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Higher-order interactions I

Motivations
Networks or graphs focus on pairwise interactions
These type of pairwise interactions can already be quite elaborate:
undirected/directed, binary/weighted, simple/multiple,
static/dynamic, multiplex or multi-layers, . . .
Nonetheless pairwise interactions are not sufficient to describe the
nature of complex interactions :

▶ e.g. the presence of a 3rd chemical component may modify the
interaction of 2 other ;

Collective interactions or group interactions are richer than just
pairwise interactions

↪→ These are called higher-order interactions (HOI).
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Higher-order interactions II

Where do we find HOI?
Social networks: triadic and larger groups (as early as Simmel, 1950)

Scientific co-authorship,
Interactions between chemical components,
Interactions between neurons in brain networks,
etc

These interactions CAN NOT be represented by a graph.
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Higher-order interactions III

This is a nice recent review (2020):
Physics Reports 874 (2020) 1–92

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep
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a b s t r a c t

The complexity of many biological, social and technological systems stems from the
richness of the interactions among their units. Over the past decades, a variety of
complex systems has been successfully described as networks whose interacting pairs of
nodes are connected by links. Yet, from human communications to chemical reactions
and ecological systems, interactions can often occur in groups of three or more nodes
and cannot be described simply in terms of dyads. Until recently little attention has
been devoted to the higher-order architecture of real complex systems. However, a
mounting body of evidence is showing that taking the higher-order structure of these
systems into account can enhance our modeling capacities and help us understand and
predict their dynamical behavior. Here we present a complete overview of the emerging
field of networks beyond pairwise interactions. We discuss how to represent higher-
order interactions and introduce the different frameworks used to describe higher-order
systems, highlighting the links between the existing concepts and representations. We
review the measures designed to characterize the structure of these systems and the
models proposed to generate synthetic structures, such as random and growing bipar-
tite graphs, hypergraphs and simplicial complexes. We introduce the rapidly growing
research on higher-order dynamical systems and dynamical topology, discussing the
relations between higher-order interactions and collective behavior. We focus in partic-
ular on new emergent phenomena characterizing dynamical processes, such as diffusion,
synchronization, spreading, social dynamics and games, when extended beyond pairwise
interactions. We conclude with a summary of empirical applications, and an outlook on
current modeling and conceptual frontiers.
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).
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Pairwise vs HOI

HOI are defined as sets of interacting entities.
e.g. V = {a, b, c , d , e}; I = {{a, b, c}, {a, d}, {c, d}, {c , e}}
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e

(a) Pairwise interactions

a

b

c
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e

(b) A HOI in blue
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Naïve Graph representation: clique expansion graphM.T. Schaub, Y. Zhu, J.-B. Seby et al. Signal Processing 187 (2021) 108149 

Fig. 7. Different transformations on an example hypergraph. A The original hypergraph. B The dual hypergraph. C The clique expansion. D The star expansion. E The line 
graph. F The line expansion. 
tration) may be computed in terms of (weighted variants of) the 
second possible projection of the incidence matrix Z , namely Z ! Z . 
Apart from these three canonical types of graph representations 
(star, clique, and line graph) that can be derived from the incidence 
matrix Z and additional (weighting) transformations, a few other 
matrix-based schemes have been proposed for representing hyper- 
graphs. For instance, the recent paper [101] proposes the so-called 
line expansion of a hypergraph (different from the line graph; see 
Fig. 7 F), which is isomorphic to the line graph of its star expan- 
sion and aims to unify the clique and star expansions. In the line 
expansion, each incident vertex-hyperedge pair is considered as a 
“line node” and two “line nodes” are connected if they share either 
the vertex or the hyperedge. We would like to remark that in some 
cases we might be more interested in the dual of one hypergraph 
in which the roles of vertices and hyperedges are interchanged and 
the incidence matrix is Z ! [78] ; see Fig. 7 B. 

While we have so far considered only homogeneous hyper- 
graphs, Laplacian matrices have also been proposed for more gen- 
eral hypergraph models. For instance, [73,75,88] use variants of 
the clique expansion to derive matrix representations of hyper- 
graphs with edge-dependent vertex weights or inhomogeneous hy- 
peredges. Specifically, in [73,75] hypergraphs with edge-dependent 
vertex weights are projected onto asymmetric matrices, corre- 
sponding to induced directed graphs with self-loops. The authors 
then use established combinatorial and normalized Laplacians for 
digraphs [102] applied to these matrices to derive a Laplacian ma- 
trix for hypergraphs. Finally, in [88] , a novel algorithm for assign- 
ing edge weights to the graph representation is proposed, allowing 
for non-uniform expansions of hyperedges. 

As the above discussion shows, there is an enormous variety of 
matrix-based representations for hypergraphs, and the relative ad- 
vantages and disadvantages of these constructions are still sparsely 
understood. Ultimately, the choice of a particular matrix repre- 
sentation corresponds to a specific model for what constitutes a 
smooth signal on a hypergraph. We believe that a better under- 
standing of the spectral properties of the individual constructions 
will thus be an important step for choosing good matrix represen- 
tations for different application scenarios. 
5.2. Tensor-based hypergraph representations 

Instead of working with matrix-based representations, hyper- 
graphs can alternatively be represented by tensors. A tensor is sim- 
ply a multi-dimensional array, whose order is the number of in- 
dices needed to label an element in the tensor [90] . For instance, 
a vector and a matrix are a first-order and a second-order tensor, 

respectively. Several different versions of a hypergraph adjacency 
tensor have been proposed in existing work [103–112] . In this sec- 
tion, we focus on unweighted hypergraphs to keep our exposition 
accessible and to remain consistent with the majority of the exist- 
ing work in this domain. 

Due to their relative simplicity, k -uniform hypergraphs have 
been first studied in the literature. As every hyperedge is of the 
same order, a k -uniform hypergraph with N nodes can be naturally 
represented by a k th-order adjacency tensor A ∈ R N ×N ×···×N , where 
each index ranges from 1 to N, and the entries of A are defined as 
follows [103,104] 
A i 1 ···i k = 1 , if { v i 1 , · · · , v i k } ∈ E . (30) 
Every other entry in A is set to zero. Similarly to how it can be 
meaningful to normalize the adjacency matrix, normalized ver- 
sions of this adjacency tensor have been proposed as well. In 
[105] , the tensor in (30) is normalized by 1 / (k − 1)! . This normal- 
ization guarantees that the degree of a vertex v i , i.e., the num- 
ber of hyperedges that it belongs to, can be retrieved by sum- 
ming the entries in the tensor whose first mode index is i , namely 
deg (v i ) = ∑ N 

i 2 , ··· ,i k =1 A ii 2 ···i k ; see [108] . This is desirable because it 
resembles the way of obtaining the degree of a vertex in a graph 
from its adjacency matrix. Another normalized adjacency is pro- 
posed in [106] where 
A i 1 ···i k = 1 

(k − 1)! 
k ∏ 

j=1 
1 

k √ 
deg (v i j ) , if { v i 1 , · · · , v i k } ∈ E, (31) 

and the rest of the entries are equal to zero. Its associated nor- 
malized Laplacian tensor is defined as L = J − A where J is a 
tensor of the same size as A , and its entry J ii ···i = 1 if deg (v i ) > 0 
and 0 otherwise. This normalization ensures that L has certain 
desirable spectral properties that mimic those of the normalized 
graph Laplacian [106] . For example, the eigenvalues of L as defined 
in [113] are guaranteed to be contained in [0,2]. Having a bounded 
spectrum has shown to be useful in GSP for the stability analysis 
of graph filters [114] . 

For hypergraphs with non-uniform hyperedges, i.e., hyperedges 
of different sizes, the above construction does not extend easily. 
Since some edges will have smaller cardinality than others, some 
indices in the adjacency tensor would simply be undefined. A naive 
approach would be to keep an adjacency tensor for each observed 
cardinality of hyperedges, but this approach is computationally im- 
practical. An alternative is to augment the above construction of 
an adjacency tensor for general homogeneous hypergraphs as fol- 
lows. Denote by m the cardinality of the largest hyperedge across 
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Fig. 7. Different transformations on an example hypergraph. A The original hypergraph. B The dual hypergraph. C The clique expansion. D The star expansion. E The line 
graph. F The line expansion. 
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(star, clique, and line graph) that can be derived from the incidence 
matrix Z and additional (weighting) transformations, a few other 
matrix-based schemes have been proposed for representing hyper- 
graphs. For instance, the recent paper [101] proposes the so-called 
line expansion of a hypergraph (different from the line graph; see 
Fig. 7 F), which is isomorphic to the line graph of its star expan- 
sion and aims to unify the clique and star expansions. In the line 
expansion, each incident vertex-hyperedge pair is considered as a 
“line node” and two “line nodes” are connected if they share either 
the vertex or the hyperedge. We would like to remark that in some 
cases we might be more interested in the dual of one hypergraph 
in which the roles of vertices and hyperedges are interchanged and 
the incidence matrix is Z ! [78] ; see Fig. 7 B. 

While we have so far considered only homogeneous hyper- 
graphs, Laplacian matrices have also been proposed for more gen- 
eral hypergraph models. For instance, [73,75,88] use variants of 
the clique expansion to derive matrix representations of hyper- 
graphs with edge-dependent vertex weights or inhomogeneous hy- 
peredges. Specifically, in [73,75] hypergraphs with edge-dependent 
vertex weights are projected onto asymmetric matrices, corre- 
sponding to induced directed graphs with self-loops. The authors 
then use established combinatorial and normalized Laplacians for 
digraphs [102] applied to these matrices to derive a Laplacian ma- 
trix for hypergraphs. Finally, in [88] , a novel algorithm for assign- 
ing edge weights to the graph representation is proposed, allowing 
for non-uniform expansions of hyperedges. 

As the above discussion shows, there is an enormous variety of 
matrix-based representations for hypergraphs, and the relative ad- 
vantages and disadvantages of these constructions are still sparsely 
understood. Ultimately, the choice of a particular matrix repre- 
sentation corresponds to a specific model for what constitutes a 
smooth signal on a hypergraph. We believe that a better under- 
standing of the spectral properties of the individual constructions 
will thus be an important step for choosing good matrix represen- 
tations for different application scenarios. 
5.2. Tensor-based hypergraph representations 

Instead of working with matrix-based representations, hyper- 
graphs can alternatively be represented by tensors. A tensor is sim- 
ply a multi-dimensional array, whose order is the number of in- 
dices needed to label an element in the tensor [90] . For instance, 
a vector and a matrix are a first-order and a second-order tensor, 

respectively. Several different versions of a hypergraph adjacency 
tensor have been proposed in existing work [103–112] . In this sec- 
tion, we focus on unweighted hypergraphs to keep our exposition 
accessible and to remain consistent with the majority of the exist- 
ing work in this domain. 

Due to their relative simplicity, k -uniform hypergraphs have 
been first studied in the literature. As every hyperedge is of the 
same order, a k -uniform hypergraph with N nodes can be naturally 
represented by a k th-order adjacency tensor A ∈ R N ×N ×···×N , where 
each index ranges from 1 to N, and the entries of A are defined as 
follows [103,104] 
A i 1 ···i k = 1 , if { v i 1 , · · · , v i k } ∈ E . (30) 
Every other entry in A is set to zero. Similarly to how it can be 
meaningful to normalize the adjacency matrix, normalized ver- 
sions of this adjacency tensor have been proposed as well. In 
[105] , the tensor in (30) is normalized by 1 / (k − 1)! . This normal- 
ization guarantees that the degree of a vertex v i , i.e., the num- 
ber of hyperedges that it belongs to, can be retrieved by sum- 
ming the entries in the tensor whose first mode index is i , namely 
deg (v i ) = ∑ N 

i 2 , ··· ,i k =1 A ii 2 ···i k ; see [108] . This is desirable because it 
resembles the way of obtaining the degree of a vertex in a graph 
from its adjacency matrix. Another normalized adjacency is pro- 
posed in [106] where 
A i 1 ···i k = 1 

(k − 1)! 
k ∏ 

j=1 
1 

k √ 
deg (v i j ) , if { v i 1 , · · · , v i k } ∈ E, (31) 

and the rest of the entries are equal to zero. Its associated nor- 
malized Laplacian tensor is defined as L = J − A where J is a 
tensor of the same size as A , and its entry J ii ···i = 1 if deg (v i ) > 0 
and 0 otherwise. This normalization ensures that L has certain 
desirable spectral properties that mimic those of the normalized 
graph Laplacian [106] . For example, the eigenvalues of L as defined 
in [113] are guaranteed to be contained in [0,2]. Having a bounded 
spectrum has shown to be useful in GSP for the stability analysis 
of graph filters [114] . 

For hypergraphs with non-uniform hyperedges, i.e., hyperedges 
of different sizes, the above construction does not extend easily. 
Since some edges will have smaller cardinality than others, some 
indices in the adjacency tensor would simply be undefined. A naive 
approach would be to keep an adjacency tensor for each observed 
cardinality of hyperedges, but this approach is computationally im- 
practical. An alternative is to augment the above construction of 
an adjacency tensor for general homogeneous hypergraphs as fol- 
lows. Denote by m the cardinality of the largest hyperedge across 
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Picture from Schaub et al. 2021

Each interaction is transformed into a clique = all edges between pairs
are present ;
HOIs actually disappeared !
Too simplistic: For e.g, in co-authorship 1 paper with 3 authors ̸= 3
different papers written by pairs of those authors.
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Fig. 7. Different transformations on an example hypergraph. A The original hypergraph. B The dual hypergraph. C The clique expansion. D The star expansion. E The line 
graph. F The line expansion. 
tration) may be computed in terms of (weighted variants of) the 
second possible projection of the incidence matrix Z , namely Z ! Z . 
Apart from these three canonical types of graph representations 
(star, clique, and line graph) that can be derived from the incidence 
matrix Z and additional (weighting) transformations, a few other 
matrix-based schemes have been proposed for representing hyper- 
graphs. For instance, the recent paper [101] proposes the so-called 
line expansion of a hypergraph (different from the line graph; see 
Fig. 7 F), which is isomorphic to the line graph of its star expan- 
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expansion, each incident vertex-hyperedge pair is considered as a 
“line node” and two “line nodes” are connected if they share either 
the vertex or the hyperedge. We would like to remark that in some 
cases we might be more interested in the dual of one hypergraph 
in which the roles of vertices and hyperedges are interchanged and 
the incidence matrix is Z ! [78] ; see Fig. 7 B. 

While we have so far considered only homogeneous hyper- 
graphs, Laplacian matrices have also been proposed for more gen- 
eral hypergraph models. For instance, [73,75,88] use variants of 
the clique expansion to derive matrix representations of hyper- 
graphs with edge-dependent vertex weights or inhomogeneous hy- 
peredges. Specifically, in [73,75] hypergraphs with edge-dependent 
vertex weights are projected onto asymmetric matrices, corre- 
sponding to induced directed graphs with self-loops. The authors 
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understood. Ultimately, the choice of a particular matrix repre- 
sentation corresponds to a specific model for what constitutes a 
smooth signal on a hypergraph. We believe that a better under- 
standing of the spectral properties of the individual constructions 
will thus be an important step for choosing good matrix represen- 
tations for different application scenarios. 
5.2. Tensor-based hypergraph representations 

Instead of working with matrix-based representations, hyper- 
graphs can alternatively be represented by tensors. A tensor is sim- 
ply a multi-dimensional array, whose order is the number of in- 
dices needed to label an element in the tensor [90] . For instance, 
a vector and a matrix are a first-order and a second-order tensor, 

respectively. Several different versions of a hypergraph adjacency 
tensor have been proposed in existing work [103–112] . In this sec- 
tion, we focus on unweighted hypergraphs to keep our exposition 
accessible and to remain consistent with the majority of the exist- 
ing work in this domain. 

Due to their relative simplicity, k -uniform hypergraphs have 
been first studied in the literature. As every hyperedge is of the 
same order, a k -uniform hypergraph with N nodes can be naturally 
represented by a k th-order adjacency tensor A ∈ R N ×N ×···×N , where 
each index ranges from 1 to N, and the entries of A are defined as 
follows [103,104] 
A i 1 ···i k = 1 , if { v i 1 , · · · , v i k } ∈ E . (30) 
Every other entry in A is set to zero. Similarly to how it can be 
meaningful to normalize the adjacency matrix, normalized ver- 
sions of this adjacency tensor have been proposed as well. In 
[105] , the tensor in (30) is normalized by 1 / (k − 1)! . This normal- 
ization guarantees that the degree of a vertex v i , i.e., the num- 
ber of hyperedges that it belongs to, can be retrieved by sum- 
ming the entries in the tensor whose first mode index is i , namely 
deg (v i ) = ∑ N 

i 2 , ··· ,i k =1 A ii 2 ···i k ; see [108] . This is desirable because it 
resembles the way of obtaining the degree of a vertex in a graph 
from its adjacency matrix. Another normalized adjacency is pro- 
posed in [106] where 
A i 1 ···i k = 1 

(k − 1)! 
k ∏ 

j=1 
1 

k √ 
deg (v i j ) , if { v i 1 , · · · , v i k } ∈ E, (31) 

and the rest of the entries are equal to zero. Its associated nor- 
malized Laplacian tensor is defined as L = J − A where J is a 
tensor of the same size as A , and its entry J ii ···i = 1 if deg (v i ) > 0 
and 0 otherwise. This normalization ensures that L has certain 
desirable spectral properties that mimic those of the normalized 
graph Laplacian [106] . For example, the eigenvalues of L as defined 
in [113] are guaranteed to be contained in [0,2]. Having a bounded 
spectrum has shown to be useful in GSP for the stability analysis 
of graph filters [114] . 

For hypergraphs with non-uniform hyperedges, i.e., hyperedges 
of different sizes, the above construction does not extend easily. 
Since some edges will have smaller cardinality than others, some 
indices in the adjacency tensor would simply be undefined. A naive 
approach would be to keep an adjacency tensor for each observed 
cardinality of hyperedges, but this approach is computationally im- 
practical. An alternative is to augment the above construction of 
an adjacency tensor for general homogeneous hypergraphs as fol- 
lows. Denote by m the cardinality of the largest hyperedge across 

13 

Picture from Schaub et al. 2021

No loss of information;
But "higher-order" now
translates into node degrees
in one part;
2 two parts don’t play
symmetric roles: statistical
models on bipartite graphs
are not appropriate here
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Simple hypergraphs

Definition
A (simple) hypergraph H = (V, E) is defined as a set of nodes V ̸= ∅ and a
set of hyperedges E . Each hyperedge is a non-empty collection of m
distinct nodes (2 ≤ m ≤ M) taking part within an interaction.

Hypergraphs naturally include the entity of graphs, by simply
considering hyperedges of size m = 2;

A hypergraph can contain a size-3 hyperedge [a, b, c] without any
requirement on the existence of the size-2 hyperedges [a, b], [a, c], and
[b, c].
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Clustering the nodes of a hypergraph I

What has been done up to now
Modularity-based approaches

▶ Different hypergraph modularity definitions: what kind of communities
do they favour?

▶ Note that for computational reasons, these focus on
multisets-hypergraphs where nodes may be repeated in a same
hyperedge;

▶ This is not always appropriate, e.g. co-authorship dataset;
▶ In the context of graphs, absence of self-loops and multiple edges are

known to generate pbms in modularity approaches
Spectral clustering has been generalized to hypergraphs but

▶ it tends to favour groups of the same size;
Challenges

▶ Look for general clusters and not only communities
▶ None of these methods comes with a statistical criterion to select the

number of groups Q
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Clustering the nodes of a hypergraph II

Our proposal
We focus on simple hypergraphs (instead of multisets-hypergraphs);
We define a stochastic blockmodel to cluster the nodes of a
hypergraph

▶ We establish parameter identifiability results;
▶ We propose a variational expectation-maximisation algorithm to

infer clusters and parameters;
▶ We propose an ICL criterion to select the number of clusters;
▶ All these tools are implemented (in C++) in a efficient R package called

HyperSBM.
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SBM formulation

H = (V, E), with V = {1, . . . , n} nodes and E hyperedges;

For each 2 ≤ m ≤ M, let
V(m) =

{
{i1, . . . , im} : i1, . . . , im ∈ V and i1 ̸= . . . ̸= im

}
, set of

unordered node tuples of size m;

Observations: At each {i1, . . . , im} ∈ V(m), we observe indicator
variable Yi1,...,im = 1{{i1, . . . , im} ∈ E};

Latent clusters: Z1, . . . ,Zn iid in {1, . . . ,Q} with πq = P(Zi = q);

Conditional independence assumption:
{Yi1,...,im}{i1,...,im}∈V(m) |{Z1, . . . ,Zn} are independent with

Yi1,...,im |{Z1 = q1, . . . ,Zm = qm} ∼ Bern(B(m)
qi1 ,...,qim

).
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Parameter (generic) identifiability

Generic identifiability: a parameter θ almost surely (w.r.t. Lebesgue
measure) uniquely defines the distribution Pθ (up to label switching on the
node groups).

Theorem

For any Q, the parameter θ = (πq,B
(m)
q1,...,qm)m,q,q1,...,qm of the HSBM for

(simple) hypergraphs over n nodes, is generically identifiable for large
enough n.

Said differently, there is a finite set C of (non explicit) polynomial conditions
on θ such that whenever θ /∈ C, the distribution Pθ is uniquely defined by θ.
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Inference through variational EM I

Direct computation of the likelihood is not feasible for large n;

EM algorithm neither feasible because latent variables are not
independent conditional on observed ones;

Variational approximation to EM algorithm: replace the intractable
posterior distribution by the best approximation (w.r.t.
Kullback-Leibler divergence) in a class of simpler (factorised)
distributions:

Qτ (Z1, . . . ,Zn) =
n∏

i=1

Qτ (Zi ) =
n∏

i=1

Q∏
q=1

τ
Ziq

iq ,

with the variational parameter τiq = Qτ (Zi = q) ∈ [0, 1] and∑Q
q=1 τiq = 1, for any i = 1, . . . , n and q = 1, . . . ,Q.
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Inference through variational EM II

Evidence lower bound (ELBO)

J (θ, τ) = EQτ [logPθ(Y ,Z )]− EQτ [logQτ (Z )]

= logPθ(Y )− KL(Qτ (Z )||Pθ(Z |Y ))

≤ logPθ(Y ),

with equality iff Qτ (Z ) is the true posterior Pθ(Z |Y ).

VEM maximises the lower bound J (θ, τ) (with respect to τ and θ) instead
of the intractable log-likelihood logPθ(Y )
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VEM algorithm

VE-Step maximizes J (θ, τ) with respect to τ :

τ̂ (t) = argmax
τ

J (θ(t−1), τ); s.t.
∑Q

q=1 τiq = 1 ∀i = 1, . . . , n.

This is equivalent to minimising the Kullback-Leibler divergence.
In practice this step is obtained by a fixed-point algorithm.

M-Step maximizes J (θ, τ) with respect to θ:

θ̂(t) = argmax
θ

J (θ, τ (t−1)), s.t.
∑Q

q=1 πq = 1,

thus updating the value of the model parameters πq and B
(m)
q1,...,qm .
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Model selection and generalizations

Integrated classification likelihood (ICL)
We select q̂ = argmaxq ICL(q) where

ICL(q) = logPθ̂(Y , Ẑ )− 1
2
(q − 1) log n − 1

2

M∑
m=2

(
q +m − 1

m

)
log

(
n

m

)
.

Generalizations
We have not considered self-loops (m = 1) but it’s easy to do;
Binary hyperedge variables could be replaced by counting hyperedges
variables, replacing the Bernoulli distribution with, for e.g.
(zero-inflated or deflated) Poisson law.
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Computational complexity - and considerations over the
choice of M

Focusing on simple hypergraphs has a high price: we need to explore
all the

(n
m

)
tuples of nodes for all 2 ≤ m ≤ M;

Our algorithm has a complexity of O(n
( n
M

)
QM), which is large;

Current modularity approaches avoid this issue by working with
multisets-hypergraphs, because there the summations over multisets of
nodes

∑
i1,...,im

factorize into m independent sums (no constraint that
the nodes be different), and this further simplifies the expression of
the modularity;
Again, this is inappropriate on some datasets;
As a consequence: we recommend to use a reasonable value of M:
indeed M is not necessarily the largest observed hyperedge size (e.g.
co-authorship dataset);
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Line clustering through hypergraphs I

Hypergraph construction
Select 3 points at random and fit a line
If residual distance less than a threshold, draw a hyperedge between
those 3 points
Globally set signal:noise hyperedge ratio = 2
Repeat to obtain 100 3-uniform hypergraphs
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Line clustering through hypergraphs II

Data characteristics
Pts/line Noisy pts Total nb pts mean nb of hyperedges

2 lines 30 40 100 1070.84
3 lines 30 60 150 587.7
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Comparison with modularity based methods I

Adjusted Rand Index
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Comparison with modularity based methods II

Estimated number of groups
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Conclusions

We propose a Stochastic Blockmodel for clustering the nodes of a
(simple) hypergraph

We establish (generic) identifiability of the parameters of the model

Estimation and nodes clustering is performed through VEM algorithm

ICL criterion is used to select the number of groups

C++ code wrapped in a R package HyperSBM
(https://github.com/LB1304/HyperSBM) and preprint on ArXiV
https://arxiv.org/abs/2210.05983
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Remaining challenges

understand the detectability limits for non-uniform hypergraphs ;
computational issues: explore sparse hypergraphs modelings

Post-doc position on modelling sparse hypergraphs in Paris - deadline for
application October, 15th.

Any questions ?
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Non equivalence between simple binary hypergraphs and
bipartite graphs

Bipartite graphs space Hypergraphs space

a b c

(a)

a b c

(b)

a b c

(c)

a b c
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