.2.2, we present the MLE procedure developed by Comets et al. to infer
the parameter of the environment distribution. Section 2.2.3 recalls some already known results on
an underlying branching process in a random environment related to the RWRE. Then, we state in
Section 2.2.5 our asymptotic normality result in the wake of additional hypotheses required to prove
it and listed in Section 2.2.4. In Section 3, we present three examples of environment distributions
which have been already introduced in Comets et al. (2014), and we check that the additional required
assumptions of Section 2.2.4 are fulfilled, so that the MLE is asymptotically normal and efficient in
these cases. The proof of the asymptotic normality result is presented in Section 4. We apply to the score
vector sequence a central limit theorem for centered square-integrable martingales (Section 4.4.1) and
we adapt to our context an asymptotic normality result for M-estimators (Section 4.4.3). To conclude
this part, we provide in Section 4.4.4 the proof of a sufficient condition for nondegeneracy of the Fisher
information. Finally, Section 5 illustrates our results on synthetic data by exploring empirical coverages
of asymptotic confidence regions.

2. MATERIAL AND RESULTS

2.1. Properties of a Transient Random Walk in a Random Environment

Let us introduce a one-dimensional random walk (more precisely a nearest neighbor path) evolving in
a random environment (RWRE for short) and recall its elementary properties. We start by considering
the environment defined through the collection ω = (ωx)x∈Z ∈ (0, 1)Z of i.i.d. random variables with
parametric distribution ν = νθ, which depends on some unknown parameter θ ∈ Θ. We further assume
that Θ ⊂ R

d is a compact set. We let P
θ = ν⊗Z

θ be the law on (0, 1)Z of the environment ω and E
θ be the

corresponding expectation.

Now, for fixed environment ω, let X = (Xt)t∈Z+ be the Markov chain on Z starting at X0 = 0 and
with (conditional) transition probabilities

Pω(Xt+1 = y | Xt = x) =

⎧
⎪⎨

⎪⎩

ωx if y = x + 1,
1 − ωx if y = x − 1,
0 otherwise.

The quenched distribution Pω is the conditional measure on the path space of X given ω. Moreover, the
annealed distribution of X is given by

Pθ(·) =
∫

Pω(·) dP
θ(ω).

We write Eω and Eθ for the corresponding quenched and annealed expectations, respectively. In the
following, we assume that the process X is generated under the true parameter value θ�, an interior
point of the parameter space Θ, which we aim at estimating. We shorten to P� and E� (resp. P

� and E
�)

the annealed probability Pθ�
and its corresponding expectation Eθ�

(resp. the law of the environment
P

θ�
and its corresponding expectation E

θ�
) under parameter value θ�.

The behavior of the process X is related to the ratio sequence

ρx =
1 − ωx

ωx
, x ∈ Z. (1)

We refer to Solomon (1975) for the classification of X between transient or recurrent cases according to
whether or not E

θ(log ρ0) is different from zero (the classification is also recalled in Comets et al. 2014).
In our setup, we consider a transient process and without loss of generality assume that it is transient
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ASYMPTOTIC NORMALITY OF THE MLE FOR BALLISTIC RWRE 3

to the right, thus corresponding to E
θ(log ρ0) < 0. The transient case may be further split into two sub-

cases, called ballistic and sub-ballistic that correspond to a linear and sub-linear speed for the walk
respectively. More precisely, letting Tn be the first hitting time of a positive integer n,

Tn = inf{t ∈ Z+ : Xt = n}, (2)

and assuming E
θ(log ρ0) < 0 throughout, we can distinguish the following cases:

(a1) (Ballistic.) If E
θ(ρ0) < 1, then, Pθ-almost surely,

Tn

n
−−−→
n→∞

1 + E
θ(ρ0)

1 − Eθ(ρ0)
. (3)

(a2) (Sub-ballistic.) If E
θ(ρ0) ≥ 1, then Tn/n → +∞, Pθ-almost surely as n tends to infinity.

Moreover, the fluctuations of Tn depend in nature on a parameter κ ∈ (0,∞], which is defined as the
unique positive solution of

E
θ(ρκ

0) = 1

when such a number exists, and κ = +∞ otherwise. The ballistic case corresponds to κ > 1. Under mild
additional assumptions, Kesten, Kozlov and Spitzer (1975) proved that

(aI) if κ ≥ 2, then Tn has Gaussian fluctuations. Precisely, if c denotes the limit in (3), then n−1/2(Tn −
nc) when κ > 2 and (n log n)−1/2(Tn − nc) when κ = 2 have a nondegenerate Gaussian limit.

(aII) if κ < 2, then n−1/κ(Tn − dn) has a nondegenerate limit distribution, which is a stable law with
index κ.
The centering is dn = 0 for κ < 1, dn = an log n for κ = 1, and dn = an for κ ∈ (1, 2), for some
positive constant a.

2.2. A Consistent Estimator

We briefly recall the definition of the estimator proposed in Comets et al. (2014) to infer the
parameter θ when we observe X[0,Tn] = (Xt : t = 0, 1, . . . , Tn) for some value n ≥ 1. It is defined as
the maximizer of some well-chosen criterion function, which roughly corresponds to the log-likelihood
of the observations.

We start by introducing the statistics (Ln
x)x∈Z defined as

Ln
x :=

Tn−1∑

s=0

1{Xs=x; Xs+1=x−1},

namely, Ln
x is the number of left steps of the process X[0,Tn] from site x. Here, 1{·} denotes the indicator

function.

Definition 2.1. Let φθ be the function from Z
2
+ to R given by

φθ(x, y) = log
∫ 1

0
ax+1(1 − a)y dνθ(a). (4)

The criterion function θ �→ �n(θ) is defined as

�n(θ) =
n−1∑

x=0

φθ(Ln
x+1, L

n
x). (5)
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We now recall the assumptions stated in Comets et al. (2014) ensuring that the maximizer of
criterion �n is a consistent estimator of the unknown parameter.

Assumption I. (Consistency conditions.)

(i) (Transience to the right.) For any θ ∈ Θ, E
θ| log ρ0| < ∞ and E

θ(log ρ0) < 0.

(ii) (Ballistic case.) For any θ ∈ Θ, E
θ(ρ0) < 1.

(iii) (Continuity.) For any (x, y) ∈ Z
2
+, the map θ �→ φθ(x, y) is continuous on the parameter set

Θ.

(iv) (Identifiability.) For any (θ, θ′) ∈ Θ2, νθ �= νθ′ ⇐⇒ θ �= θ′.

(v) The collection of probability measures {νθ : θ ∈ Θ} is such that

inf
θ∈Θ

E
θ[log(1 − ω0)] > −∞.

According to Assumption I (iii), the function θ �→ �n(θ) is continuous on the compact parameter
set Θ. Thus it achieves its maximum, and the estimator θ̂n is defined as one maximizer of this criterion.

Definition 2.2. An estimator θ̂n of θ is defined as a measurable choice

θ̂n ∈ argmax
θ∈Θ

�n(θ). (6)

Note that θ̂n is not necessarily unique. As explained in Comets et al. (2014), with a slight abuse of
notation, θ̂n may be considered as MLE. Moreover, under Assumption I, Comets et al. (2014) establish
its consistency, namely, its convergence in P�-probability to the true parameter value θ�.

2.3. The Role of an Underlying Branching Process

We introduce in this section an underlying branching process with immigration in random envi-
ronment (BPIRE) that is naturally related to the RWRE. Indeed, it is well known that for an i.i.d.
environment, under the annealed law P�, the sequence Ln

n, Ln
n−1, . . . , L

n
0 has the same distribution as a

BPIRE denoted Z0, . . . , Zn and defined by

Z0 = 0, and for k = 0, . . . , n − 1, Zk+1 =
Zk∑

i=0

ξ′k+1,i (7)

with (ξ′k,i)k∈N;i∈Z+ independent and

∀m ∈ Z+, Pω(ξ′k,i = m) = (1 − ωk)mωk

(see, for instance, Kesten, Kozlov and Spitzer 1975, Comets et al. 2014). Let us introduce through the
function φθ defined by (4) the transition kernel Qθ on Z

2
+ defined as

Qθ(x, y) =
(

x + y

x

)

eφθ(x,y) =
(

x + y

x

)∫ 1

0
ax+1(1 − a)y dνθ(a). (8)

Then for each value θ ∈ Θ, under the annealed law Pθ the BPIRE (Zn)n∈Z+ is an irreducible positive
recurrent homogeneous Markov chain with transition kernel Qθ and a unique stationary probability
distribution denoted by πθ. Moreover, the moments of πθ may be characterized through the distribution
of the ratios (ρx)x∈Z. The following statement is a direct consequence from the proof of Theorem 4.5 in
Comets et al. (2014) (see Eq. (16) in this proof).
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Proposition 2.3 (Theorem 4.5 in Comets et al. 2014). The invariant probability measure πθ is
positive on Z+ and satisfies

∀j ≥ 0,
∑

k≥j+1

k(k − 1) . . . (k − j)πθ(k) = (j + 1)! E
θ
[( ∑

n≥1

n∏

k=1

ρk

)j+1]
.

In particular, πθ has a finite first moment in the ballistic case.

Note that the criterion �n satisfies the following property:

�n(θ) ∼
n−1∑

k=0

φθ(Zk, Zk+1) under P�, (9)

where ∼ means equality in distribution. For each value θ ∈ Θ, under annealed law Pθ the process
((Zn, Zn+1))n∈Z+ is also an irreducible positive recurrent homogeneous Markov chain with a unique
stationary probability distribution denoted by π̃θ and defined as

π̃θ(x, y) = πθ(x)Qθ(x, y), ∀(x, y) ∈ Z
2
+. (10)

For any function g : Z
2
+ → R such that

∑
x,y π̃θ(x, y)|g(x, y)| < ∞, we denote by π̃θ(g) the quantity

π̃θ(g) =
∑

(x,y)∈Z2
+

π̃θ(x, y)g(x, y). (11)

We extend the notation above for any function g = (g1, . . . , gd) : Z
2
+ → R

d such that π̃θ(‖g‖) < ∞,
where ‖ · ‖ is the uniform norm, and denote by π̃θ(g) the vector (π̃θ(g1), . . . , π̃θ(gd)). The following
ergodic theorem is valid.

Proposition 2.4 (Theorem 4.2 in Chapter 4 from Revuz 1984). Under Assumption I (i), for any
function g : Z

2
+ → R

d such that π̃θ(‖g‖) < ∞ the following ergodic theorem holds:

lim
n→∞

1
n

n−1∑

k=0

g(Zk, Zk+1) = π̃θ(g),

Pθ-almost surely and in L
1(Pθ).

2.4. Assumptions for Asymptotic Normality

Assumption I is required for the construction of a consistent estimator of the parameter θ. It mainly
consists in a transient random walk with linear speed (ballistic regime) plus some regularity assumptions
on the model with respect to θ ∈ Θ. Now, asymptotic normality result for this estimator requires
additional hypotheses.

In the following, for any function gθ depending on the parameter θ, the symbols ġθ or ∂θgθ and g̈θ

or ∂2
θgθ denote the (column) gradient vector and Hessian matrix with respect to θ, respectively.

Moreover, Y ᵀ is the row vector obtained by transposing the column vector Y .

Assumption II. (Differentiability.) The collection of probability measures {νθ : θ ∈ Θ} is such that
for any (x, y) ∈ Z

2
+, the map θ �→ φθ(x, y) is twice continuously differentiable on Θ.

Assumption III. (Regularity conditions.) For any θ ∈ Θ, there exists some q > 1 such that

π̃θ

(
‖φ̇θ‖2q

)
< +∞. (12)

For any x ∈ Z+,
∑

y∈Z+

Q̇θ(x, y) = ∂θ

∑

y∈Z+

Qθ(x, y) = 0. (13)
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Assumption IV. (Uniform conditions.) For any θ ∈ Θ, there exists some neighborhood V(θ) of θ
such that

π̃θ

(
sup

θ′∈V(θ)
‖φ̇θ′‖2

)
< +∞ and π̃θ

(
sup

θ′∈V(θ)
‖φ̈θ′‖

)
< +∞. (14)

Assumptions II and III are technical and involved in the proof of a central limit theorem (CLT) for the
gradient vector of the criterion �n, also called score vector sequence. Assumption IV is also technical
and involved in the proof of asymptotic normality of θ̂n from the latter CLT. Note that Assumption III
also allows us to define the matrix

Σθ = π̃θ

(
φ̇θ φ̇ᵀ

θ

)
. (15)

Combining definitions (8), (10), (11) and (15) with Assumption III, we obtain the equivalent expression
for Σθ

Σθ =
∑

x∈Z+

∑

y∈Z+

πθ(x)
1

Qθ(x, y)
Q̇θ(x, y)Q̇θ(x, y)ᵀ

= −
∑

x∈Z+

∑

y∈Z+

πθ(x)
(
Q̈θ(x, y) − 1

Qθ(x, y)
Q̇θ(x, y)Q̇θ(x, y)ᵀ

)

= −π̃θ(φ̈θ). (16)

Assumption V. (Fisher information matrix.) For any value θ ∈ Θ, the matrix Σθ is nonsingular.

Assumption V states invertibility of the Fisher information matrix Σθ� . This assumption is necessary
to prove asymptotic normality of θ̂n from the previously mentioned CLT on the score vector sequence.

2.5. Results

Theorem 2.5. Under Assumptions I–III, the score vector sequence �̇n(θ�)/
√

n is asymptotically
normal with mean zero and finite covariance matrix Σθ� .

Theorem 2.6. (Asymptotic normality.) Under Assumptions 1–V, for any choice of θ̂n satisfy-
ing (6), the sequence {

√
n(θ̂n − θ�)}n∈Z+ converges in P�-distribution to a centered Gaussian

random vector with covariance matrix Σ−1
θ� .

Note that the limiting covariance matrix of
√

nθ̂n is exactly the inverse Fisher information matrix
of the model. As such, our estimator is efficient. Moreover, the previous theorem may be used to build
asymptotic confidence regions for θ, as illustrated in Section 5. Proposition 2.7 below explains how to
estimate the Fisher information matrix Σθ� . Indeed, Σθ� is defined via the invariant distribution π̃θ� ,
which possesses no analytical expression. To bypass the problem, we rely on the observed Fisher
information matrix as an estimator of Σθ� .

Proposition 2.7. Under Assumptions I–V, the observed information matrix

Σ̂n = − 1
n

n−1∑

x=0

φ̈
θ̂n

(Ln
x+1, L

n
x) (17)

converges in P�-probability to Σθ� .
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Remark 2.8. We observe that the fluctuations of the estimator θ̂n are unrelated to those of Tn or those
of Xt, see (aI)–(aII). Though there is a change of limit law from Gaussian to stable as E

θ(ρ2
0) decreases

from larger to smaller than 1, the MLE remains asymptotically normal in the entire ballistic region
(no extra assumption is required in Example I introduced in Section 3). We illustrate this point by
considering a naive estimator at the end of Subsection 3.3.1.

We conclude this section by providing a sufficient condition for Assumption V to be valid, namely,
ensuring that Σθ is positive definite.

Proposition 2.9. For the covariance matrix Σθ to be positive definite, it is sufficient that the
linear span in R

d of the gradient vectors φ̇θ(x, y), with (x, y) ∈ Z
2
+ is equal to the entire space,

or equivalently, that

Vect
{

∂θE
θ(ωx+1

0 (1 − ω0)y) : (x, y) ∈ Z
2
+

}
= R

d.

Section 4 is devoted to the proof of Theorem 2.6, where Subsections 4.4.1, 4.4.2 and 4.4.4 are
concerned with the proofs of Theorem 2.5, Proposition 2.7 and Proposition 2.9, respectively.

3. EXAMPLES

3.1. Environment with Finite and Known Support

Example I. Fix a1 < a2 ∈ (0, 1) and let νp = pδa1 + (1 − p)δa2 , where δa is the Dirac mass located at
value a. Here, the unknown parameter is the proportion p ∈ Θ ⊂ [0, 1] (namely, θ = p). We suppose that
a1, a2 and Θ are such that the items (i) and (ii) of Assumption I are satisfied.

This example is easily generalized to ν having m ≥ 2 support points, namely, νθ =
∑m

i=1 piai, where
a1, . . . , am are distinct, fixed and known in (0, 1), we let pm = 1 −

∑m−1
i=1 pi and the parameter is now

θ = (p1, . . . , pm−1).
In the framework of Example I, we have

φp(x, y) = log
[
pax+1

1 (1 − a1)y + (1 − p)ax+1
2 (1 − a2)y

]
(18)

and

�n(p) := �n(θ) =
n−1∑

x=0

log
[
pa

Ln
x+1+1

1 (1 − a1)
Ln

x + (1 − p)a
Ln

x+1+1

2 (1 − a2)
Ln

x

]
. (19)

Comets et al. (2014) proved that p̂n = argmaxp∈Θ �n(p) converges in P�-probability to p�. There
is no analytical expression for the value of p̂n. Nonetheless, this estimator may be easily computed by
numerical methods. We now establish that the assumptions needed for asymptotic normality are also
satisfied in this case under the only additional assumption that Θ ⊂ (0, 1).

Proposition 3.1. In the framework of Example I, assuming moreover that Θ ⊂ (0, 1), Assump-
tions II–IV are satisfied.

Proof. The function p �→ φp(x, y) given by (18) is twice continuously differentiable for any (x, y). The
derivatives are given by

φ̇p(x, y) = e−φp(x,y)[ax+1
1 (1 − a1)y − ax+1

2 (1 − a2)y],

φ̈p(x, y) = −φ̇p(x, y)2.

Since exp[φp(x, y)] ≥ pax+1
1 (1 − a1)y and exp[φp(x, y)] ≥ (1 − p)ax+1

2 (1 − a2)y , we obtain the bounds

|φ̇p(x, y)| ≤ 1
p

+
1

1 − p
.
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Now, under the additional assumption that Θ ⊂ (0, 1), there exists some A ∈ (0, 1) such that Θ ⊂
[A, 1 − A] and then

sup
(x,y)∈Z

2
+

|φ̇p(x, y)| ≤ 2
A

and sup
(x,y)∈Z

2
+

|φ̈p(x, y)| ≤ 4
A2

, (20)

which implies that (12) and (14) are satisfied.

Now, noting that

Q̇θ(x, y) =
(

x + y

x

)

[ax+1
1 (1 − a1)y − ax+1

2 (1 − a2)y]

and that
∞∑

y=0

(
x + y

x

)

ax+1(1 − a)y = 1, ∀x ∈ Z+, ∀a ∈ (0, 1), (21)

we have (13).

Proposition 3.2. In the framework of Example I, the covariance matrix Σθ is positive definite,
namely, Assumption V is satisfied.

Proof. We have

E
p(ω0) = p(a1 − a2) + a2

with derivative a1 − a2 �= 0, which achieves the proof thanks to Proposition 2.9.

Thanks to Theorem 2.6 and Propositions 3.1 and 3.2, the sequence {√n(p̂n − p�)} converges in
P�-distribution to a nondegenerate centered Gaussian random variable with variance

Σ−1
p� =

{
∑

(x,y)∈Z
2
+

πp�(x)
(

x + y

x

)
[ax+1

1 (1 − a1)y − ax+1
2 (1 − a2)y]2

p�ax+1
1 (1 − a1)y + (1 − p�)ax+1

2 (1 − a2)y

}−1

.

Remark 3.3 (Temkin model, cf. Hughes 1996). With a ∈ (1/2, 1) known and θ = p ∈ (0, 1) unknown,
we consider νθ = pδa + (1 − p)δ1−a. This is a particular case of Example I. It is easy to see that
transience to the right and ballistic regime, respectively, are equivalent to

p > 1/2, p > a,

and that in the ballistic case, the limit c = c(p) in (3) is given by

c(p) =
a + p − 2ap

(2a − 1)(p − a)
.

We construct a new estimator p̃n of p solving the relation c(p̃n) = Tn/n, namely,

p̃n =
a

2a − 1
× (2a − 1)Tn + n

Tn + n
.

This new estimator is consistent in the full ballistic region. However, for all a > 1/2 and p > a but close
to it, we have κ ∈ (1, 2), the fluctuations of Tn are of order n1/κ, and those of p̃n are of order n1/κ−1. This
new estimator is much more spread out than the MLE p̂n.
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3.2. Environment with Two Unknown Support Points

Example II. We let νθ = pδa1 + (1 − p)δa2 and now the unknown parameter is θ = (p, a1, a2) ∈ Θ,
where Θ is a compact subset of

(0, 1) × {(a1, a2) ∈ (0, 1)2 : a1 < a2}.
We suppose that Θ is such that Assumptions I (i) and I (ii) are satisfied.

The function φθ and the criterion �n(·) are given by (18) and (19), respectively. Comets et al. (2014)
established that the estimator θ̂n is well defined and consistent in probability. Once again, there is no
analytical expression for the value of θ̂n. Nonetheless, this estimator may also be easily computed by
numerical methods. We now establish that the assumptions needed for asymptotic normality are also
satisfied in this case, under a mild additional moment assumption.

Proposition 3.4. In the framework of Example II, assuming moreover that E
θ(ρ3

0) < 1, Assump-
tions II–IV are satisfied.

Proof. In the proof of Proposition 3.1, we have already controlled the derivative of θ �→ φθ(x, y) with
respect to p. Hence, it is now sufficient to control its derivatives with respect to a1 and a2 to achieve the
proof of (12) and (14). We have

∂a1φθ(x, y) = e−φθ(x,y)pax
1(1 − a1)y−1[(x + 1)(1 − a1) − ya1],

∂a2φθ(x, y) = e−φθ(x,y)(1 − p)ax
2(1 − a2)y−1[(x + 1)(1 − a2) − ya2].

Since

e−φθ(x,y)pax
1(1 − a1)y−1 ≤ 1

a1(1 − a1)

and

e−φθ(x,y)(1 − p)ax
2(1 − a2)y−1 ≤ 1

a2(1 − a2)
,

we can see that there exists a constant B such that

|∂aj φθ(x, y)| ≤
∣
∣
∣
x + 1

aj
− y

1 − aj

∣
∣
∣ ≤ B(x + 1 + y) for j = 1, 2. (22)

Now, we prove that (12) is satisfied with q = 3/2. From (22), it is sufficient to check that
∑

k∈Z+

k3πθ(k) =
∑

x,y∈Z+

x3π̃θ(x, y) =
∑

x,y∈Z+

y3π̃θ(x, y) < ∞,

which is equivalent to

∑

k≥3

k(k − 1)(k − 2)πθ(k) = 6E
θ
[( ∑

n≥1

n∏

k=1

ρk

)3]
< ∞,

where the last equality follows from Proposition 2.3. From Minkowski’s inequality, we have

E
θ
[( ∑

n≥1

n∏

k=1

ρk

)3]
≤

{ ∑

n≥1

[
E

θ
( n∏

k=1

ρ3
k

)]1/3}3
=

{ ∑

n≥1

[Eθ(ρ3
0)]

n/3
}3

,

where the right-hand side term is finite according to the additional assumption that E
θ(ρ3

0) < 1. Since
the bound in (22) does not depend on θ and πθ possesses a finite third moment, the first part of
condition (14) on the gradient vector is also satisfied.

Now, we turn to (13). Noting that

∂a1Qθ(x, y) =
(

x + y

x

)

pax
1(1 − a1)y−1[(x + 1)(1 − a1) − ya1],
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∂a2Qθ(x, y) =
(

x + y

x

)

(1 − p)ax
2(1 − a2)y−1[(x + 1)(1 − a2) − ya2],

∞∑

y=0

y

(
x + y

x

)

ax+1(1 − a)y = (x + 1)
1 − a

a
, ∀x ∈ Z+, ∀a ∈ (0, 1),

and using (21) yields (13).
The second order derivatives of φθ are given by

∂2
pφθ(x, y) = −[∂pφθ(x, y)]2,

∂p∂a1φθ(x, y) = [∂a1φθ(x, y)] ×
(1

p
− ∂pφθ(x, y)

)
,

∂a1∂a2φθ(x, y) = −[∂a1φθ(x, y)] × [∂a2φθ(x, y)],

∂2
a1

φθ(x, y) = [∂a1φθ(x, y)] ×
[
− ∂a1φθ(x, y) +

x

a1
− y − 1

1 − a1
− x + 1 + y

(x + 1)(1 − a1) − ya1

]
,

and similar formulas for a2 instead of a1. The second part of (14) on the Hessian matrix thus follows from
the previous expressions combined with (20), (22) and the existence of the second order moment for πθ.

Proposition 3.5. In the framework of Example II, the covariance matrix Σθ is positive definite,
namely, Assumption V is satisfied.

Proof. We have

E
θ[ωx+1

0 (1 − ω0)y] = pax+1
1 (1 − a1)y + (1 − p)ax+1

2 (1 − a2)y.

The determinant of
(
∂θE

θ[ωk+1
0 ]

)

k=0,1,2
is given by

a1 − a2 a2
1 − a2

2 a3
1 − a3

2

p 2pa1 3pa2
1

(1 − p) 2(1 − p)a2 3(1 − p)a2
2

,

which can be rewritten as

p(1 − p)(a1 − a2)4.

As we have a1 �= a2 and p ∈ (0, 1), this determinant is nonzero and this completes the proof, thanks to
Proposition 2.9.

Thanks to Theorem 2.6 and Propositions 3.4 and 3.5, under the additional assumption that
E

θ(ρ3
0) < 1, the sequence {

√
n(θ̂n − θ�)} converges in P�-distribution to a nondegenerate centered

Gaussian random vector.

3.3. Environment with Beta Distribution

Example III. We let ν be a Beta distribution with parameters (α, β), namely,

dν(a) =
1

B(α, β)
aα−1(1 − a)β−1 da, B(α, β) =

∫ 1

0
tα−1(1 − t)β−1 dt.

Here, the unknown parameter is θ = (α, β) ∈ Θ, where Θ is a compact subset of

{(α, β) ∈ (0,+∞)2 : α > β + 1}.

As E
θ(ρ0) = β/(α − 1), the constraint α > β + 1 ensures that the items (i) and (ii) of Assumption I are

satisfied.
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In the framework of Example III, we have

φθ(x, y) = log
B(x + 1 + α, y + β)

B(α, β)
(23)

and

�n(θ) = −n log B(α, β) +
n−1∑

x=0

log B(Ln
x+1 + α + 1, Ln

x + β)

=
n−1∑

x=0

log
(Ln

x+1 + α)(Ln
x+1 + α − 1) . . . α × (Ln

x + β − 1)(Ln
x + β − 2) . . . β

(Ln
x+1 + Ln

x + α + β − 1)(Ln
x+1 + Ln

x + α + β − 2) . . . (α + β)
.

In this case, Comets et al. (2014) proved that θ̂n is well defined and consistent in probability. We now
establish that the assumptions needed for asymptotic normality are also satisfied in this case.

Proposition 3.6. In the framework of Example III, Assumptions II–IV are satisfied.

Proof. Relying on classical identities on the Beta function, it may be seen after some computations that

φθ(x, y) =
x∑

k=0

log(k + α) +
y−1∑

k=0

log(k + β) −
x+y∑

k=0

log(k + α + β),

where a sum over an empty set of indices is zero. As a consequence, we obtain

∂αφθ(x, y) =
x∑

k=0

1
k + α

−
x+y∑

k=0

1
k + α + β

=
x∑

k=0

β

(k + α)(k + α + β)
−

y∑

k=1

1
k + x + α + β

. (24)

The fact that Θ is a compact set contained in (0,+∞)2 yields the existence of a constant A independent
of θ, x and y such that both

x∑

k=0

β

(k + α)(k + α + β)
≤

+∞∑

k=0

β

(k + α)(k + α + β)
≤ A

and
y∑

k=1

1
k + x + α + β

≤
y∑

k=1

1
k + α + β

≤ A log(1 + y).

The same holds for ∂βφθ(x, y). Hence we have

|∂αφθ(x, y)| ≤ A′ log(1 + y) and |∂βφθ(x, y)| ≤ A′ log(1 + x) (25)

for some positive constant A′. Since there exists a constant B such that for any integer x

log(1 + x) ≤ B 4
√

x,

we deduce from (25) that there exists C > 0 such that

|∂αφθ(x, y)|2q ≤ Cy and |∂βφθ(x, y)|2q ≤ Cx, (26)

where q = 2. From Proposition 2.3, we know that πθ possesses a finite first moment, and together
with (26), this is sufficient for (12) to be satisfied. Since the bound in (26) does not depend on θ, the
first part of condition (14) on the gradient vector is also satisfied.

The second order derivatives of φθ are given by

∂2
αφθ(x, y) = −

x∑

k=0

1
(k + α)2

+
x+y∑

k=0

1
(k + α + β)2

,
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∂α∂βφθ(x, y) =
x+y∑

k=0

1
(k + α + β)2

,

and similar formulas for β instead of α. Thus, the second part of condition (14) for the Hessian matrix
follows by arguments similar to those establishing the first part of (14) for the gradient vector.

Now, we prove that it is possible to exchange the order of differentiation and summation to get (13).
To do so, we prove that

the series
∑

y

‖Q̇θ(x, y)‖ converges uniformly in θ (27)

for any integer x. Define θ0 = (α0, β0) with

α0 = inf(proj1(Θ)) and β0 = inf(proj2(Θ)),

where proji, i = 1, 2, are the two projectors on the coordinates. Note that θ0 does not necessarily belong
to Θ. However, it still belongs to the ballistic region {α > β + 1}. For any a ∈ (0, 1) and any integers x
and y, we have

ax+1+α−1(1 − a)y+β−1 ≤ ax+1+α0−1(1 − a)y+β0−1,

which yields

B(x + 1 + α, y + β) ≤ B(x + 1 + α0, y + β0),

as well as

Qθ(x, y) ≤ B(α0, β0)
B(α, β)

Qθ0(x, y).

Using the fact that the beta function is continuous on the compact set Θ yields the existence of a
constant C such that

Qθ(x, y) ≤ CQθ0(x, y)

for any integers x and y. Now recall that Q̇θ(x, y) = Qθ(x, y)φ̇θ(x, y). Hence, using the last inequality
and (26), it is sufficient to prove that

∑

y

yQθ0(x, y) < ∞ (28)

to get (27). We have
∑

x

( ∑

y

yQθ0(x, y)
)
πθ0(x) =

∑

y

yπθ0(y) < ∞,

where the last inequality follows from the fact that θ0 lies in the ballistic region and thus πθ0 possesses a
finite first moment. Since πθ0(x) > 0 for any integer x, we deduce that (28) is satisfied for any integer x,
which proves that (27) is satisfied.

Proposition 3.7. In the framework of Example III, the covariance matrix Σθ is positive definite,
namely, Assumption V is satisfied.

Proof. One easily checks that

φ̇θ(x, x) =

⎛

⎜
⎝

1
α+x + 1

α+x−1 + · · · + 1
α − 1

α+β+2x − 1
α+β+2x−1 − · · · − 1

α+β

1
β+x−1 + 1

β+x−2 + · · · + 1
β − 1

α+β+2x − 1
α+β+2x−1 − · · · − 1

α+β

⎞

⎟
⎠ .

Hence, φ̇θ(0, 0) is collinear to (β,−α)ᵀ and φ̇θ(x, x) → (− log 2,− log 2)ᵀ as x → ∞. This shows that
φ̇θ(x, x), x ∈ Z+, spans the whole space, and Proposition 2.9 applies.

Thanks to Theorem 2.6 and Propositions 3.6 and 3.7, the sequence {√n(θ̂n − θ�)} converges in P�-
distribution to a nondegenerate centered Gaussian random vector.
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4. ASYMPTOTIC NORMALITY

We now establish the asymptotic normality of θ̂n stated in Theorem 2.6. The most important step
lies in establishing Theorem 2.5, which states a CLT for the gradient vector of the criterion �n (see
Section 4.4.1). To obtain the asymptotic normality of θ̂n from the former CLT, we make use of a uniform
weak law of large numbers (UWLLN) in Section 4.4.3. The proof of the UWLLN is contained in
Section 4.4.2 and establishes Proposition 2.7 giving a way to approximate the Fisher information matrix.
Finally Section 4.4.4 contains the proof of Proposition 2.9 stating a condition under which the Fisher
information matrix is nonsingular.

4.1. A Central Limit Theorem for the Gradient of the Criterion

In this section, we prove Theorem 2.5, that is, the CLT for the score vector sequence �̇n(θ�). Note
that according to (9), we have

1√
n

�̇n(θ�) ∼ 1√
n

n−1∑

k=0

φ̇θ�(Zk, Zk+1), (29)

where (Zk)0≤k≤n is the Markov chain introduced in Section 2.2.3. First, note that under Assump-
tion 2.2.4 this quantity is integrable and centered with respect to P�. Indeed, recall that φ̇θ(x, y) =
Q̇θ(x, y)/Qθ(x, y) thus we can write for all x ∈ Z+,

E�(φ̇θ�(Zk, Zk+1)|Zk = x) =
∑

y∈Z+

Q̇θ�(x, y)
Qθ�(x, y)

Qθ�(x, y)

= ∂θ

( ∑

y∈Z+

Qθ(x, y)
)∣
∣
∣
θ=θ�

= ∂θ(1)
∣
∣
∣
θ=θ�

= 0, (30)

where we have used (13) to interchange the sum and derivative. Then,

E�(φ̇θ�(Zk, Zk+1)) = 0.

Now, we rely on a CLT for centered square-integrable martingales, see Theorem 3.2 in Hall and Heyde
(1980). We introduce the quantities

∀1 ≤ k ≤ n, Un,k =
1√
n

φ̇θ�(Zk−1, Zk) and Sn,k =
k∑

j=1

Un,j,

as well as the natural filtration Fn,k = Fk := σ(Zj , j ≤ k). According to (30), (Sn,k, 1 ≤ k ≤ n, n ≥ 1)
is a martingale array with differences Un,k. It is also centered and square integrable by Assumption III.
Thus according to Theorem 3.2 in Hall and Heyde (1980) and the Cramér–Wold device (see, e.g.,
Bllingsley 1968, p. 48), if

max
1≤i≤n

‖Un,i‖ −−−−−→
n→+∞

0 in P�-probability, (31)

n∑

i=1

Un,iU
ᵀ
n,i −−−−−→n→+∞

Σθ� in P�-probability, (32)

and
(
E�( max

1≤i≤n
‖Un,iU

ᵀ
n,i‖)

)

n∈N

is a bounded sequence, (33)

with Σθ� a deterministic and finite covariance matrix, then the sum Sn,n converges in distribution to
a centered Gaussian random vector with covariance matrix Σθ� , which proves Theorem 2.5. Now, the
convergence (32) is a direct consequence of the ergodic theorem stated in Proposition 2.4. Moreover the
limit Σθ� is given by (15) and is finite according to Assumption III. Note that more generally, the ergodic
theorem (Proposition 2.4) combined with Assumption III implies the convergence of (

∑
1≤i≤n ‖Un,i‖2)n
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to a finite deterministic limit, P�-almost surely and in L1(P�). Thus, condition (33) follows from this
L1(P�)-convergence combined with the bound

E�
(

max
1≤i≤n

‖Un,iU
ᵀ
n,i‖

)
≤

n∑

i=1

E�(‖Un,i‖2).

Finally, condition (31) is obtained by writing that for any ε > 0 and any q > 1, we have

P�
(

max
1≤i≤n

‖Un,i‖ ≥ ε
)

= P�
(

max
1≤i≤n

‖φ̇θ�(Zi−1, Zi)‖ ≥ ε
√

n
)

≤ 1
nqε2q

E�
(

max
1≤i≤n

‖φ̇θ�(Zi−1, Zi)‖2q
)

≤ 1
nqε2q

n∑

i=1

E�
(
‖φ̇θ�(Zi−1, Zi)‖2q

)
,

where the first inequality is Markov’s inequality. By using again Assumption III and the ergodic theorem
(Proposition 2.4), the right-hand side of this inequality converges to zero whenever q > 1. This achieves
the proof.

4.2. Approximation of the Fisher Information
We now turn to the proof of Proposition 2.7. Under Assumption IV, the following local uniform

convergence holds: there exists a neighborhood V� of θ� such that

sup
θ∈V�

∥
∥
∥
∥

1
n

n−1∑

x=0

φ̈θ(Ln
x+1, L

n
x) − π̃θ�(φ̈θ)

∥
∥
∥
∥ −−−→

n→∞
0 in P�-probability. (34)

This could be verified by the same arguments as in the proof of the standard uniform law of large numbers
(see Theorem 6.10 and its proof in Appendix 6.A in Bierens 2005), where the ergodic theorem stated in
our Proposition 2.4 plays the role of the weak law of large numbers for a random sample in the former

reference. Indeed, let φ̈
(i,j)
θ represent the element at the ith row and jth column of the matrix φ̈θ. Under

Assumption IV, there exists a neighborhood V(θ�) of θ� such that

π̃θ�

(
sup

θ∈V(θ�)
|φ̈(i,j)

θ |
)

< +∞, for any 1 ≤ i, j ≤ d,

which implies that

π̃θ�

(
sup

θ∈V(θ�)
φ̈

(i,j)
θ

)
< +∞ and π̃θ�

(
inf

θ∈V(θ�)
φ̈

(i,j)
θ

)
> −∞,

for any 1 ≤ i, j ≤ d. Furthermore, under Assumption II, the map θ �→ φ̈
(i,j)
θ is continuous for any

1 ≤ i, j ≤ d and according to Theorem 6.10 in Bierens (2005) together with Assumption III, there exists
a neighborhood V� of θ� such that

sup
θ∈V�

∣
∣
∣
∣
1
n

n−1∑

x=0

φ̈
(i,j)
θ (Ln

x+1, L
n
x) − π̃θ�(φ̈(i,j)

θ )
∣
∣
∣
∣ −−−→n→∞

0 in P�-probability

for any 1 ≤ i, j ≤ d. This implies (34). The latter combined with the convergence in P�-probability of θ̂n

to θ� yields (17).

4.3. Proof of Asymptotic Normality

Our estimator θ̂n maximizes the function θ �→ �n(θ) =
∑n−1

x=0 φθ(Ln
x+1, L

n
x). As a consequence, under

Assumption 2.2.4, we have

�̇n(θ̂n) =
n−1∑

x=0

φ̇θ̂n
(Ln

x+1, L
n
x) = 0. (35)
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Using a Taylor expansion in a neighborhood of θ�, for any 1 ≤ i ≤ d, there exists a random θ̃n,i ∈ R
d

such that ‖θ̃n,i − θ�‖ ≤ ‖θ̂n,i − θ�‖ and

1√
n

�̇n(θ̂n) =
1√
n

�̇n(θ�) +
1
n

⎛

⎜
⎜
⎜
⎝

�̈
(1)
n (θ̃n,1)

· · ·

�̈
(d)
n (θ̃n,d)

⎞

⎟
⎟
⎟
⎠

·
√

n(θ̂n − θ�), (36)

where �̈
(i)
n (θ) is the i-th row of the matrix �̈n(θ). Combining (35) and (36) yields

1
n

⎛

⎜
⎜
⎜
⎝

�̈
(1)
n (θ̃n,1)

· · ·

�̈
(d)
n (θ̃n,d)

⎞

⎟
⎟
⎟
⎠

·
√

n(θ̂n − θ�) = − 1√
n

�̇n(θ�).

Using (34) and convergence of θ̂n to θ� in P�-probability yields

(π̃θ�(φ̈�
θ) + oP�(1))

√
n(θ̂n − θ�) = − 1√

n
�̇n(θ�),

where oP�(1) is a remainder term, which converges to 0 in P�-probability. If we moreover assume that
the Fisher information matrix Σθ� = −π̃θ�(φ̈θ�) is nonsingular, then we have

√
n(θ̂n − θ�) = Σ−1

θ�

1√
n

n−1∑

x=0

φ̇θ�(Ln
x+1, L

n
x)(Id + oP�(1)), (37)

where Id is the identity matrix.

Finally, combining (37) with Theorem 2.5, we obtain the convergence in P�-distribution of
√

n(θ̂n −
θ�) to a centered Gaussian random vector with covariance matrix Σ−1

θ� Σθ�Σ−1
θ� = Σ−1

θ� .

4.4. Nondegeneracy of the Fisher Information

We now turn to the proof of Proposition 2.9. Let us consider a deterministic vector u ∈ R
d. We have

uᵀΣθu = π̃θ(‖uᵀφ̇θ‖2).

We recall that according to Proposition 2.3, the invariant probability measure πθ is positive as well as
π̃θ. As a consequence, the quantity uᵀΣθu is nonnegative and equals zero if and only if

∀x, y ∈ Z+, uᵀφ̇θ(x, y) = 0.

Let us assume that the linear span in R
d of the gradient vectors φ̇θ(x, y), (x, y) ∈ Z

2
+ is equal to the full

space, or equivalently, that

Vect
{

∂θE
θ(ωx+1

0 (1 − ω0)y) : (x, y) ∈ Z
2
+

}
= R

d.

Then, the equality uᵀφ̇θ(x, y) = 0 for any (x, y) ∈ Z
2
+ implies u = 0. This concludes the proof.

5. NUMERICAL PERFORMANCE

In Comets et al. (2014), the authors have investigated the numerical performance of the MLE
and obtained that this estimator has better performance than the one proposed by Adelman and
Enriquez (2004), being less spread out than the latter. In this section, we explore the possibility to
construct confidence regions for the parameter θ relying on the asymptotic normality result obtained in
Theorem 2.6. From Proposition 2.7, the limiting covariance Σ−1

θ� may be approximated by the inverse of
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the observed Fisher information matrix Σ̂n defined by (17), and Slutsky’s Lemma gives the convergence
in distribution

√
nΣ̂1/2

n (θ̂n − θ�) −−−−−→
n→+∞

Nd(0, Id) under P�,

where Nd(0, Id) is the centered and normalized d-dimensional normal distribution. When d = 1, we
thus consider confidence intervals of the form

ICγ,n =
[

θ̂n −
q1−γ/2
√

nΣ̂1/2
n

; θ̂n +
q1−γ/2
√

nΣ̂1/2
n

]

, (38)

where 1 − γ is the asymptotic confidence level and qz the z-th quantile of the standard normal one-
dimensional distribution. In higher dimensions (d ≥ 2), the confidence regions are more generally built
relying on the chi-square distribution, namely,

Rγ,n =
{

θ ∈ Θ: n‖Σ̂1/2
n (θ̂n − θ)‖2 ≤ χ1−γ

}
, (39)

where 1 − γ is still the asymptotic confidence level and now χz is the z-th quantile of the chi-square
distribution with d degrees of freedom χ2(d). Note that the two definitions (38) and (39) coincide when
d = 1. Moreover, the confidence region (39) is also given by

Rγ,n =
{
θ ∈ Θ: n(θ̂n − θ)ᵀΣ̂n(θ̂n − θ) ≤ χ1−γ

}
.

Table 1. Parameter values for each experiment

Simulation Fixed parameter Estimated parameter

Example I (a1, a2) = (0.4, 0.7) p� = 0.3

Example II — (p�, a�
1, a

�
2) = (0.3, 0.4, 0.7)

Example III — (α�, β�) = (5, 1)

1 2 3 4 5 6 7 8 9 10
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1
.5

5
1
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1
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1
.7

5

Fig. 1. Boxplot of the estimator Σ̂n obtained from 1000 iterations and for values n ranging in {103k : 1 ≤ k ≤ 10} in
the case of Example I.

We present three simulation settings corresponding to the three examples developed in Section 3 and
already explored in Comets et al. (2014). For each of the three simulation settings, the true parameter
value θ� is chosen according to Table 1 and corresponds to a transient and ballistic random walk. We
rely on 1000 iterations of each of the following procedures. For each setting and each iteration, we first
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Fig. 2. Boxplots of the values of the matrix Σ̂n obtained from 1000 iterations and for values n ranging in {103k : 1 ≤
k ≤ 10} in the case of Example II. The parameter is ordered as θ = (θ1, θ2, θ3) = (p, a1, a2) and the figure displays the
values: Σ̂n(1, 1); Σ̂n(2, 2); Σ̂n(3, 3); Σ̂n(1, 2); Σ̂n(1, 3) and Σ̂n(2, 3), from left to right and top to bottom.
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Fig. 3. Boxplots of the values of the matrix Σ̂n obtained from 1000 iterations and for values n ranging in {103k : 1 ≤
k ≤ 10} in the case of Example III. The parameter is ordered as θ = (θ1, θ2) = (α, β) and the figure displays the values:
Σ̂n(1, 1); Σ̂n(2, 2) and Σ̂n(1, 2), from left to right.

generate a random environment according to νθ� on the set of sites {−104, . . . , 104}. Note that we do
not use the environment values for all the 104 negative sites, since only few of these sites are visited
by the walk. However this extra computation cost is negligible. Then, we run a random walk in this
environment and stop it successively at the hitting times Tn defined by (2), with n ∈ {103k : 1 ≤ k ≤
10}. For each stopping value n, we compute the estimators θ̂n, Σ̂n and the confidence region Rγ,n for
γ = {0.01; 0.05; 0.1}.
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We first explore the convergence of Σ̂n when n increases. We mention that the true value Σθ� is
unknown even in a simulation setting (since π̃θ� is unknown). Thus we can observe the convergence
of Σ̂n with n but cannot assess any bias towards the true value Σθ� . The results are presented in
Figs. 1, 2 and 3 corresponding to the cases of Examples I, II and III, respectively. The estimators appear
to converge when n increases and their variance also decreases as expected. We mention that in the
cases of Examples I and II, we have 1% and 1.3% respectively of the total 10 ∗ 1000 experiments for
which the numerical maximization of the likelihood did not give a result and thus for which we could not
compute a confidence region.

Now, we consider the empirical coverages obtained from our confidence regions Rγ,n in the three
examples and with γ ∈ {0.01, 0.05, 0.1} and n ranging in {103k : 1 ≤ k ≤ 10}. The results are presented
in Table 2. For the three examples, the empirical coverages are very accurate. We also note that the
accuracy does not significantly change when n increases from 103 to 104. As a conclusion, we have
shown that it is possible to construct accurate confidence regions for the parameter value.

Table 2. Empirical coverages of (1 − γ) asymptotic level confidence regions, for γ ∈ {0.01, 0.05, 0.1} and
relying on 1000 iterations

Example I Example II Example III

n 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

1000 0.994 0.952 0.899 0.992 0.953 0.909 0.977 0.942 0.901

2000 0.989 0.952 0.903 0.994 0.953 0.910 0.978 0.928 0.884

3000 0.988 0.942 0.901 0.990 0.938 0.886 0.981 0.940 0.889

4000 0.991 0.944 0.896 0.991 0.951 0.894 0.988 0.945 0.900

5000 0.990 0.942 0.896 0.993 0.942 0.891 0.986 0.941 0.883

6000 0.983 0.948 0.901 0.987 0.951 0.888 0.988 0.937 0.897

7000 0.986 0.950 0.900 0.992 0.951 0.900 0.986 0.942 0.898

8000 0.987 0.956 0.898 0.988 0.950 0.903 0.981 0.946 0.903

9000 0.990 0.959 0.913 0.990 0.949 0.893 0.985 0.939 0.901

10000 0.987 0.954 0.908 0.990 0.949 0.899 0.983 0.944 0.892
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