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Higher-order interactions |

Motivations
@ Networks or graphs focus on pairwise interactions

@ These type of pairwise interactions can already be quite elaborate:
undirected/directed, binary/weighted, simple/multiple,
static/dynamic, multiplex or multi-layers, . ..

@ Nonetheless pairwise interactions are not sufficient to describe the
nature of complex interactions:

e.g. the presence of a 3rd chemical component may modify the type of
interaction of 2 other;

e.g. a collaboration between 3 authors is stg different from 3 pairwise
collaborations between these same authors;

o Collective interactions or group interactions are richer than just
pairwise interactions

< These are called higher-order interactions (HOI).
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Higher-order interactions ||

Where do we find HOI?

@ Social networks: triadic and larger groups (as early as Simmel, 1950)

@ Scientific co-authorship,

@ Interactions between chemical components,

@ or species in ecological systems,

@ neurons in brain networks,

@ etc )

These interactions CAN NOT be represented by a graph.
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Higher-order interactions |lI

This is a nice recent review (2020):

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Networks beyond pairwise interactions: Structure and
dynamics

Federico Battiston ", Giulia Cencetti®, lacopo lacopini “, Vito Latora “*¢,
Maxime Lucas ™, Alice Patania ¥, Jean-Gabriel Young', Giovanni Petri ™"
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Pairwise vs HOI
HOI are defined as sets of interacting entities.

eg. V={ab,c,de};T={{a,b,c},{ad},{c,d} {c e}}

(a) Pairwise interactions
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Naive Graph representation: clique reduction graph

(%] (% Us

A NS N

Picture from Schaub et al. 2021
@ Each interaction is transformed into a clique = all edges between pairs
are present ;
@ HOIs actually disappeared !
@ Too simplistic: For e.g, in co-authorship 1 paper with 3 authors # 3
different papers written by pairs of those authors.
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Bipartite graph representation (two-modes network or
star-expansion graph)

(@ @
a‘@ @ No loss of information:
@ But "higher-order" now
translates into node degrees
D in one part;

@ 2 two parts don't play

€1 €2 €3
symmetric roles: statistical
/ \ \ models on bipartite graphs
U1 Y2 V3 V4 Us Vg

are not appropriate here

Picture from Schaub et al. 2021
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Other graph representations

@ There are other graph-representations of HOls
@ But none of it may completely capture these

< There are 2 mathematical objects to represent HOIs : Simplicial
complexes and hypergraphs.
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Simplicial complexes vs hypergraphs |

Picture from Battiston et al.

SIMPLICIAL
COMPLEX

0

[a,b,c]

1-simplex 2-simplex 3-simplex |

Simplex and Simplicial complexes

@ a k-simplex 0 = {po, p1,-.., Pk} is a set of k + 1 points (in a
topological space);

@ a subface of a simplex o is any subset of points in o;

@ a simplicial complex = a collection K = {o1,...,0,} of simplexes (of
any size);

@ a valid simplicial complex is such that Vo € K, every subface of o also
belongs to K

y.
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Simplicial complexes vs hypergraphs |l

(Dis)-Advantages

@ © strong mathematical object, very useful in many areas; e.g:
statistical topological data analysis, to approximate varieties of
irregular algebraic structures;

@ @ Valid simplicial complexes impose all sub-interactions of an
interaction should exist;

@ © points come with positions in (topological) space
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Simplicial complexes vs hypergraphs Il

HYPERGRAPH

@)
AN

2-hyperlink  3-hyperlink 4 -hyperlink
b
L

Definition

A hypergraph H = (V, ) is defined as a set of nodes V # () and a set of
hyperedges £. Each hyperedge is a non-empty collection of k distinct
nodes taking part in an interaction.

e
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Simplicial complexes vs hypergraphs IV

Hypergraphs characteristics
@ Hypergraphs naturally include the entity of graphs, by simply
considering hyperedges of size k = 2;
@ A hypergraph may contain a size-3 hyperedge {a, b, ¢} without any
requirement on the existence of the size-2 hyperedges {a, b}, {a,c},
and {b,c}.
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Simplicial complexes vs hypergraphs V

Simple hypergraphs and variants

@ In simple hypergraphs, an hyperedge appears only once and contains
distinct nodes;
e May consider nodes to appear with multiplicities in a same
hyperedge
Example: chemical reactions, multiplicity = stoichiometric coefficient;
| call these multisets hypergraphs;
generalize (in some sense) the notion of loops in graphs
@ May consider multiple hyperedges, when a same hyperedge may
appear several times (= integer-valued weight on a hyperedge);

@ May introduce a direction: a hyperedge e is divided into 2 ordered
subsets (e1, e2) of interacting nodes (e = e; U e2);
< not much used though;

NB : in the following, focus on hypergraphs.
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Matrix encoding of HOls

e Incidence matrix H, size n x m where n nb of nodes, m nb of
interactions; with entry H; . = 1 when node / belongs to hyperedge e.
< contains all the information:

— enables definition of node degrees d; (=rowSums of H) and
hyperedge sizes 0. (=colSums of H)

@ Reduced adjacency matrix: A= HHT — D has size n x n, where
D = diag(dy, ..., dy)
< This is the adjacency matrix of the clique reduction graph;
— contains only partial information;

@ Reduced adjacency with hyperedge size information: Let
A = diag(|e|)ecs. Some authors have considered different
re-weightings of the clique reduction graph: A’ = HA=YHT or
A" = H(A — 1)"LHT (more on that later).

Autumn school on hypergraphs - Oct 2

Matias C. Higher-order interactions (HOI) 16 / 44



Outline

© Statistics on HOIs

Matias C.

Higher-order interactions (HOI)

~ Autumn school on hy

pergr.

hs ~“Oct 2



Statistical measures on HOls

Graph statistics generalized to HOls
@ For any size k > 2, size-k density is = nb of size-k hyperedges /(Z)

o Node degree; hyperedge size;
o Centrality measures

relies on the notion of paths;

a path is a sequence (e, e, ..., ) of hyperedges such that 2
successive hyperedges have at least one common node (e; N ej11 # 0);
concept of k-path: any 2 successive hyperedges share at least kK > 1

nodes;
W

Graph statistics with no natural generalization
o clustering and transitivity (based on triangles);

e motifs (combinatorial complexity)
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@ Clustering nodes in HOIs
@ Main approaches
@ Stochastic blockmodel for hypergraphs
@ Experiments
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What are we looking for?

@ In graphs, the concept of communities (aka nodes with high
within-group and low between-groups connections) has been a driving
concept for node clustering;

@ In hypergraphs, when 2 nodes are ‘connected’, they might share this
connection with other nodes (ie they belong to the same hyperedge of
size k > 2). Should the sizes of the connections play a role? Should
we focus on the percentage of nodes within the same group in the
same hyperedge? Could we measure something else?

e From a statistical point of view, clusters are more general than
communities: they describe sets of nodes that behave similarly in
their connections; e.g. clusters of hubs, of peripheral nodes, ...

@ What clusters that are not communities might look like in
hypergraphs?
These are somehow still open questions.
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Clustering the nodes of a hypergraph |

Some techniques: graph-based, spectral, modularity, Stochastic
Blockmodels (SBM)

Graph reduction + hyperedge size information

o A” = H(A — I)HT is a weighted graph reduction that preserves the
nodes degrees. Kumar et al. (2020) propose an algorithm to maximize
Newman-Girvan modularity on this graph A” (Iteratively Reweighted
Modularity Maximization (IRMM) alternates Louvain algorithm on a
weighted clique reduction graph and new hyperedge weights computation).
Shortcomings:

® the exact composition of each hyperedge in nodes falling into the
different clusters is captured only through pairs of nodes.
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Clustering the nodes of a hypergraph Il

Graph reduction + hyperedge size information (cont.)

e Hypergraph Laplacian L = | — D"Y2HA1HTD~1/2 corresponds to
Laplacian of A’ = HA~1HT. Ghoshdastidar & Dukkipati (2014,2017)
propose a spectral approach (Compute leading eigenvectors and run
k-means on rows).

Shortcomings:
® works only if clusters may be identified from the weighted reduction

graph
® tend to favour groups of the same size
® no criterion to select the number of groups
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Clustering the nodes of a hypergraph IlI

Modularity-based approaches
@ See for e.g. Chodrow et al., 2021 and Kaminski et al., 20109.

o Different hypergraph modularity defs: what kind of communities do
they favour?

@ For computational reasons, these focus on multisets-hypergraphs
where nodes may be repeated in a same hyperedge;

@ This is not always appropriate, e.g. co-authorship dataset;

@ In the context of graphs, it is known that this is not the correct way to
do it in the absence of self-loops and multiple edges. Question: what
are the implications for hypergraphs?

@ Other Shortcomings:

® look for communities and not general clusters (e.g. hubs, peripheral
nodes, disassortative behaviours, ... );

® Modularity maximization is difficult; only local maximum is found;
® No statistical criterion to select the number of groups.
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Clustering the nodes of a hypergraph IV

Our SBM proposal (joint work with Luca Brusa)

@ We focus on simple graphs (instead of multisets-hypergraphs);

@ We define a stochastic blockmodel to cluster the nodes of a
hypergraph

We establish parameter identifiability results;
We propose a variational expectation-maximisation algorithm to
infer clusters and parameters;
We propose an ICL criterion to select the number of clusters;
All these tools are implemented (in C++) in a efficient R package called
HyperSBM (https://github.com/LB1304/HyperSBM).

v
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https://github.com/LB1304/HyperSBM
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SBM formulation

o H=(VE) withV ={1,...,n} nodes and £ hyperedges;

@ Foreach2 < m< M, let
V) = i, o im} iy im €V and iy # ... # im )}, set of
unordered node tuples of size m;

e Observations: At each {i1,...,im} € V(M) we observe indicator
variable Y ;i =1{{i,...,im} € &}

e Latent clusters: Zy,...,Z,iid in {1,..., Q} with 7y =P(Z; = q);

o Conditional independence assumption:
{Yi,im i, impevm|{Z1s - .., Zn} are independent with

Yiim{Z1 =01, ., Zm = qm} ~ Bern(Bc(,,-rl",)...,q,-m).
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Parameter (generic) identifiability

Generic identifiability: a parameter 6 almost surely (w.r.t. Lebesgue
measure) uniquely defines the distribution Py (up to label switching on the
node groups).

Theorem

For any Q, the parameter 6 = (7q, Béfj?,_,qm)m,q,qlwqm of the HSBM for
(simple) hypergraphs over n nodes, is generically identifiable for large
enough n.

Said differently, there is a finite set C of (non explicit) polynomial conditions
on & such that whenever 6 ¢ C, the distribution Py is uniquely defined by 6.
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Inference through variational EM |

@ Direct computation of the likelihood is not feasible for large n;

@ EM algorithm neither feasible because latent variables are not
independent conditional on observed ones;

@ Variational approximation to EM algorithm: replace the intractable
posterior distribution by the best approximation (w.r.t.
Kullback-Leibler divergence) in a class of simpler (factorised)
distributions:

n Q

QT(Zl7 ey Zn) = HQT(ZI) = H H T,iiqv
i=1

i=1g=1

with the variational parameter 7 = Q-(Z; = q) € [0, 1] and
Zf’?:lr,-qzl, foranyi=1,...,nandg=1,...,Q.
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Inference through variational EM Il

Evidence lower bound (ELBO)

J(0,7) = Eq,[logPy(Y, Z)] — Eq,[log Q-(Z)]
= logPy(Y) — KL(Q-(Z)]|Ps(Z]Y))
< logPy(Y),

with equality iff Q(Z) is the true posterior Py(Z|Y).

VEM maximises the lower bound 7 (6, 7) (with respect to 7 and 6) instead
of the intractable log-likelihood log Py(Y)
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VEM algorithm

e VE-Step maximizes [J (6, 7) with respect to 7:

0 —argmax J(OU D, 7); st YN8 mg=1 Vi=1,....n

This is equivalent to minimising the Kullback-Leibler divergence.
In practice this step is obtained by a fixed-point algorithm.

e M-Step maximizes J (6, 7) with respect to 6:

gl = arg max JO, 7)), st 2321 g =1,

thus updating the value of the model parameters 7, and Bn(v??.)..,qm-
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Model selection and generalizations

Integrated classification likelihood (ICL)
We select § = arg maxq ICL(q) where

m

ICL(q) = log Py(Y, Z) — %(q— i) g0 — % EM: <q+:_ 1) o (”)

m=2

Generalizations
@ We have not considered self-loops (m = 1) but it's easy to do;

@ Binary hyperedge variables could be replaced by counting hyperedges
variables, replacing the Bernoulli distribution with, for e.g.
(zero-inflated or deflated) Poisson law.
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Computational complexity - and considerations on the
choice of M

@ Focusing on simple hypergraphs has a high price: we need to explore
all the () tuples of nodes for all 2 < m < M;

@ Our algorithm has a complexity of O(n(,\'},) QM), which is huge;

@ Current modularity approaches avoid this issue by working with
multisets-hypergraphs, because there the summations over multisets of
nodes >, . factorize into m independent sums (no constraint that
the nodes be dlfferent) and this further simplifies the expression of
the modularity;

@ Again, this is inappropriate on some datasets;

@ As a consequence: we recommend to use a reasonable value of M:
indeed M is not necessarily the largest observed hyperedge size (e.g.
co-authorship dataset);
< base your clustering on size-m hyperedges with m < M
< means you don't use HOI of size larger than M but you still do
better than with clique-expansion graphs!
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Simulations

We've done simulations under the model (and in a sparse setting): it works
well (trust me, or look at the paper).
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Line clustering through hypergraphs |

2 experiments: 2 lines (3 groups) and 3 lines (4 groups)

2 Lines 3 Lines

0.50 | 0.50 |

o X o X y X
W " x X \‘X X X XX

0.25 | @ 7 XX X %
X 0% X X % SX X %

0.00 XA& X | 0001 XKoo X

X T o X% S
0251 oy >3§>< % .a< 0251 X QK X % >§)@
-0.50—‘é X X“ -0.50—‘A X X X %s

-0.50 -0.25 0.00 0.25 0.50 -0.50 -0.25 0.00 0.25 0.50
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Line clustering through hypergraphs Il

Hypergraph construction
@ Select 3 points at random and fit a line

o If residual distance is less than a threshold, draw a hyperedge between
those 3 points

@ Globally set signal:noise hyperedge ratio = 2

@ Repeat to obtain 100 3-uniform hypergraphs

Data characteristics

‘ Pts/line Noisy pts Total nb pts mean nb of hyperedges
2 lines 30 40 100 1070.84
3 lines 30 60 150 587.7
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Comparison with modularity based methods |
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Comparison with modularity based methods Il
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Conclusions

Higher-order interactions is the new trend;

There are already some available tools that you can test on your
datasets;

» < do you have such new datasets?
» < may want to re-visit all bipartites graphs (constructing 2 different
hypergraphs for each of these!)
@ < at the moment, there is a lack of large scale characteristics of
hypergraphs;

Among the many open questions: detectability limits for non-uniform
hypergraphs.

Any questions?
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Non equivalence between simple binary hypergraphs and
bipartite graphs

Bipartite graphs space Hypergraphs space
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