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Higher-order interactions I

Motivations
Networks or graphs focus on pairwise interactions
These type of pairwise interactions can already be quite elaborate:
undirected/directed, binary/weighted, simple/multiple,
static/dynamic, multiplex or multi-layers, . . .
Nonetheless pairwise interactions are not sufficient to describe the
nature of complex interactions:

▶ e.g. the presence of a 3rd chemical component may modify the type of
interaction of 2 other;

▶ e.g. a collaboration between 3 authors is stg different from 3 pairwise
collaborations between these same authors;

Collective interactions or group interactions are richer than just
pairwise interactions

↪→ These are called higher-order interactions (HOI).
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Higher-order interactions II

Where do we find HOI?
Social networks: triadic and larger groups (as early as Simmel, 1950)

Scientific co-authorship,
Interactions between chemical components,
or species in ecological systems,
neurons in brain networks,
etc

These interactions CAN NOT be represented by a graph.
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Higher-order interactions III

This is a nice recent review (2020):
Physics Reports 874 (2020) 1–92

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep
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a b s t r a c t

The complexity of many biological, social and technological systems stems from the
richness of the interactions among their units. Over the past decades, a variety of
complex systems has been successfully described as networks whose interacting pairs of
nodes are connected by links. Yet, from human communications to chemical reactions
and ecological systems, interactions can often occur in groups of three or more nodes
and cannot be described simply in terms of dyads. Until recently little attention has
been devoted to the higher-order architecture of real complex systems. However, a
mounting body of evidence is showing that taking the higher-order structure of these
systems into account can enhance our modeling capacities and help us understand and
predict their dynamical behavior. Here we present a complete overview of the emerging
field of networks beyond pairwise interactions. We discuss how to represent higher-
order interactions and introduce the different frameworks used to describe higher-order
systems, highlighting the links between the existing concepts and representations. We
review the measures designed to characterize the structure of these systems and the
models proposed to generate synthetic structures, such as random and growing bipar-
tite graphs, hypergraphs and simplicial complexes. We introduce the rapidly growing
research on higher-order dynamical systems and dynamical topology, discussing the
relations between higher-order interactions and collective behavior. We focus in partic-
ular on new emergent phenomena characterizing dynamical processes, such as diffusion,
synchronization, spreading, social dynamics and games, when extended beyond pairwise
interactions. We conclude with a summary of empirical applications, and an outlook on
current modeling and conceptual frontiers.
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

⇤ Corresponding author.
E-mail addresses: battistonf@ceu.edu (F. Battiston), v.latora@qmul.ac.uk (V. Latora), giovanni.petri@isi.it (G. Petri).

https://doi.org/10.1016/j.physrep.2020.05.004
0370-1573/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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Pairwise vs HOI

HOI are defined as sets of interacting entities.
e.g. V = {a, b, c , d , e}; I = {{a, b, c}, {a, d}, {c, d}, {c , e}}
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b

c

d

e

(a) Pairwise interactions

a

b

c

d

e

(b) A HOI in blue
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Naïve Graph representation: clique reduction graphM.T. Schaub, Y. Zhu, J.-B. Seby et al. Signal Processing 187 (2021) 108149 

Fig. 7. Different transformations on an example hypergraph. A The original hypergraph. B The dual hypergraph. C The clique expansion. D The star expansion. E The line 
graph. F The line expansion. 
tration) may be computed in terms of (weighted variants of) the 
second possible projection of the incidence matrix Z , namely Z ! Z . 
Apart from these three canonical types of graph representations 
(star, clique, and line graph) that can be derived from the incidence 
matrix Z and additional (weighting) transformations, a few other 
matrix-based schemes have been proposed for representing hyper- 
graphs. For instance, the recent paper [101] proposes the so-called 
line expansion of a hypergraph (different from the line graph; see 
Fig. 7 F), which is isomorphic to the line graph of its star expan- 
sion and aims to unify the clique and star expansions. In the line 
expansion, each incident vertex-hyperedge pair is considered as a 
“line node” and two “line nodes” are connected if they share either 
the vertex or the hyperedge. We would like to remark that in some 
cases we might be more interested in the dual of one hypergraph 
in which the roles of vertices and hyperedges are interchanged and 
the incidence matrix is Z ! [78] ; see Fig. 7 B. 

While we have so far considered only homogeneous hyper- 
graphs, Laplacian matrices have also been proposed for more gen- 
eral hypergraph models. For instance, [73,75,88] use variants of 
the clique expansion to derive matrix representations of hyper- 
graphs with edge-dependent vertex weights or inhomogeneous hy- 
peredges. Specifically, in [73,75] hypergraphs with edge-dependent 
vertex weights are projected onto asymmetric matrices, corre- 
sponding to induced directed graphs with self-loops. The authors 
then use established combinatorial and normalized Laplacians for 
digraphs [102] applied to these matrices to derive a Laplacian ma- 
trix for hypergraphs. Finally, in [88] , a novel algorithm for assign- 
ing edge weights to the graph representation is proposed, allowing 
for non-uniform expansions of hyperedges. 

As the above discussion shows, there is an enormous variety of 
matrix-based representations for hypergraphs, and the relative ad- 
vantages and disadvantages of these constructions are still sparsely 
understood. Ultimately, the choice of a particular matrix repre- 
sentation corresponds to a specific model for what constitutes a 
smooth signal on a hypergraph. We believe that a better under- 
standing of the spectral properties of the individual constructions 
will thus be an important step for choosing good matrix represen- 
tations for different application scenarios. 
5.2. Tensor-based hypergraph representations 

Instead of working with matrix-based representations, hyper- 
graphs can alternatively be represented by tensors. A tensor is sim- 
ply a multi-dimensional array, whose order is the number of in- 
dices needed to label an element in the tensor [90] . For instance, 
a vector and a matrix are a first-order and a second-order tensor, 

respectively. Several different versions of a hypergraph adjacency 
tensor have been proposed in existing work [103–112] . In this sec- 
tion, we focus on unweighted hypergraphs to keep our exposition 
accessible and to remain consistent with the majority of the exist- 
ing work in this domain. 

Due to their relative simplicity, k -uniform hypergraphs have 
been first studied in the literature. As every hyperedge is of the 
same order, a k -uniform hypergraph with N nodes can be naturally 
represented by a k th-order adjacency tensor A ∈ R N ×N ×···×N , where 
each index ranges from 1 to N, and the entries of A are defined as 
follows [103,104] 
A i 1 ···i k = 1 , if { v i 1 , · · · , v i k } ∈ E . (30) 
Every other entry in A is set to zero. Similarly to how it can be 
meaningful to normalize the adjacency matrix, normalized ver- 
sions of this adjacency tensor have been proposed as well. In 
[105] , the tensor in (30) is normalized by 1 / (k − 1)! . This normal- 
ization guarantees that the degree of a vertex v i , i.e., the num- 
ber of hyperedges that it belongs to, can be retrieved by sum- 
ming the entries in the tensor whose first mode index is i , namely 
deg (v i ) = ∑ N 

i 2 , ··· ,i k =1 A ii 2 ···i k ; see [108] . This is desirable because it 
resembles the way of obtaining the degree of a vertex in a graph 
from its adjacency matrix. Another normalized adjacency is pro- 
posed in [106] where 
A i 1 ···i k = 1 

(k − 1)! 
k ∏ 

j=1 
1 

k √ 
deg (v i j ) , if { v i 1 , · · · , v i k } ∈ E, (31) 

and the rest of the entries are equal to zero. Its associated nor- 
malized Laplacian tensor is defined as L = J − A where J is a 
tensor of the same size as A , and its entry J ii ···i = 1 if deg (v i ) > 0 
and 0 otherwise. This normalization ensures that L has certain 
desirable spectral properties that mimic those of the normalized 
graph Laplacian [106] . For example, the eigenvalues of L as defined 
in [113] are guaranteed to be contained in [0,2]. Having a bounded 
spectrum has shown to be useful in GSP for the stability analysis 
of graph filters [114] . 

For hypergraphs with non-uniform hyperedges, i.e., hyperedges 
of different sizes, the above construction does not extend easily. 
Since some edges will have smaller cardinality than others, some 
indices in the adjacency tensor would simply be undefined. A naive 
approach would be to keep an adjacency tensor for each observed 
cardinality of hyperedges, but this approach is computationally im- 
practical. An alternative is to augment the above construction of 
an adjacency tensor for general homogeneous hypergraphs as fol- 
lows. Denote by m the cardinality of the largest hyperedge across 
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Picture from Schaub et al. 2021

Each interaction is transformed into a clique = all edges between pairs
are present ;
HOIs actually disappeared !
Too simplistic: For e.g, in co-authorship 1 paper with 3 authors ̸= 3
different papers written by pairs of those authors.

Matias C. Higher-order interactions (HOI)
Autumn school on hypergraphs - Oct 2023
8 / 44



Bipartite graph representation (two-modes network or
star-expansion graph)M.T. Schaub, Y. Zhu, J.-B. Seby et al. Signal Processing 187 (2021) 108149 

Fig. 7. Different transformations on an example hypergraph. A The original hypergraph. B The dual hypergraph. C The clique expansion. D The star expansion. E The line 
graph. F The line expansion. 
tration) may be computed in terms of (weighted variants of) the 
second possible projection of the incidence matrix Z , namely Z ! Z . 
Apart from these three canonical types of graph representations 
(star, clique, and line graph) that can be derived from the incidence 
matrix Z and additional (weighting) transformations, a few other 
matrix-based schemes have been proposed for representing hyper- 
graphs. For instance, the recent paper [101] proposes the so-called 
line expansion of a hypergraph (different from the line graph; see 
Fig. 7 F), which is isomorphic to the line graph of its star expan- 
sion and aims to unify the clique and star expansions. In the line 
expansion, each incident vertex-hyperedge pair is considered as a 
“line node” and two “line nodes” are connected if they share either 
the vertex or the hyperedge. We would like to remark that in some 
cases we might be more interested in the dual of one hypergraph 
in which the roles of vertices and hyperedges are interchanged and 
the incidence matrix is Z ! [78] ; see Fig. 7 B. 

While we have so far considered only homogeneous hyper- 
graphs, Laplacian matrices have also been proposed for more gen- 
eral hypergraph models. For instance, [73,75,88] use variants of 
the clique expansion to derive matrix representations of hyper- 
graphs with edge-dependent vertex weights or inhomogeneous hy- 
peredges. Specifically, in [73,75] hypergraphs with edge-dependent 
vertex weights are projected onto asymmetric matrices, corre- 
sponding to induced directed graphs with self-loops. The authors 
then use established combinatorial and normalized Laplacians for 
digraphs [102] applied to these matrices to derive a Laplacian ma- 
trix for hypergraphs. Finally, in [88] , a novel algorithm for assign- 
ing edge weights to the graph representation is proposed, allowing 
for non-uniform expansions of hyperedges. 

As the above discussion shows, there is an enormous variety of 
matrix-based representations for hypergraphs, and the relative ad- 
vantages and disadvantages of these constructions are still sparsely 
understood. Ultimately, the choice of a particular matrix repre- 
sentation corresponds to a specific model for what constitutes a 
smooth signal on a hypergraph. We believe that a better under- 
standing of the spectral properties of the individual constructions 
will thus be an important step for choosing good matrix represen- 
tations for different application scenarios. 
5.2. Tensor-based hypergraph representations 

Instead of working with matrix-based representations, hyper- 
graphs can alternatively be represented by tensors. A tensor is sim- 
ply a multi-dimensional array, whose order is the number of in- 
dices needed to label an element in the tensor [90] . For instance, 
a vector and a matrix are a first-order and a second-order tensor, 

respectively. Several different versions of a hypergraph adjacency 
tensor have been proposed in existing work [103–112] . In this sec- 
tion, we focus on unweighted hypergraphs to keep our exposition 
accessible and to remain consistent with the majority of the exist- 
ing work in this domain. 

Due to their relative simplicity, k -uniform hypergraphs have 
been first studied in the literature. As every hyperedge is of the 
same order, a k -uniform hypergraph with N nodes can be naturally 
represented by a k th-order adjacency tensor A ∈ R N ×N ×···×N , where 
each index ranges from 1 to N, and the entries of A are defined as 
follows [103,104] 
A i 1 ···i k = 1 , if { v i 1 , · · · , v i k } ∈ E . (30) 
Every other entry in A is set to zero. Similarly to how it can be 
meaningful to normalize the adjacency matrix, normalized ver- 
sions of this adjacency tensor have been proposed as well. In 
[105] , the tensor in (30) is normalized by 1 / (k − 1)! . This normal- 
ization guarantees that the degree of a vertex v i , i.e., the num- 
ber of hyperedges that it belongs to, can be retrieved by sum- 
ming the entries in the tensor whose first mode index is i , namely 
deg (v i ) = ∑ N 

i 2 , ··· ,i k =1 A ii 2 ···i k ; see [108] . This is desirable because it 
resembles the way of obtaining the degree of a vertex in a graph 
from its adjacency matrix. Another normalized adjacency is pro- 
posed in [106] where 
A i 1 ···i k = 1 

(k − 1)! 
k ∏ 

j=1 
1 

k √ 
deg (v i j ) , if { v i 1 , · · · , v i k } ∈ E, (31) 

and the rest of the entries are equal to zero. Its associated nor- 
malized Laplacian tensor is defined as L = J − A where J is a 
tensor of the same size as A , and its entry J ii ···i = 1 if deg (v i ) > 0 
and 0 otherwise. This normalization ensures that L has certain 
desirable spectral properties that mimic those of the normalized 
graph Laplacian [106] . For example, the eigenvalues of L as defined 
in [113] are guaranteed to be contained in [0,2]. Having a bounded 
spectrum has shown to be useful in GSP for the stability analysis 
of graph filters [114] . 

For hypergraphs with non-uniform hyperedges, i.e., hyperedges 
of different sizes, the above construction does not extend easily. 
Since some edges will have smaller cardinality than others, some 
indices in the adjacency tensor would simply be undefined. A naive 
approach would be to keep an adjacency tensor for each observed 
cardinality of hyperedges, but this approach is computationally im- 
practical. An alternative is to augment the above construction of 
an adjacency tensor for general homogeneous hypergraphs as fol- 
lows. Denote by m the cardinality of the largest hyperedge across 

13 
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No loss of information;
But "higher-order" now
translates into node degrees
in one part;
2 two parts don’t play
symmetric roles: statistical
models on bipartite graphs
are not appropriate here
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Other graph representations

There are other graph-representations of HOIs

But none of it may completely capture these

↪→ There are 2 mathematical objects to represent HOIs : Simplicial
complexes and hypergraphs.
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Simplicial complexes vs hypergraphs I
Picture from Battiston et al.

F. Battiston, G. Cencetti, I. Iacopini et al. / Physics Reports 874 (2020) 1–92 5

Fig. 1. Representations of higher-order interactions. A set of interactions of heterogeneous order (A) can be represented using only pairwise
interactions (B). Using only low-order blocks, the set of interactions can be described in the simplest way by using a graph (C). Alternatively,
interactions can be encoded as nodes in one layer of a bipartite graph, where the other layer contains the interaction vertices (D). Other examples
of high-order coordinated patterns can be encoded using motifs, small subgraphs with specific connectivity structures (E). Among motifs, cliques
are especially popular as they represent the densest subgraphs, akin to higher-order bricks (F). All these representations discard information that
was present in the original interaction data (A). A solution is to consider explicitly higher-order building blocks, in the form of simplices and
hyperedges (G). Collection of simplices form simplicial complexes (H), which allow to discriminate between genuine higher-order interactions and –
even complex – sums of low-order ones (I). Unfortunately, simplicial complexes, given a simplex, require the presence of all possible subsimplices
(J), which can be too strong an assumption in some systems. Relaxing this condition effectively implies moving from simplices to hyperedges (K),
which are the most general—and less constrained—representation of higher-order interactions (L).

2.1.2. Graph-based representations
Graphs are the most common way to represent families of interactions (Fig. 1C). A graph G = (V , E) is defined by

a nodeset V with n elements, and an edgeset E whose m elements are pairs of nodes. A graph is then a collection
of edges connecting pairs of nodes. In other words, the building blocks of graph representations are 1-interactions,
i.e. interactions of the type I = [i, j]. The most natural choice is then to unfold each higher-order interaction in I in terms of
1-interactions built from pairs of nodes in I . Under this assumption, our example I = {[a, b, c], [a, d], [d, c], [c, e]} maps
to IG = {[a, b], [b, c], [c, a], [a, d], [d, c], [c, e]} (Fig. 1B). This mapping makes systems amenable to be studied using tools
developed in both graph theory [45] and network science [16]. Indeed, graph representations enabled the growth, depth
and breadth of results on real-world complex networks in the last two decades [17–19], with applications spanning biology
[46,47], ecology [27,48], social science [49,50], engineering [51,52], neuroscience [53–55], all the way to cosmology [56].

Despite the power of graph representations to capture many properties of complex interacting systems, their limits are
easily identified: it is impossible to explicitly describe group interactions, or in other terms there is no direct relationship
between I and IG nor any way to recover the former from the latter. For example, going back to our toy example, at
the description level provided by IG, it is impossible to tell (and hence to describe) whether the original interaction set
contained [a, c, d] or not. Naturally, in some cases networks can provide information on higher-order interactions, but
these are always inferences based on the low-order interactions, obtained for example by looking for very dense subsets
of nodes using community [57], clique [58] or block detection [59] techniques. However, such reconstructions are often
incomplete and rife with problems [60–62].

Bipartite graph representations effectively describe group interactions. Solidly within the realms of low-order inter-
actions, bipartite graphs are graphs defined by two nodesets (U,W ) and an edgeset E containing only edges (u, w) such
that u 2 U and w 2 W . To represent higher-order interactions, one chooses U to coincide with the original nodeset
V , i.e. U = V , and W to coincide with the set of interactions I [63,64]. The links in the bipartite graph connect a node
(in V ) to the interactions (of arbitrary order) in which it takes part (Fig. 1D). This representation emerges naturally in
many fields: it is used for example in social sciences, where it provides a way to encode the membership of individuals
to groups of different dimensions [65,66]; or to describe the collaboration of actors (nodes) in movies (interactions) [67];
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Graphs are the most common way to represent families of interactions (Fig. 1C). A graph G = (V , E) is defined by

a nodeset V with n elements, and an edgeset E whose m elements are pairs of nodes. A graph is then a collection
of edges connecting pairs of nodes. In other words, the building blocks of graph representations are 1-interactions,
i.e. interactions of the type I = [i, j]. The most natural choice is then to unfold each higher-order interaction in I in terms of
1-interactions built from pairs of nodes in I . Under this assumption, our example I = {[a, b, c], [a, d], [d, c], [c, e]} maps
to IG = {[a, b], [b, c], [c, a], [a, d], [d, c], [c, e]} (Fig. 1B). This mapping makes systems amenable to be studied using tools
developed in both graph theory [45] and network science [16]. Indeed, graph representations enabled the growth, depth
and breadth of results on real-world complex networks in the last two decades [17–19], with applications spanning biology
[46,47], ecology [27,48], social science [49,50], engineering [51,52], neuroscience [53–55], all the way to cosmology [56].

Despite the power of graph representations to capture many properties of complex interacting systems, their limits are
easily identified: it is impossible to explicitly describe group interactions, or in other terms there is no direct relationship
between I and IG nor any way to recover the former from the latter. For example, going back to our toy example, at
the description level provided by IG, it is impossible to tell (and hence to describe) whether the original interaction set
contained [a, c, d] or not. Naturally, in some cases networks can provide information on higher-order interactions, but
these are always inferences based on the low-order interactions, obtained for example by looking for very dense subsets
of nodes using community [57], clique [58] or block detection [59] techniques. However, such reconstructions are often
incomplete and rife with problems [60–62].

Bipartite graph representations effectively describe group interactions. Solidly within the realms of low-order inter-
actions, bipartite graphs are graphs defined by two nodesets (U,W ) and an edgeset E containing only edges (u, w) such
that u 2 U and w 2 W . To represent higher-order interactions, one chooses U to coincide with the original nodeset
V , i.e. U = V , and W to coincide with the set of interactions I [63,64]. The links in the bipartite graph connect a node
(in V ) to the interactions (of arbitrary order) in which it takes part (Fig. 1D). This representation emerges naturally in
many fields: it is used for example in social sciences, where it provides a way to encode the membership of individuals
to groups of different dimensions [65,66]; or to describe the collaboration of actors (nodes) in movies (interactions) [67];

Simplex and Simplicial complexes
a k-simplex σ = {p0, p1, . . . , pk} is a set of k + 1 points (in a
topological space);
a subface of a simplex σ is any subset of points in σ;
a simplicial complex = a collection K = {σ1, . . . , σn} of simplexes (of
any size);
a valid simplicial complex is such that ∀σ ∈ K , every subface of σ also
belongs to K
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Simplicial complexes vs hypergraphs II

(Dis)-Advantages
, strong mathematical object, very useful in many areas; e.g:
statistical topological data analysis, to approximate varieties of
irregular algebraic structures;
/ Valid simplicial complexes impose all sub-interactions of an
interaction should exist;
/ points come with positions in (topological) space
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Simplicial complexes vs hypergraphs III

F. Battiston, G. Cencetti, I. Iacopini et al. / Physics Reports 874 (2020) 1–92 5

Fig. 1. Representations of higher-order interactions. A set of interactions of heterogeneous order (A) can be represented using only pairwise
interactions (B). Using only low-order blocks, the set of interactions can be described in the simplest way by using a graph (C). Alternatively,
interactions can be encoded as nodes in one layer of a bipartite graph, where the other layer contains the interaction vertices (D). Other examples
of high-order coordinated patterns can be encoded using motifs, small subgraphs with specific connectivity structures (E). Among motifs, cliques
are especially popular as they represent the densest subgraphs, akin to higher-order bricks (F). All these representations discard information that
was present in the original interaction data (A). A solution is to consider explicitly higher-order building blocks, in the form of simplices and
hyperedges (G). Collection of simplices form simplicial complexes (H), which allow to discriminate between genuine higher-order interactions and –
even complex – sums of low-order ones (I). Unfortunately, simplicial complexes, given a simplex, require the presence of all possible subsimplices
(J), which can be too strong an assumption in some systems. Relaxing this condition effectively implies moving from simplices to hyperedges (K),
which are the most general—and less constrained—representation of higher-order interactions (L).

2.1.2. Graph-based representations
Graphs are the most common way to represent families of interactions (Fig. 1C). A graph G = (V , E) is defined by

a nodeset V with n elements, and an edgeset E whose m elements are pairs of nodes. A graph is then a collection
of edges connecting pairs of nodes. In other words, the building blocks of graph representations are 1-interactions,
i.e. interactions of the type I = [i, j]. The most natural choice is then to unfold each higher-order interaction in I in terms of
1-interactions built from pairs of nodes in I . Under this assumption, our example I = {[a, b, c], [a, d], [d, c], [c, e]} maps
to IG = {[a, b], [b, c], [c, a], [a, d], [d, c], [c, e]} (Fig. 1B). This mapping makes systems amenable to be studied using tools
developed in both graph theory [45] and network science [16]. Indeed, graph representations enabled the growth, depth
and breadth of results on real-world complex networks in the last two decades [17–19], with applications spanning biology
[46,47], ecology [27,48], social science [49,50], engineering [51,52], neuroscience [53–55], all the way to cosmology [56].

Despite the power of graph representations to capture many properties of complex interacting systems, their limits are
easily identified: it is impossible to explicitly describe group interactions, or in other terms there is no direct relationship
between I and IG nor any way to recover the former from the latter. For example, going back to our toy example, at
the description level provided by IG, it is impossible to tell (and hence to describe) whether the original interaction set
contained [a, c, d] or not. Naturally, in some cases networks can provide information on higher-order interactions, but
these are always inferences based on the low-order interactions, obtained for example by looking for very dense subsets
of nodes using community [57], clique [58] or block detection [59] techniques. However, such reconstructions are often
incomplete and rife with problems [60–62].

Bipartite graph representations effectively describe group interactions. Solidly within the realms of low-order inter-
actions, bipartite graphs are graphs defined by two nodesets (U,W ) and an edgeset E containing only edges (u, w) such
that u 2 U and w 2 W . To represent higher-order interactions, one chooses U to coincide with the original nodeset
V , i.e. U = V , and W to coincide with the set of interactions I [63,64]. The links in the bipartite graph connect a node
(in V ) to the interactions (of arbitrary order) in which it takes part (Fig. 1D). This representation emerges naturally in
many fields: it is used for example in social sciences, where it provides a way to encode the membership of individuals
to groups of different dimensions [65,66]; or to describe the collaboration of actors (nodes) in movies (interactions) [67];

Definition
A hypergraph H = (V, E) is defined as a set of nodes V ≠ ∅ and a set of
hyperedges E . Each hyperedge is a non-empty collection of k distinct
nodes taking part in an interaction.
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Simplicial complexes vs hypergraphs IV

Hypergraphs characteristics
Hypergraphs naturally include the entity of graphs, by simply
considering hyperedges of size k = 2;
A hypergraph may contain a size-3 hyperedge {a, b, c} without any
requirement on the existence of the size-2 hyperedges {a, b}, {a, c},
and {b, c}.
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Simplicial complexes vs hypergraphs V

Simple hypergraphs and variants
In simple hypergraphs, an hyperedge appears only once and contains
distinct nodes;
May consider nodes to appear with multiplicities in a same
hyperedge

▶ Example: chemical reactions, multiplicity = stoichiometric coefficient;
▶ I call these multisets hypergraphs;
▶ generalize (in some sense) the notion of loops in graphs

May consider multiple hyperedges, when a same hyperedge may
appear several times (= integer-valued weight on a hyperedge);
May introduce a direction: a hyperedge e is divided into 2 ordered
subsets (e1, e2) of interacting nodes (e = e1 ∪ e2);
↪→ not much used though;

NB : in the following, focus on hypergraphs.
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Matrix encoding of HOIs

Incidence matrix H, size n ×m where n nb of nodes, m nb of
interactions; with entry Hi ,e = 1 when node i belongs to hyperedge e.
↪→ contains all the information;
↪→ enables definition of node degrees di (=rowSums of H) and
hyperedge sizes δe (=colSums of H)
Reduced adjacency matrix: A = HH⊺ − D has size n × n, where
D = diag(d1, . . . , dn)
↪→ This is the adjacency matrix of the clique reduction graph;
↪→ contains only partial information;
Reduced adjacency with hyperedge size information: Let
∆ = diag(|e|)e∈E . Some authors have considered different
re-weightings of the clique reduction graph: A′ = H∆−1H⊺ or
A′′ = H(∆− I )−1H⊺ (more on that later).
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Statistical measures on HOIs

Graph statistics generalized to HOIs
For any size k ≥ 2, size-k density is = nb of size-k hyperedges /

(n
k

)
Node degree; hyperedge size;
Centrality measures

▶ relies on the notion of paths;
▶ a path is a sequence (e1, e2, . . . , et) of hyperedges such that 2

successive hyperedges have at least one common node (ei ∩ ei+1 ̸= ∅);
▶ concept of k-path: any 2 successive hyperedges share at least k ≥ 1

nodes;

Graph statistics with no natural generalization
clustering and transitivity (based on triangles);
motifs (combinatorial complexity)
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What are we looking for?

In graphs, the concept of communities (aka nodes with high
within-group and low between-groups connections) has been a driving
concept for node clustering;
In hypergraphs, when 2 nodes are ‘connected’, they might share this
connection with other nodes (ie they belong to the same hyperedge of
size k ≥ 2). Should the sizes of the connections play a role? Should
we focus on the percentage of nodes within the same group in the
same hyperedge? Could we measure something else?
From a statistical point of view, clusters are more general than
communities: they describe sets of nodes that behave similarly in
their connections; e.g. clusters of hubs, of peripheral nodes, . . .
What clusters that are not communities might look like in
hypergraphs?

These are somehow still open questions.
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Clustering the nodes of a hypergraph I

Some techniques: graph-based, spectral, modularity, Stochastic
Blockmodels (SBM)

Graph reduction + hyperedge size information
A′′ = H(∆− I )H⊺ is a weighted graph reduction that preserves the
nodes degrees. Kumar et al. (2020) propose an algorithm to maximize
Newman-Girvan modularity on this graph A′′ (Iteratively Reweighted
Modularity Maximization (IRMM) alternates Louvain algorithm on a
weighted clique reduction graph and new hyperedge weights computation).
Shortcomings:

▶ / the exact composition of each hyperedge in nodes falling into the
different clusters is captured only through pairs of nodes.
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Clustering the nodes of a hypergraph II

Graph reduction + hyperedge size information (cont.)

Hypergraph Laplacian L = I −D−1/2H∆−1H⊺D−1/2 corresponds to
Laplacian of A′ = H∆−1H⊺. Ghoshdastidar & Dukkipati (2014,2017)
propose a spectral approach (Compute leading eigenvectors and run
k-means on rows).
Shortcomings:

▶ / works only if clusters may be identified from the weighted reduction
graph

▶ / tend to favour groups of the same size
▶ / no criterion to select the number of groups
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Clustering the nodes of a hypergraph III
Modularity-based approaches

See for e.g. Chodrow et al., 2021 and Kamiński et al., 2019.
Different hypergraph modularity defs: what kind of communities do
they favour?
For computational reasons, these focus on multisets-hypergraphs
where nodes may be repeated in a same hyperedge;
This is not always appropriate, e.g. co-authorship dataset;
In the context of graphs, it is known that this is not the correct way to
do it in the absence of self-loops and multiple edges. Question: what
are the implications for hypergraphs?
Other Shortcomings:

▶ / look for communities and not general clusters (e.g. hubs, peripheral
nodes, disassortative behaviours, . . . );

▶ / Modularity maximization is difficult; only local maximum is found;
▶ / No statistical criterion to select the number of groups.
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Clustering the nodes of a hypergraph IV

Our SBM proposal (joint work with Luca Brusa)
We focus on simple graphs (instead of multisets-hypergraphs);
We define a stochastic blockmodel to cluster the nodes of a
hypergraph

▶ We establish parameter identifiability results;
▶ We propose a variational expectation-maximisation algorithm to

infer clusters and parameters;
▶ We propose an ICL criterion to select the number of clusters;
▶ All these tools are implemented (in C++) in a efficient R package called

HyperSBM (https://github.com/LB1304/HyperSBM).
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SBM formulation

H = (V, E), with V = {1, . . . , n} nodes and E hyperedges;

For each 2 ≤ m ≤ M, let
V(m) =

{
{i1, . . . , im} : i1, . . . , im ∈ V and i1 ̸= . . . ̸= im

}
, set of

unordered node tuples of size m;

Observations: At each {i1, . . . , im} ∈ V(m), we observe indicator
variable Yi1,...,im = 1{{i1, . . . , im} ∈ E};

Latent clusters: Z1, . . . ,Zn iid in {1, . . . ,Q} with πq = P(Zi = q);

Conditional independence assumption:
{Yi1,...,im}{i1,...,im}∈V(m) |{Z1, . . . ,Zn} are independent with

Yi1,...,im |{Z1 = q1, . . . ,Zm = qm} ∼ Bern(B(m)
qi1 ,...,qim

).
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Parameter (generic) identifiability

Generic identifiability: a parameter θ almost surely (w.r.t. Lebesgue
measure) uniquely defines the distribution Pθ (up to label switching on the
node groups).

Theorem

For any Q, the parameter θ = (πq,B
(m)
q1,...,qm)m,q,q1,...,qm of the HSBM for

(simple) hypergraphs over n nodes, is generically identifiable for large
enough n.

Said differently, there is a finite set C of (non explicit) polynomial conditions
on θ such that whenever θ /∈ C, the distribution Pθ is uniquely defined by θ.
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Inference through variational EM I

Direct computation of the likelihood is not feasible for large n;

EM algorithm neither feasible because latent variables are not
independent conditional on observed ones;

Variational approximation to EM algorithm: replace the intractable
posterior distribution by the best approximation (w.r.t.
Kullback-Leibler divergence) in a class of simpler (factorised)
distributions:

Qτ (Z1, . . . ,Zn) =
n∏

i=1

Qτ (Zi ) =
n∏

i=1

Q∏
q=1

τ
Ziq

iq ,

with the variational parameter τiq = Qτ (Zi = q) ∈ [0, 1] and∑Q
q=1 τiq = 1, for any i = 1, . . . , n and q = 1, . . . ,Q.
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Inference through variational EM II

Evidence lower bound (ELBO)

J (θ, τ) = EQτ [logPθ(Y ,Z )]− EQτ [logQτ (Z )]

= logPθ(Y )− KL(Qτ (Z )||Pθ(Z |Y ))

≤ logPθ(Y ),

with equality iff Qτ (Z ) is the true posterior Pθ(Z |Y ).

VEM maximises the lower bound J (θ, τ) (with respect to τ and θ) instead
of the intractable log-likelihood logPθ(Y )
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VEM algorithm

VE-Step maximizes J (θ, τ) with respect to τ :

τ̂ (t) = argmax
τ

J (θ(t−1), τ); s.t.
∑Q

q=1 τiq = 1 ∀i = 1, . . . , n.

This is equivalent to minimising the Kullback-Leibler divergence.
In practice this step is obtained by a fixed-point algorithm.

M-Step maximizes J (θ, τ) with respect to θ:

θ̂(t) = argmax
θ

J (θ, τ (t−1)), s.t.
∑Q

q=1 πq = 1,

thus updating the value of the model parameters πq and B
(m)
q1,...,qm .
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Model selection and generalizations

Integrated classification likelihood (ICL)
We select q̂ = argmaxq ICL(q) where

ICL(q) = logPθ̂(Y , Ẑ )− 1
2
(q − 1) log n − 1

2

M∑
m=2

(
q +m − 1

m

)
log

(
n

m

)
.

Generalizations
We have not considered self-loops (m = 1) but it’s easy to do;
Binary hyperedge variables could be replaced by counting hyperedges
variables, replacing the Bernoulli distribution with, for e.g.
(zero-inflated or deflated) Poisson law.
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Computational complexity - and considerations on the
choice of M

Focusing on simple hypergraphs has a high price: we need to explore
all the

(n
m

)
tuples of nodes for all 2 ≤ m ≤ M;

Our algorithm has a complexity of O(n
( n
M

)
QM), which is huge;

Current modularity approaches avoid this issue by working with
multisets-hypergraphs, because there the summations over multisets of
nodes

∑
i1,...,im

factorize into m independent sums (no constraint that
the nodes be different), and this further simplifies the expression of
the modularity;
Again, this is inappropriate on some datasets;
As a consequence: we recommend to use a reasonable value of M:
indeed M is not necessarily the largest observed hyperedge size (e.g.
co-authorship dataset);
↪→ base your clustering on size-m hyperedges with m ≤ M
↪→ means you don’t use HOI of size larger than M but you still do
better than with clique-expansion graphs!
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Simulations

We’ve done simulations under the model (and in a sparse setting): it works
well (trust me, or look at the paper).
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Line clustering through hypergraphs I

2 experiments: 2 lines (3 groups) and 3 lines (4 groups)

2 Lines 3 Lines
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Line clustering through hypergraphs II

Hypergraph construction
Select 3 points at random and fit a line
If residual distance is less than a threshold, draw a hyperedge between
those 3 points
Globally set signal:noise hyperedge ratio = 2
Repeat to obtain 100 3-uniform hypergraphs

Data characteristics
Pts/line Noisy pts Total nb pts mean nb of hyperedges

2 lines 30 40 100 1070.84
3 lines 30 60 150 587.7
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Comparison with modularity based methods I
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Comparison with modularity based methods II
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2 3 4 5 6 7 8 9 10 4 5 6 7 8 9 1011121314151617181921

0

25

50

75

100

0

25

50

75

100

Q̂

C
o
u
n
t

Algorithm

HyperSBM

Chodrow AON

Chodrow Symm

Kaminski

Estimated number of groups

Matias C. Higher-order interactions (HOI)
Autumn school on hypergraphs - Oct 2023
39 / 44



Outline

1 The need for higher-order interactions

2 Capturing higher-order interactions

3 Statistics on HOIs

4 Clustering nodes in HOIs
Main approaches
Stochastic blockmodel for hypergraphs
Experiments

5 Conclusions

Matias C. Higher-order interactions (HOI)
Autumn school on hypergraphs - Oct 2023
40 / 44



Conclusions

Higher-order interactions is the new trend;
There are already some available tools that you can test on your
datasets;

▶ ↪→ do you have such new datasets?
▶ ↪→ may want to re-visit all bipartites graphs (constructing 2 different

hypergraphs for each of these!)

↪→ at the moment, there is a lack of large scale characteristics of
hypergraphs;
Among the many open questions: detectability limits for non-uniform
hypergraphs.

Any questions?
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Non equivalence between simple binary hypergraphs and
bipartite graphs

Bipartite graphs space Hypergraphs space

a b c

(a)

a b c

(b)

a b c

(c)

a b c
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