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Outline

@ The need for higher-order interactions
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Higher-order interactions |

Motivations
@ Networks or graphs focus on pairwise interactions

@ These type of pairwise interactions can already be quite elaborate:
undirected/directed, binary/weighted, simple/multiple,
static/dynamic, multiplex or multi-layers, . ..

@ Nonetheless pairwise interactions are not sufficient to describe the
nature of complex interactions :

e.g. the presence of a 3rd chemical component may modify the
interaction of 2 other ;

@ Collective interactions or group interactions are richer than just
pairwise interactions

< These are called higher-order interactions (HOI).
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Higher-order interactions |l

Where do we find HOI?

Social networks: triadic and larger groups (as early as Simmel, 1950)

@ Scientific co-authorship,

@ Interactions between chemical components,

@ Interactions between neurons in brain networks,
°

etc

These interactions CAN NOT be represented by a graph.
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Higher-order interactions |lI

This is a nice recent review (2020):

Contents lists available at ScienceDirect

Physics Reports

ELSEVIER journal homepage: www.elsevier.com/locate/physrep

Networks beyond pairwise interactions: Structure and
dynamics

Federico Battiston ", Giulia Cencetti®, lacopo lacopini “, Vito Latora “*¢,
Maxime Lucas ™', Alice Patania ¥, Jean-Gabriel Young', Giovanni Petri ™"
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Pairwise vs HOI

HOI are defined as sets of interacting entities.

eg. V={ab,c,de};T={{a,b,c},{ad},{c,d} {c e}}

(a) Pairwise interactions

Matias C.

SBM for Hypergraphs




Naive Graph representation: clique expansion graph
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Picture from Schaub et al. 2021

@ Each interaction is transformed into a clique = all edges between pairs

are present ;
@ HOIs actually disappeared !

@ Too simplistic: For e.g, in co-authorship 1 paper with 3 authors # 3

different papers written by pairs of those authors.
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Bipartite graph representation (two-modes network or
star-expansion graph)

(@ @
a‘@ @ No loss of information:
@ But "higher-order" now
translates into node degrees
D in one part;

@ 2 two parts don't play

€1 €2 €3
symmetric roles: statistical
/ \ \ models on bipartite graphs
U1 Y2 V3 V4 Us Vg

are not appropriate here

Picture from Schaub et al. 2021
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Simple hypergraphs

Definition

A (simple) hypergraph H = (V, £) is defined as a set of nodes V # () and a
set of hyperedges £. Each hyperedge is a non-empty collection of m
distinct nodes (2 < m < M) taking part within an interaction.

@ Hypergraphs naturally include the entity of graphs, by simply
considering hyperedges of size m = 2;

@ A hypergraph can contain a size-3 hyperedge [a, b, c| without any
requirement on the existence of the size-2 hyperedges [a, b], [a, c], and

[b, c].
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Clustering the nodes of a hypergraph |

What has been done up to now

@ Modularity-based approaches

Different hypergraph modularity definitions: what kind of communities
do they favour?

Note that for computational reasons, these focus on
multisets-hypergraphs where nodes may be repeated in a same
hyperedge;

This is not always appropriate, e.g. co-authorship dataset;

In the context of graphs, absence of self-loops and multiple edges are
known to generate pbms in modularity approaches

@ Spectral clustering has been generalized to hypergraphs but
it tends to favour groups of the same size;
@ Challenges

Look for general clusters and not only communities
None of these methods comes with a statistical criterion to select the
number of groups
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Clustering the nodes of a hypergraph Il

Our proposal

@ We focus on simple hypergraphs (instead of multisets-hypergraphs);

@ We define a stochastic blockmodel to cluster the nodes of a
hypergraph

We establish parameter identifiability results;
We propose a variational expectation-maximisation algorithm to
infer clusters and parameters;
We propose an ICL criterion to select the number of clusters;
All these tools are implemented (in C++) in a efficient R package called
HyperSBM.

v

Matias C. SBM for Hypergraphs Warwick - Sept 2023 11/28



Outline

@ Stochastic blockmodel for hypergraphs
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SBM formulation

H=WV,E), withV ={1,...,n} nodes and & hyperedges;

@ Foreach2 < m< M, let
V) = i, o im} iy im €V and iy # ... # im )}, set of
unordered node tuples of size m;

e Observations: At each {i1,...,im} € V(M) we observe indicator
variable Y ;i =1{{i,...,im} € &}

e Latent clusters: Zy,...,Z,iid in {1,..., Q} with 7y =P(Z; = q);

o Conditional independence assumption:
{Yi,im i, impevm|{Z1s - .., Zn} are independent with

1111111
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Parameter (generic) identifiability

Generic identifiability: a parameter 6 almost surely (w.r.t. Lebesgue
measure) uniquely defines the distribution Py (up to label switching on the
node groups).

Theorem

For any Q, the parameter 6 = (7q, Béfj?,_,qm)m,q,qlwqm of the HSBM for
(simple) hypergraphs over n nodes, is generically identifiable for large
enough n.

Said differently, there is a finite set C of (non explicit) polynomial conditions
on & such that whenever 6 ¢ C, the distribution Py is uniquely defined by 6.
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Inference through variational EM |

@ Direct computation of the likelihood is not feasible for large n;

@ EM algorithm neither feasible because latent variables are not
independent conditional on observed ones;

@ Variational approximation to EM algorithm: replace the intractable
posterior distribution by the best approximation (w.r.t.
Kullback-Leibler divergence) in a class of simpler (factorised)
distributions:

n Q

QT(Zl7 ey Zn) = HQT(ZI) = H H T,iiqv
i=1

i=1g=1

with the variational parameter 7 = Q-(Z; = q) € [0, 1] and
Zf’?:lr,-qzl, foranyi=1,...,nandg=1,...,Q.
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Inference through variational EM Il

Evidence lower bound (ELBO)

J(0,7) = Eq,[logPy(Y, Z)] — Eq,[log Q-(Z)]
= logPy(Y) — KL(Q-(Z)]|Ps(Z]Y))
< logPy(Y),

with equality iff Q(Z) is the true posterior Py(Z|Y).

VEM maximises the lower bound 7 (6, 7) (with respect to 7 and 6) instead
of the intractable log-likelihood log Py(Y)

v
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VEM algorithm

e VE-Step maximizes [J (6, 7) with respect to 7:

0 —argmax J(OU D, 7); st YN8 mg=1 Vi=1,....n

This is equivalent to minimising the Kullback-Leibler divergence.
In practice this step is obtained by a fixed-point algorithm.

e M-Step maximizes J (6, 7) with respect to 6:

gl = arg max JO, 7)), st 2321 g =1,

thus updating the value of the model parameters 7, and Bn(v??.)..,qm-
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Model selection and generalizations

Integrated classification likelihood (ICL)
We select § = arg maxq ICL(q) where

m

ICL(q) = log Py(Y, Z) — %(q— i) g0 — % EM: <q+:_ 1) o (”)

m=2

Generalizations
@ We have not considered self-loops (m = 1) but it's easy to do;

@ Binary hyperedge variables could be replaced by counting hyperedges
variables, replacing the Bernoulli distribution with, for e.g.
(zero-inflated or deflated) Poisson law.
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Computational complexity - and considerations over the
choice of M

@ Focusing on simple hypergraphs has a high price: we need to explore
all the () tuples of nodes for all 2 < m < M;

@ Our algorithm has a complexity of O(n(,\’},) QM), which is large;

@ Current modularity approaches avoid this issue by working with
multisets-hypergraphs, because there the summations over multisets of
nodes >, . factorize into m independent sums (no constraint that
the nodes be different), and this further simplifies the expression of
the modularity;

@ Again, this is inappropriate on some datasets;

@ As a consequence: we recommend to use a reasonable value of M:
indeed M is not necessarily the largest observed hyperedge size (e.g.
co-authorship dataset);
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© Experiments

o = = E A
Matias C. SBM for Hypergraphs



Line clustering through hypergraphs |
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Hypergraph construction
@ Select 3 points at random and fit a line

@ If residual distance less than a threshold, draw a hyperedge between

those 3 points
@ Globally set signal:noise hyperedge ratio = 2
@ Repeat to obtain 100 3-uniform hypergraphs

0.2

0.4

v

Matias C. SBM for Hypergraphs

Warwick - Sept 2023

21/28



Line clustering through hypergraphs I

Data characteristics

| Pts/line Noisy pts Total nb pts mean nb of hyperedges
2 lines 30 40 100 1070.84
3 lines 30 60 150 587.7
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Comparison with modularity based methods |
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Comparison with modularity based methods Il
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@ Conclusions and perspectives
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Conclusions

@ We propose a Stochastic Blockmodel for clustering the nodes of a
(simple) hypergraph

@ We establish (generic) identifiability of the parameters of the model
@ Estimation and nodes clustering is performed through VEM algorithm
@ ICL criterion is used to select the number of groups

@ C++ code wrapped in a R package HyperSBM
(https://github.com/LB1304/HyperSBM) and preprint on ArXiV
https://arxiv.org/abs/2210.05983
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https://github.com/LB1304/HyperSBM
https://arxiv.org/abs/2210.05983

Remaining challenges

@ understand the detectability limits for non-uniform hypergraphs ;

@ computational issues: explore sparse hypergraphs modelings

Post-doc position on modelling sparse hypergraphs in Paris - deadline for
application October, 15th.

Any questions 7
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Non equivalence between simple binary hypergraphs and
bipartite graphs

Bipartite graphs space

Hypergraphs space
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