A stochastic block model for hypergraphs

Luca Brusa1 and Catherine Matias2,3,4

1University of Milano-Bicocca, Milano, Italy
2 Centre National de la Recherche Scientifique, Paris, France
3 Sorbonne Université, Paris, France
4 Université de Paris Cité, Paris, France

Warwick - Sept 2023
Outline

1. The need for higher-order interactions
2. Stochastic blockmodel for hypergraphs
3. Experiments
4. Conclusions and perspectives
Higher-order interactions

Motivations

- Networks or graphs focus on pairwise interactions.
- These type of pairwise interactions can already be quite elaborate: undirected/directed, binary/weighted, simple/multiple, static/dynamic, multiplex or multi-layers, ...
- Nonetheless pairwise interactions are not sufficient to describe the nature of complex interactions: e.g. the presence of a 3rd chemical component may modify the interaction of 2 other;
- Collective interactions or group interactions are richer than just pairwise interactions.

These are called higher-order interactions (HOI).
Higher-order interactions II

Where do we find HOI?

- Social networks: triadic and larger groups (as early as Simmel, 1950)
- Scientific co-authorship,
- Interactions between chemical components,
- Interactions between neurons in brain networks,
- etc

These interactions **CAN NOT** be represented by a graph.
This is a nice recent review (2020):

Networks beyond pairwise interactions: Structure and dynamics

Federico Battiston\(^a,\,*\), Giulia Cencetti\(^b\), Iacopo Iacopini\(^c,d\), Vito Latora\(^c,e,f,g\), Maxime Lucas\(^h,i,j\), Alice Patania\(^k\), Jean-Gabriel Young\(^l\), Giovanni Petri\(^m,n\)
Pairwise vs HOI

HOI are defined as sets of interacting entities.

\[V = \{a, b, c, d, e\}; \mathcal{I} = \{\{a, b, c\}, \{a, d\}, \{c, d\}, \{c, e\}\} \]

(a) Pairwise interactions

(b) A HOI in blue
Naïve Graph representation: clique expansion graph

- Each interaction is transformed into a **clique** = all edges between pairs are present ;
- HOIs actually disappeared !
- **Too simplistic**: For e.g, in co-authorship 1 paper with 3 authors ≠ 3 different papers written by pairs of those authors.
Bipartite graph representation (two-modes network or star-expansion graph)

- No loss of information;
- But "higher-order" now translates into node degrees in one part;
- 2 two parts don’t play symmetric roles: statistical models on bipartite graphs are not appropriate here.

Picture from Schaub et al. 2021
Simple hypergraphs

Definition
A (simple) hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is defined as a set of nodes $\mathcal{V} \neq \emptyset$ and a set of hyperedges \mathcal{E}. Each hyperedge is a non-empty collection of m distinct nodes ($2 \leq m \leq M$) taking part within an interaction.

- Hypergraphs naturally include the entity of graphs, by simply considering hyperedges of size $m = 2$;
- A hypergraph can contain a size-3 hyperedge $[a, b, c]$ without any requirement on the existence of the size-2 hyperedges $[a, b]$, $[a, c]$, and $[b, c]$.
Clustering the nodes of a hypergraph I

What has been done up to now

- **Modularity-based** approaches
 - Different hypergraph modularity definitions: what kind of communities do they favour?
 - Note that for computational reasons, these focus on *multisets-hypergraphs* where nodes may be repeated in a same hyperedge;
 - This is not always appropriate, e.g. co-authorship dataset;
 - In the context of graphs, absence of self-loops and multiple edges are known to generate pbms in modularity approaches

- **Spectral clustering** has been generalized to hypergraphs but
 - it tends to favour groups of the same size;

- **Challenges**
 - Look for general clusters and not only *communities*
 - None of these methods comes with a statistical criterion to select the number of groups Q
Our proposal

- We focus on simple hypergraphs (instead of multisets-hypergraphs);
- We define a stochastic blockmodel to cluster the nodes of a hypergraph
 - We establish parameter identifiability results;
 - We propose a variational expectation-maximisation algorithm to infer clusters and parameters;
 - We propose an ICL criterion to select the number of clusters;
 - All these tools are implemented (in C++) in an efficient R package called HyperSBM.
Outline

1. The need for higher-order interactions

2. Stochastic blockmodel for hypergraphs

3. Experiments

4. Conclusions and perspectives
SBM formulation

- $\mathcal{H} = (\mathcal{V}, \mathcal{E})$, with $\mathcal{V} = \{1, \ldots, n\}$ nodes and \mathcal{E} hyperedges;

- For each $2 \leq m \leq M$, let $\mathcal{V}^{(m)} = \{\{i_1, \ldots, i_m\} : i_1, \ldots, i_m \in \mathcal{V} \text{ and } i_1 \neq \ldots \neq i_m\}$, set of unordered node tuples of size m;

- **Observations:** At each $\{i_1, \ldots, i_m\} \in \mathcal{V}^{(m)}$, we observe indicator variable $Y_{i_1, \ldots, i_m} = 1\{\{i_1, \ldots, i_m\} \in \mathcal{E}\}$;

- **Latent clusters:** Z_1, \ldots, Z_n iid in $\{1, \ldots, Q\}$ with $\pi_q = \mathbb{P}(Z_i = q)$;

- **Conditional independence assumption:**
 \[
 \{Y_{i_1, \ldots, i_m}\}_{\{i_1, \ldots, i_m\} \in \mathcal{V}^{(m)}} \mid \{Z_1, \ldots, Z_n\} \text{ are independent with}
 \]
 \[
 Y_{i_1, \ldots, i_m} \mid \{Z_1 = q_1, \ldots, Z_m = q_m\} \sim \text{Bern}(B_{q_{i_1}, \ldots, q_{i_m}}^{(m)}).
 \]
Parameter (generic) identifiability

Generic identifiability: a parameter θ almost surely (w.r.t. Lebesgue measure) uniquely defines the distribution P_θ (up to label switching on the node groups).

Theorem

For any Q, the parameter $\theta = (\pi_q, B_{q_1,...,q_m}^{(m)})_{m,q,q_1,...,q_m}$ of the HSBM for (simple) hypergraphs over n nodes, is generically identifiable for large enough n.

Said differently, there is a finite set C of (non explicit) polynomial conditions on θ such that whenever $\theta \notin C$, the distribution P_θ is uniquely defined by θ.
Inference through variational EM I

- Direct computation of the likelihood is not feasible for large n;
- EM algorithm neither feasible because latent variables are not independent conditional on observed ones;
- Variational approximation to EM algorithm: replace the intractable posterior distribution by the best approximation (w.r.t. Kullback-Leibler divergence) in a class of simpler (factorised) distributions:

$$Q_\tau(Z_1, \ldots, Z_n) = \prod_{i=1}^n Q_\tau(Z_i) = \prod_{i=1}^n \prod_{q=1}^Q \tau_{iq}^{Z_{iq}},$$

with the variational parameter $\tau_{iq} = Q_\tau(Z_i = q) \in [0, 1]$ and $\sum_{q=1}^Q \tau_{iq} = 1$, for any $i = 1, \ldots, n$ and $q = 1, \ldots, Q$.
Evidence lower bound (ELBO)

\[J(\theta, \tau) = \mathbb{E}_{Q_\tau}[\log P_\theta(Y, Z)] - \mathbb{E}_{Q_\tau}[\log Q_\tau(Z)] \]
\[= \log P_\theta(Y) - \text{KL}(Q_\tau(Z) \| P_\theta(Z|Y)) \]
\[\leq \log P_\theta(Y), \]

with equality iff \(Q_\tau(Z) \) is the true posterior \(P_\theta(Z|Y) \).

VEM maximises the lower bound \(J(\theta, \tau) \) (with respect to \(\tau \) and \(\theta \)) instead of the intractable log-likelihood \(\log P_\theta(Y) \).
VEM algorithm

- **VE-Step** maximizes $J(\theta, \tau)$ with respect to τ:

 $$\hat{\tau}(t) = \arg \max_{\tau} J(\theta^{(t-1)}, \tau); \quad \text{s.t.} \quad \sum_{q=1}^{Q} \tau_{iq} = 1 \quad \forall i = 1, \ldots, n.$$

 This is equivalent to minimising the Kullback-Leibler divergence. In practice this step is obtained by a fixed-point algorithm.

- **M-Step** maximizes $J(\theta, \tau)$ with respect to θ:

 $$\hat{\theta}(t) = \arg \max_{\theta} J(\theta, \tau^{(t-1)}), \quad \text{s.t.} \quad \sum_{q=1}^{Q} \pi_q = 1,$$

 thus updating the value of the model parameters π_q and $B_{q_1, \ldots, q_m}^{(m)}$.
Model selection and generalizations

Integrated classification likelihood (ICL)

We select $\hat{q} = \text{arg max}_q ICL(q)$ where

$$ICL(q) = \log \mathbb{P}_{\hat{\theta}}(\mathbf{Y}, \hat{\mathbf{Z}}) - \frac{1}{2}(q - 1) \log n - \frac{1}{2} \sum_{m=2}^{M} \binom{q + m - 1}{m} \log \left(\frac{n}{m} \right).$$

Generalizations

- We have not considered self-loops ($m = 1$) but it’s easy to do;
- Binary hyperedge variables could be replaced by counting hyperedges variables, replacing the Bernoulli distribution with, for e.g. (zero-inflated or deflated) Poisson law.
Computational complexity - and considerations over the choice of M

- Focusing on *simple* hypergraphs **has a high price**: we need to explore all the $\binom{n}{m}$ tuples of nodes for all $2 \leq m \leq M$;
- Our algorithm has a complexity of $O(n\binom{n}{M}Q^M)$, which is large;
- Current modularity approaches avoid this issue by working with multisets-hypergraphs, because there the summations over multisets of nodes $\sum_{i_1,...,i_m}$ factorize into m independent sums (no constraint that the nodes be different), and this further simplifies the expression of the modularity;
- Again, this is inappropriate on some datasets;
- As a consequence: we recommend to use **a reasonable value of M**: indeed M is not necessarily the largest observed hyperedge size (e.g. co-authorship dataset);
Outline

1. The need for higher-order interactions
2. Stochastic blockmodel for hypergraphs
3. Experiments
4. Conclusions and perspectives
Hypergraph construction

- Select 3 points at random and fit a line
- If residual distance less than a threshold, draw a hyperedge between those 3 points
- Globally set signal:noise hyperedge ratio = 2
- Repeat to obtain 100 3-uniform hypergraphs
Data characteristics

<table>
<thead>
<tr>
<th></th>
<th>Pts/line</th>
<th>Noisy pts</th>
<th>Total nb pts</th>
<th>mean nb of hyperedges</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 lines</td>
<td>30</td>
<td>40</td>
<td>100</td>
<td>1070.84</td>
</tr>
<tr>
<td>3 lines</td>
<td>30</td>
<td>60</td>
<td>150</td>
<td>587.7</td>
</tr>
</tbody>
</table>
Comparison with modularity based methods

Adjusted Rand Index
Comparison with modularity based methods II

Estimated number of groups
Outline

1. The need for higher-order interactions
2. Stochastic blockmodel for hypergraphs
3. Experiments
4. Conclusions and perspectives
Conclusions

- We propose a Stochastic Blockmodel for clustering the nodes of a (simple) hypergraph
- We establish (generic) identifiability of the parameters of the model
- Estimation and nodes clustering is performed through VEM algorithm
- ICL criterion is used to select the number of groups
Remaining challenges

- understand the detectability limits for non-uniform hypergraphs;
- computational issues: explore sparse hypergraphs modelings

Post-doc position on modelling sparse hypergraphs in Paris - deadline for application October, 15th.

Any questions?
Non equivalence between simple binary hypergraphs and bipartite graphs

Bipartite graphs space

Hypergraphs space

(a)

(b)

Matias C.
SBM for Hypergraphs
Warwick - Sept 2023
28 / 28