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a b s t r a c t

We prove identifiability of parameters for a broad class of random graph mixture models.
These models are characterized by a partition of the set of graph nodes into latent
(unobservable) groups. The connectivities between nodes are independent random
variables when conditioned on the groups of the nodes being connected. In the binary
random graph case, in which edges are either present or absent, these models are known
as stochastic blockmodels and have been widely used in the social sciences and, more
recently, in biology. Their generalizations to weighted random graphs, either in
parametric or non-parametric form, are also of interest. Despite these many applications,
the parameter identifiability issue for such models has only been touched upon in the
literature. We give here a thorough investigation of this problem. Our work also has
consequences for parameter estimation. In particular, the estimation procedure proposed
by Frank and Harary for binary affiliation models is revisited in this article.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

In modern statistical analyses, data are often structured using networks. Complex networks appear across many fields of
science, including biology (metabolic networks, transcriptional regulatory networks, protein–protein interaction networks),
sociology (social networks of acquaintance or other connections between individuals), communications (the Internet), and
others.

The literature contains many random graph models which incorporate a variety of characteristics of real-world graphs
(such as scale-free or small-world properties). We refer to Newman (2003) and the references therein for an interesting
introduction to networks.

One of the earliest and most studied random graph models was formulated by Erd +os and Rényi (1959). In this setup, binary
random graphs are modeled as a set of independent and identically distributed Bernoulli edge variables over a fixed set of
nodes. The homogeneity of this model led to the introduction of mixture versions to better capture heterogeneity in data.
Stochastic blockmodels (Daudin et al., 2008; Frank and Harary, 1982; Holland et al., 1983; Snijders and Nowicki, 1997) were
introduced in various forms, primarily in the social sciences (White et al., 1976) to study relational data, and more recently in
biology (Picard et al., 2009). In this context, the nodes are partitioned into latent groups (blocks) characterizing the relations
between nodes. Blockmodelling thus refers to the particular structure of the adjacency matrix of the graph (i.e., the matrix
containing edge indicators). By ordering the nodes by the groups to which they belong, this matrix exhibits a block pattern.
Diagonal and off-diagonal blocks, respectively, represent intra-group and inter-group connections. In the special case where
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blocks exhibit the same behavior within their type (diagonal or off-diagonal), we obtain a model with an affiliation structure
(Frank and Harary, 1982).

Although the literature from the social sciences has focused mostly on binary relations, there is a growing interest in
weighted graphs (Barrat et al., 2004; Newman, 2004). Mixture models have also been considered in the case of a finite number
of possible relations (Nowicki and Snijders, 2001), and more recently with continuous edge variables (Ambroise and Matias,
2010; Mariadassou et al., 2010). Some variations that we shall not discuss here include models with covariates
(Tallberg, 2005), mixed membership models (Airoldi et al., 2008; Latouche et al., to appear), and models with continuous
latent variables (Daudin et al., in press; Handcock et al., 2007). We also note that Newman and Leicht (2007) proposed another
version of a binary mixture model, slightly different from the stochastic blockmodel considered here.

Many different parameter estimation procedures have been proposed for these models, such as Bayesian methods
(Nowicki and Snijders, 2001; Snijders and Nowicki, 1997), variational expectation-maximization (EM) procedures (Daudin
et al., 2008; Picard et al., 2009), online classification EM methods (Zanghi et al., 2008, 2010) and more recently, direct mixture
model based approaches (Ambroise and Matias, 2010). Consistency of all these procedures relies strongly on the
identifiability of the model parameters. However, the literature on these models has not addressed this question in any
depth. The trivial label-swapping problem is often mentioned: it is well known that the parameters may be recovered only up
to permutations on the latent class labels. Whether this is the only issue preventing unique identification of parameters from
the distribution, however, has never been investigated. Given the complex form of the model parameterization, this is not
surprising, as any such analysis seems likely to be very involved.

In earlier work (Allman et al., 2009, Theorem 7), the authors made a first step towards an understanding of the parameter
identifiability issue in binary random graph mixture models. While that article addressed a variety of models with latent
variables, the present one focuses more specifically on random graph mixtures, giving parameter identifiability results for a
broad range of such models. Moreover, part of our work sheds some new light on parameter estimation procedures.

Allman et al. (2009) emphasized the usefulness of an algebraic theorem due to Kruskal (1976, 1977) (see also Rhodes,
2010) to establish identifiability results in various models whose common feature is the presence of latent groups and at least
three conditionally independent variables. Here, we rather focus on the family of random graph mixture models and explore
various techniques to establish their parameters’ identifiability. Thus while the method developed by Allman et al. (2009) is
presented in Section 5.1 and finds further use in several arguments, it is only one of several techniques we use. The issue at the
core of Kruskal’s result is the decomposition of a 3-way array as a sum of rank one tensors. While there exist approximate
methods of performing this decomposition (see, e.g., Tomasi and Bro, 2006), we mention that this approach seems poorly
suited to explicitly recover the parameters from the distribution, and thus to construct estimation procedures.

Some of our results focus on moment equations, as did those of Frank and Harary (1982), in one of the earliest works on
binary affiliation models. In particular, we revisit some of their claims. The method consists in looking at the distribution of Kn,
a complete set of edge variables over a set of n nodes. A natural question is then: What is the minimal value of n such that the
complete distribution over all edge variables (a potentially infinite set) is characterized by the distribution of Kn? Despite this
question’s simplicity, we are far from having a complete answer to it. When looking at finite state distributions (e.g., for binary
random graphs), the knowledge of the distribution of Kn is equivalent to the knowledge of a certain set of moments of the
distribution. Expressing the moments in terms of parameters gives a nonlinear polynomial system of equations, which one
uses to identify parameters. The uniqueness of solutions to those systems, up to label swapping on parameters, is the issue at
stake for identifiability.

For random graphs with continuous edge weights given by a parametric family of distributions we shall see that the
information contained in the model might be recovered from the distribution of Kn for very small values of n. In this case, we
rely on classical results on the identifiability of the parameters of a multivariate mixture due to Teicher (1967). Note that the
main difference between classical mixtures and random graph mixtures is the non-independence of the variates.

In contrast to the approach based on Kruskal’s Theorem, both the method utilizing moment equations and the one relying
on multivariate mixtures lead to practical estimation procedures. These are further developed by Ambroise and Matias
(2010).

In Allman et al. (2009), a large role was played by the notion of generic identifiability, by which every parameter except
those lying on a proper algebraic subvariety, are identifiable. In other words, in a parametric setting, the non-identifiable
parameters are included in a subset whose dimension is strictly smaller than the dimension of the full parameter space. Thus
with probability one with respect to the Lebesgue measure, every parameter is identifiable. This notion of generic
identifiability is important for finite mixtures of multivariate Bernoulli distributions (Allman et al., 2009; Carreira-Perpiñán
and Renals, 2000; Gyllenberg et al., 1994) and also for hidden Markov models (Allman et al., 2009; Petrie, 1969). Here, we
stress that some of our identifiability results are generic, while others are strict.

Finally, we note that our focus throughout will be on undirected graph models. While many of our results may be
generalized to directed graphs, one must pay careful attention to the models’ parametrization in doing so. For instance, some
of the results would become simpler if the connectivities from group q to group l differed from group l to group q, as symmetry
in a model can have a strong impact on identifiability questions. However, such asymmetric models require an increase in the
number of parameters which may be excessive for data analysis.

This paper is organized as follows. Section 2 presents the various random graph mixture models: with either binary or,
more generally, finite-state edges; both parametric and non-parametric models for edges with continuous weights; and
the particular affiliation variant of these models. Section 3 gives parameter identifiability results for binary random graphs.
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Note that the affiliation model has to be handled separately. Section 4 takes up weighted random graphs, in both parametric
and non-parametric variants. All the proofs are postponed to Section 5. In particular, Section 5.1 is devoted to a brief
presentation of Kruskal’s result and our use of it in the proofs of Theorems 2 and 14.

A concise guide to the model variants we consider, and our identifiability results on each of them, is provided in Table 2 at
the end of this article. Referring to this table occasionally for brief reminders of the model parameterizations may facilitate
reading the text.

2. Notation and models

We consider a probabilistic model on undirected and possibly weighted graphs as follows. Let n be a fixed number of
nodes, with Z1,y,Zn independent identically distributed (i.i.d.) random variables, taking values in Z ¼ f1, . . . ,Qg for some
Q Z2. These random variables represent the Q groups the nodes are partitioned among, and are used to introduce
heterogeneity in the model. With pq ¼PðZi ¼ qÞ 2 ð0,1Þ, so

P
qpq ¼ 1, the vector p¼ ðpqÞ thus gives the priors on the groups.

Let fXijg1r io jrn be random edge variables taking values in a state space X . Conditional on Z1,y,Zn, we assume that the edge
variables fXijg1r io jrn are independent, and that the conditional distribution of Xij depends only on Zi and Zj, the groups
containing its endpoints.

We are interested in random graphs of various types: For binary random graphs, where X ¼ f0,1g, an absent edge is
represented by 0 and a present one by 1. Random graphs whose edges may be of finitely many types are modeled with
X ¼ f1, . . . ,kg, or equivalently, f0, . . . ,k$1g. More general weighted random graphs are obtained when X ¼N or Rs,sZ1.

In the binary state case, the distribution of Xij conditional on Zi, Zj follows a Bernoulli distribution with parameter
pZiZj
¼PðXij ¼ 1jZi,ZjÞ. As we consider only undirected graphs, we implicitly assume equality of the parameters pql=plq, for all

1rq,lrQ .
More generally, in the finite state case, with X ¼ f1, . . . ,kg, the vector pZiZj

¼ ðpZiZj
ð1Þ, . . . ,pZiZj

ðkÞÞ contains the values
pZiZj
ðkÞ ¼PðXij ¼ kjZi,ZjÞ, for 1rkrk, with

P
kpZiZj
ðkÞ ¼ 1. We also implicitly assume equality of the vectors pql=plq, for all

1rq,lrQ . We introduce this model primarily as a tool in the study of continuously weighted random graphs, though it might
be useful for studying relationships between nodes of different types (colors), or of varying but discrete strengths (viewing
the states as ordered). Note that a related model is described by Nowicki and Snijders (2001), where the authors consider
more general relation types (not necessarily edges, whether directed or not) occurring between a pair of nodes.

In the weighted random graph case, edges may be viewed as either absent (Xij=0) or present (Xija0), with those present
having a weight, namely a non-zero value inX ¼N,R, orRs. The distribution of Xij conditional on Zi, Zj may be assumed to have
either a parametric or non-parametric form. More precisely, we assume that the distribution of Xij conditional on Zi, Zj is the
probability measure mZi ,Zj

on X given by

mql ¼ ð1$pqlÞd0þpqlFql, 1rq,lrQ ,

where pql 2 ð0,1& is a sparsity parameter, d0 is the Dirac mass at zero and Fql is a probability measure onX with density fql with
respect to either the counting measure on N or the Lebesgue measure on R or Rs. We also implicitly assume mql ¼ mlq, for all
1rq,lrQ . In the parametric case, we assume moreover that Fql ¼ Fð',yqlÞ and fql ¼ f ð',yqlÞwhere the parameter yql belongs to
Y ( Rp. In the non-parametric case we assume Fql is absolutely continuous.

We shall always assume that Fql has no point mass at zero, otherwise the sparsity parameter pql cannot be identified from
the mixture mql. For instance, when considering Poisson weights, fql is the Poisson density truncated at zero,

fqlðkÞ ¼
yk

ql

k!
ðeyql$1Þ$1, kZ1:

A particular instance of these models is the affiliation one, which assumes additionally only two distributions of
connections between the edges, one for intra-group connections and another for inter-group connections. Thus the binary
state case of the affiliation model assumes

pql ¼
a if q¼ l

b if qal

(

for all q,l 2 f1, . . . ,Qg:

The affiliation model in the continuous observations case is described similarly with mql ¼ min1q ¼ lþmout1qal, for all
1rq,lrQ . More precisely, in the continuous parametric case, for all q,l 2 f1, . . . ,Qg we set

pql ¼
a if q¼ l

b if qal

(
and yql ¼

yin if q¼ l,

yout if qal:

(

For all these models, we consider restrictions of the model distribution by focusing on a subset of the nodes. We denote by
Kn the complete set of ðn2Þ edge variables associated to a subset of n nodes. Note that the distribution of these variables is
independent of the choice of which n nodes one considers. Also, while this notation is motivated by that used in graph theory,
where Kn denotes the complete graph on n nodes, we emphasize that here Kn is a set of random variables, and we are making
no statement as to whether these edges are present or absent in any realization of our model.
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3. Binary random graphs

We first focus on models with binary edge states, considering the more general case with arbitrary connectivity
parameters, followed by affiliation models.

3.1. The binary non-affiliation model

When X ¼ f0,1g, a first result on identifiability of parameters was obtained by Allman et al. (2009) for the special case of
Q=2 groups. For completeness, we recall the statement here.

Theorem 1 (Allman et al., 2009, Theorem 7). The parameters p1,p2 ¼ 1$p1,p11,p12,p22 of the random graph mixture model with
binary edge state variables and Q=2 groups are identifiable, up to label swapping, from the distribution of K16 provided that the
connectivity parameters {p11, p12, p22} are distinct.

In particular, the result remains valid when the group proportions pq are fixed.

Note the assumption that p11ap22 limits this theorem to the strict non-affiliation case.
The proof of this theorem is based on a clever application of an algebraic result, due to Kruskal (1976, 1977) (see also

Rhodes, 2010), that deals with decompositions of 3-way arrays. While generalizing the proof to more than two groups
requires substantially more effort, the basic method still applies. Here we prove the following theorem.

Theorem 2. The parameters pq, 1rqrQ , and pql ¼PðXij ¼ 1jZi ¼ q,Zj ¼ lÞ, 1rqr lrQ , of the random graph mixture model
with binary edge state variables and Q Z3 groups are generically identifiable, up to label swapping, from the distribution of Km2 ,
when

mZQ$1þðQþ2Þ2=4 if Q is even,

mZQ$1þðQþ1ÞðQþ3Þ=4 if Q is odd:

(

Moreover, the result remains valid when the group proportions pq are fixed.

Note that the stated number of nodes ensuring that parameters are generically identifiable from the distribution of the
edges may not be optimal. In particular, when Q=2, the proof of this theorem is still valid, yet it gives a minimal number of
m2= 25 nodes. This is larger than the bound 16 obtained in Theorem 1, and that number may itself not be optimal.

Also, while Theorem 1 gives exact restrictions on parameters producing identifiability, Theorem 2 is not explicit about the
generic conditions. However, for any fixed Q the argument in our proof does yield a straightforward, though perhaps lengthy,
means of checking whether a particular choice of parameters meets the conditions. Among these is a requirement that the pql

be distinct, so the theorem does not apply to the affiliation model.
Moreover, a careful reading of the proof of the theorem shows that its generic aspect concerns only the part of the

parameter space with the connectivities pql. This enables us to conclude that even when considering subsets defined by
restriction of the group proportions pq (for instance assuming the group proportions are fixed, or equal), the result
remains valid.

3.2. The binary affiliation model

In the particular case of the affiliation model, we can obtain results from arguments based on moments of the distribution.
For a small number of nodes, one may obtain explicit formulas for the moments in terms of model parameters. By analyzing
the solutions to this nonlinear multivariate polynomial system of equations, one can address the question of parameter
identifiability, as well as develop estimation procedures.

3.2.1. Relying on the distribution of K3.
Frank and Harary (1982) presented a method for estimation of the parameters of the binary affiliation model based only on

the distribution of triplet cycles (Xij, Xjk, Xki), 1r io jokrn, of edge variables. From an identifiability perspective, this
corresponds to identifying the parameters from the distribution of K3. They suggest estimation of the parameters by solving
the empirical moment equations. However, they omit discussing uniqueness of the solutions to these equations, even though
this issue is a delicate one for nonlinear equations.

In the following, we first explore the use of the distribution of only K3 to identify model parameters. As a consequence, we
exhibit a new estimation procedure for the parameters.

The distribution of a triplet (Xij, Xjk, Xki) is expressible in terms of the indeterminates a,b andpqs. Let us denote by s2 and s3

the sums of the squares and cubes of the pqs and, more generally, let

sk ¼
XQ

q ¼ 1

pk
q:
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Then one easily computes (see also Frank and Harary, 1982) the moment formulas

m1 ¼ EðXijÞ ¼ s2aþð1$s2Þb, ð1Þ

m2 ¼ EðXijXikÞ ¼ s3a2þ2ðs2$s3Þabþð1$2s2þs3Þb2, ð2Þ

m3 ¼ EðXijXikXjkÞ ¼ s3a3þ3ðs2$s3Þab2þð1$3s2þ2s3Þb
3, ð3Þ

which completely characterize the distribution of (Xij, Xjk, Xki).
Note that in the important case of a uniform node distribution, where pq ¼ 1=Q for all q, we have sk=Q1$k. This implies

s3=s2
2, and hence m2=m1

2, so these equations reduce to two independent ones. As a consequence, the claim by Frank and
Harary (1982) that it is then possible to estimate the three unknowns Q ,a,b relying only on these moment equations is not
correct.

Still, there are indeed several situations in which parameters are identifiable from these moments, as we next discuss.
With Q=2 latent groups and a possibly non-uniform group distribution, there are three independent parameters in the

affiliation model. In this case, the three moments above are enough to identify parameters. To show this, we first construct
certain polynomials with roots at the connectivity parameters. Since the construction easily extends to larger Q, we give it
more generally.

Proposition 3. Consider the random graph affiliation mixture model with Q Z2 groups and binary edge state variables, on Q+1
nodes. Then the parameter a is a real root of the degree ðQ þ1

2 Þ univariate polynomial

UQ ðXÞ ¼ E
Y

1r io jrQ þ1

ðX$XijÞ

0

@

1

A:

The polynomial

VQ ðX,YÞ ¼ E XþðQ$1ÞY$
X

1r irQ

XiðQ þ1Þ

 !
Y

1r io jrQ

ðX$XijÞ

0

@

1

A

of degree ðQ2Þþ1 in X, and degree 1 in Y, vanishes at ðX,YÞ ¼ ða,bÞ. Moreover, the coefficient of Y in VQ ða,YÞ is non-zero precisely when
aab.

The utility of these polynomials is that from the distribution of KQ + 1, the polynomial UQ allows one to recover at most ðQ þ1
2 Þ

candidate values for a, and therefore each such value VQ allows one to recover a unique candidate for b. While some of these
candidates could be ruled out as not lying in (0,1), we do not know when this leaves a unique a and b for Q Z3. In the case of
Q=2 groups, however, we prove that these polynomials uniquely identify the parameters.

Theorem 4. In the random graph affiliation mixture model with Q=2 groups and binary edge state variables, the parametera is the
unique real root of the polynomial

U2ðXÞ ¼ X3$3m1X2þ3m2X$m3:

Moreover, as soon as aab, the parameter b is the unique real root of the polynomial V2ða,YÞ where

V2ðX,YÞ ¼ X2þXY$3m1X$m1Yþ2m2:

Once a and b are uniquely identified, we may determine from Eq. (1) the value of s2 (again using that aab), and hence p1,
p2, up to permutation. This proves the following corollary.

Corollary 5. The parameters fp1,p2 ¼ 1$p1g, up to label swapping, and a,b of the random graph affiliation mixture model with
Q=2 groups and binary edge state variables are strictly identifiable from the distribution of K3 provided aab.

Identifiability of a andbwhen Q and thepqs are known. When thepqs are known, Frank and Harary (1982) suggested solving
any two of the three empirical counterparts of Eqs. (1)–(3), leading to three different methods of estimatinga andb. However,
numerical experiments convinced us that two equations are in general not sufficient to uniquely determine the parameters.
In fact, it is not immediately clear that even with the three moment equations (either the theoretical ones for the question of
identification, or their empirical counterparts for estimation) a unique solution is determined. Below we give explicit
formulas for the solution to the system, which in most cases are even rational, involving no extraction of roots. These can thus
be easily used to construct estimators.

Theorem 6. If m2am2
1, then p is non-uniform and we can recover the parameters b and a via the rational formulas

b¼
ðs3$s2s3Þm3

1þðs
3
2$s3Þm2m1þðs3s2$s3

2Þm3

ðm2
1$m2Þð2s3

2$3s3s2þs3Þ
, a¼ m1þðs2$1Þb

s2
:
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If m2=m1
2, then p is uniform and we have

b¼m1þ
m3

1$m3

Q$1

! "1=3

and a¼ Qm1þð1$Q Þb:

Implicit in this statement is the fact that denominators in the above formulas are non-zero. Note that the uniform group
prior case formula is used for estimation by Ambroise and Matias (2010).

We immediately obtain the following corollary.

Corollary 7. For any fixed and known values of pq 2 ð0,1Þ, 1rqrQ , both parameters a,b of the random graph affiliation model
with binary edge state variables are identifiable from the distribution of K3.

The proofs of the previous statements lead to an interesting polynomial in the moments, whose vanishing detects the
Erd +os–Rényi model, corresponding to a single node group.

Proposition 8. The moments of a random graph affiliation model with binary edge state variables, Q node states, and aab satisfy

2m3
1$3m1m2þm3 ¼ 0

if, and only if, Q=1.

This proposition follows from expressing the moments in terms of parameters to see that

2m3
1$3m1m2þm3 ¼ ða$bÞ3ð2s3

2$3s2s3þs3Þ

together with the determination in the proof of Lemma 19 in Section 5.3 that 2s3
2$3s2s3þs3a0 whenpq40 for more than one

group q.

3.2.2. Relying on the distribution of K4

We next investigate parameter identifiability from the distribution of the edge variables over more than three nodes,
paying particular attention to the case of n=4 nodes.

Necessary conditions for identifiability of the pqs, when Q is known. First, we establish that for an affiliation model, if the pqs
are unknown and are to be recovered from the distribution of Kn, then one must look at at least n=Q nodes. Note that this
applies not only to the binary edge state model, but to more general weighted edge models as well.

Proposition 9. In order to identify, up to label swapping, the parameters fpqg1rqrQ from an affiliation random graph mixture
distribution on Kn (either binary or weighted), it is necessary that nZQ .

The condition in this lemma is in general not sufficient to identify the pq. Indeed, the binary edge state affiliation model
with Q=3 has four parameters. However, the set of distributions over K3 has dimension at most 3 (according to Eqs. (1)–(3)),
which is not sufficient to identify the four parameters.

Distribution on K4: The moment formulas describing the distribution of the affiliation random graph mixture model on K4

are given in Table 1. Note that m31 is the same as m3 in the last subsection, and that we omit EðX12X34Þ ¼ ðEðX12ÞÞ2 since edge
variables with no endpoints in common are independent. To facilitate understanding of the moments in the table, their
corresponding induced motifs are shown in Fig. 1.

With Q arbitrary, but a uniform prior on the nodes (pq ¼ 1=Q , so si=Q1$ i), there are algebraic relationships between the
moments on K4, including

m2 ¼m2
1, m32 ¼m33 ¼m3

1, m42 ¼m1m31

and more complicated ones that can be computed using Gröbner basis methods to eliminate a,b, and 1/Q from the equations.
(Cox et al., 1997, provide an excellent grounding on this computational algebra.) However, the three parameters a, b, Q of this

Table 1
Moment formulas describing the distribution of K4, the complete graph on four nodes, for the binary affiliation model.

m1 EðX12Þ s2aþð1$s2Þb
m2 EðX12X13Þ s3a2þ2abðs2$s3Þþð1$2s2þs3Þb

2

m31 EðX12X13X23Þ s3a3þ3ðs2$s3Þab2þð1$3s2þ2s3Þb
3

m32 EðX12X13X14Þ s4a3þ3ðs3$s4Þa2bþ3ðs2$2s3þs4Þab2þð1$3s2þ3s3$s4Þb3

m33 EðX12X23X34Þ s4a3þðs2
2þ2s3$3s4Þa2bþð3s2$2s2

2$4s3þ3s4Þab2þð1$3s2þs2
2þ2s3$s4Þb3

m41 EðX12X23X34X41Þ s4a4þ2ðs2
2þ2s3$3s4Þa2b2þ4ðs2$s2

2$2s3þ2s4Þab3þð1$4s2þ2s2
2þ4s3$3s4Þb4

m42 EðX12X13X14X23Þ s4a4þðs3$s4Þa3bþðs2
2þ2s3$3s4Þa2b2þð4s2$2s2

2$7s3þ5s4Þab3þð1$4s2þs2
2þ4s3$2s4Þb

4

m5 EðX12X23X34X41X13Þ s4a5þ2ðs3$s4Þa3b2þð2s3$4s4þ2s2
2Þa2b3þð5s2$4s2

2$10s3þ9s4Þab4þð1$5s2þ2s2
2þ6s3$4s4Þb

5

m6 EðX12X23X34X41X13X24Þ s4a6þ4ðs3$s4Þa3b3þ3ðs2
2$s4Þa2b4þ6ðs2$s2

2$2s3þ2s4Þab5þð1$6s2þ8s3$6s4þ3s2
2Þb

6
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affiliation model are, in fact, identifiable. Indeed such calculations show that the formulas for m1, m31, and m41 alone imply
the following.

Proposition 10. The number of node groups, Q, in a random graph affiliation model with binary edge state variables and uniform
group priors can be identified from the moments m1, m31, and m41 by

Q ¼
$m4

31$m3
41$3m41m8

1þ3m2
41m4

1$6m6
1m2

31þ4m9
1m31þ4m3

1m3
31

ðm4
1$m41Þ3

:

Note that, replacing the moments with empirical estimators, this formula could be used for estimation of Q.
Of course once the formula in Proposition 10 is given, it can be most easily verified by expressing the moments in terms of

parameters, and simplifying. Note that the denominator here does not vanish, as may be seen in two different ways: either by
Lemma 20 in Section 5.3, or by checking that

m41$m4
1 ¼ ða$bÞ4

ðQ$1Þ
Q4

a0:

Once Q is identified by this formula, since we are assuming pq ¼ 1=Q , Corollary 7 applies so that a and b are identifiable as
well. Thus we have shown the following.

Corollary 11. The parameters a, b, and Q of the random graph affiliation mixture model with binary edge state variables and
uniform groups priors (pq ¼ 1=Q) are identifiable from the distribution of K4.

4. Weighted random graphs

4.1. The parametric weighted model

In the parametric case, where Fql has parametric form Fð',yqlÞ, we can uniquely identify the connectivity parameters under
very general conditions by considering the distribution of K3 only. Indeed, each triplet (Xij, Xik, Xjk) follows a mixture of Q3

distributions, each with three variates, comprising

) Q terms of the form mqqðXijÞmqqðXikÞmqqðXjkÞ, each with prior p3
q , where 1rqrQ ,

) 3Q(Q$1) terms of the formmqqðXijÞmqlðXikÞmqlðXjkÞ (permuting i,j and k), each with priorp2
qpl, with distinct q,l 2 f1,2, . . . ,Qg,

) Q(Q$1)(Q$2) terms of the form mqlðXijÞmqmðXikÞmlmðXjkÞ, each with prior pqplpm, with distinct q,l,m 2 f1,2, . . . ,Qg.

m1 m2 m31 m41 m42m32 m33 m5 m6

Fig. 1. Correspondence between moments and motifs for K4.

Table 2
Summary of models and corresponding identifiability results. The models differ only through the distribution of the edge observations Xij conditional on the

latent node groups Zi,Zj (third column). For Q groups, the space of group distributions is denoted P¼ fðp1 , . . . ,pQ Þjpq Z0,
PQ

q ¼ 1 pq ¼ 1g (fourth column).

When the set of identifiable parameters forms a dense open subset of the parameter space, the result is only generic.

Model Specific case Conditional distribution Set S of identifiable parameters Statement

Binary Non-affiliation PðXij ¼ 1jZi ¼ q,Zj ¼ lÞ ¼ pql ðaÞ S¼P* ~Sp , with ~Sp a dense open

subset of ~S ¼ fðpqlÞ1rq,lrQ g

Theorems 1, 2

Affiliation Eq. (a) with pql ¼ a1q ¼ lþb1qal If Q=2, S¼P* fða,bÞ,aabg Corollary 5

If Q Z3 and p known, S¼ fða,bÞ,aabg Corollary 7

If p uniform, S¼ fða,bÞ,aabg. Moreover,
Q is identified

Corollary 11

Weighted Parametric,
non-affiliation

PðXij jZi ¼ q,Zj ¼ lÞ + ð1$pqlÞd0ð'Þþpqlf ð',yqlÞ ðbÞ S¼P* fðpql ,yqlÞ1rq,lrQ ,yqlall differentg Theorem 12

Parametric,
affiliation

Eq. (b) with pql ¼ a1q ¼ lþb1qal and

yql ¼ yin1q ¼ lþyout1qal

S¼P* fða,b,yin ,youtÞ,yinayoutg Theorem 13

Non-parametric PðXij jZi ¼ q,Zj ¼ lÞ + ð1$pqlÞd0þpqlFql S¼P* fðpql ,FqlÞ,Fql absolutely continuous,

ðFqlÞ1rq,lrQ linearly independentg
Theorem 15
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By an old result due to Teicher (1967), the identifiability of finite mixtures of some family of distributions is equivalent to
identifiability of finite mixtures of (multivariate) product distributions from this same family. In addition, identifiability of
continuous univariate parametric mixtures is generally well understood (Teicher, 1961, 1963). Thus, we introduce the
following assumptions.

Assumption 1. The Q(Q+1)/2 parameter values yql, 1rqr lrQ are distinct.

Assumption 2. The family of measuresM¼ fFð',yÞjy 2 Yg satisfies

(i) all elements Fð',yÞ have no point mass at 0,
(ii) the parameters of finite mixtures of measures inM are identifiable, up to label swapping. In other words, for any integer

mZ1,

if
Xm

i ¼ 1

aiFð',yiÞ ¼
Xm

i ¼ 1

aiuFð',yiuÞ then
Xm

i ¼ 1

aidyi
¼
Xm

i ¼ 1

aiudyiu,

where dy denotes the Dirac mass at y.

Remark. Note that most of the classical parametric families satisfy this assumption. In particular, the truncated Poisson,
Gaussian and Laplace families ff ð',yÞ,y 2 Rpg satisfy Assumption 2 (see e.g., Teicher, 1961, 1963; Titterington et al., 1985).

Theorem 12. Under Assumptions1 and 2, the parameters p, yql, pql, 1rqr lrQ of the parametric random graph mixture model
with weighted edge variables are identifiable, up to label swapping, from the distribution of K3.

The previous result is not applicable to the parametric affiliation model, for which the set fyql,1rqr lrQg reduces to
fyin,youtg, so Assumption 1 is violated. However, in this case a similar argument again yields a full identifiability result. As
suggested by Proposition 9, we use Q nodes to identify the group priors.

Theorem 13. Under Assumption2, the parameters a,b,yin,yout of the parametric affiliation random graph mixture model with
weighted edge variables are strictly identifiable from the distribution of K3 provided yinayout. Once these have been identified, the
group priors p can further be identified, up to label swapping, from the distribution of KQ.

A similar approach to that of this theorem has been successfully used by Ambroise and Matias (2010) to estimate the
parameters of these models. They first estimated the sparsity parameters from the induced binary edge state model, but a
procedure based on the preceding theorems would not require that these be distinct.

We turn next to models with a finite number, k, of edge weights. Our primary reason for investigating such models is the
role they play in our analysis of models with non-parametric conditional distributions of edge weights, in Section 4.2. Thus we
limit our investigation to the single result we need there.

Theorem 14. The parameters of the random graph mixture model, with k-state edge variables and Q Z2 latent groups, are
identifiable, up to label swapping, from the distribution of K9, providedkZ ðQ þ1

2 Þ and thek-entry vectors fpqlg1rqr lrQ are linearly
independent.

Note that the condition given here on the number of edge states is likely far from optimal. In case Q=2 the condition
requires at least k¼ 3 edge states whereas we know from Theorem 1 that the parameters are identifiable for this Q with only
k¼ 2 edge states.

4.2. The non-parametric weighted model

In the most general case of non-parametric distributions, our arguments for identifiability depend on binning the values of
the edge variables into a finite set. We then apply Theorem 14 to this discretization, to obtain the following.

Theorem 15. The parameters fpq,mql ¼ ð1$pqlÞd0þpqlFql : 1rq,lrQg of the random graph weighted non-parametric mixture
model are identifiable, up to label swapping, from the distribution of K9 provided the measures mql,1rqr lrQ are linearly
independent.

5. Proofs

5.1. Method of proofs based on Kruskal’s theorem

In this section we review Kruskal’s theorem and describe our technique for employing it in the proofs of Theorems 2
and 14.

Kruskal’s result: We first present Kruskal’s result in a statistical context. Consider a latent random variable V with state
space {1,y,r} and distribution given by the column vector v =(v1,y, vr). Assume that there are three observable random
variables Uj for j=1,2,3, each with finite state space f1, . . . ,kjg. The Ujs are moreover assumed to be independent conditional on
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V. Let Mj, j=1,2,3 be the stochastic matrix of size r * kj whose ith row is mj
i ¼PðUj ¼ ' jV ¼ iÞ. Then consider the k1 * k2 * k3

tensor ½v;M1,M2,M3& defined by

½v;M1,M2,M3& ¼
Xr

i ¼ 1

vim
1
i -m2

i -m3
i :

Thus [v;M1, M2, M3] is a three-dimensional array whose (s, t, u) element is

½v;M1,M2,M3&s,t,u ¼
Xr

i ¼ 1

vim
1
i ðsÞ m2

i ðtÞ m3
i ðuÞ ¼PðU1 ¼ s,U2 ¼ t,U3 ¼ uÞ

for any 1rsrk1,1rtrk2,1rurk3. Note that [v;M1,M2, M3] is left unchanged by simultaneously permuting the rows of
all the Mj and the entries of v, as this corresponds to permuting the labels of the latent classes. Knowledge of the distribution of
(U1,U2, U3) is equivalent to knowledge of the tensor [v; M1,M2, M3].

To state Kruskal’s result, we need some algebraic terminology. For a matrix M, the Kruskal rank of M will mean the largest
number I such that every set of I rows of M are independent. Note that this concept would change if we replaced ‘‘row’’ by
‘‘column,’’ but we only use the row version in this article. With the Kruskal rank of M denoted by rankK M, we have

rankK Mrrank M

and equality of rank and Kruskal rank does not hold in general. However, in the particular case when a matrix M of size p* q
has rank p, it also has Kruskal rank p.

The fundamental algebraic result of Kruskal is the following.

Theorem 16 (Kruskal, 1976, 1977, see also Rhodes, 2010). Let Ij=rankK Mj. If

I1þ I2þ I3Z2rþ2, ð4Þ

then [v;M1, M2, M3] uniquely determines v and the Mj, up to simultaneous permutation of the rows. In other words, the set of
parameters fðv,PðUj ¼ ' jVÞÞg is uniquely identified, up to label swapping, from the distribution of the random variables (U1, U2, U3).

Now, it will be useful to note that condition (4) holds for generic choices of the Mj, provided thekj are large enough to allow
it. More precisely, Kruskal’s condition on the sum of Kruskal ranks can be expressed through a Boolean combination of
polynomial inequalities (a) involving matrix minors in the parameters. If we show there is even a single choice of parameters
for which Kruskal’s condition is satisfied, then the algebraic variety of parameters for which it does not hold is a proper
subvariety (defined by negating the polynomial condition above, and so by a Boolean combination of equalities) of parameter
space. As proper subvarieties are necessarily of Lebesgue measure zero, it follows that the Kruskal condition holds generically.

Our proof strategy for showing identifiability of certain random graph mixture models is to embed them in the model we
just described. Applying Kruskal’s result to the embedded model, we derive partial identifiability results on the embedded
model, and then, using details of the embedding, relate these to the original model.

Embedding the random graph mixture model into Kruskal’s context. Letkdenote the cardinality ofX , in either the binary state
case or the general finite state case.

To place the random graph mixture model in the context of Theorem 16, we define a composite hidden variable and three
composite observed variables that reflect the conditional independence structure integral to Kruskal’s theorem.

For some n (to be determined), let V=(Z1, Z2,y,Zn) be the latent random variable, with state space {1,y,Q}n, which
describes the state of all n nodes collectively, and denote by v the corresponding vector of its probability distribution. Note
that the entries of v are of the form pn1

1 ' ' 'p
nQ

Q with nqZ0 and
P

nq ¼ n.
The observed variables will correspond to three pairwise disjoint subsets G1, G2,G3 of the complete set of edges Kn. By

choosing the Gi to have no edges in common, we ensure their conditional independence.
The construction of the set of edges Gi proceeds in two steps. We begin by considering a small complete graph, and an

associated matrix: For a subset of m nodes, we define a Qm * kðm2 Þ matrix A, with rows indexed by assignments I 2 f1, . . . ,Qgm

of states to these m nodes, columns indexed by the state space of the complete set of ðm2Þ edges between them, and entries
giving the probability of observing the specified states on all edges, conditioned on the specified node states. In the casek¼ 2,
it is helpful to note that each column index corresponds to a different graph on the m nodes, composed of those edges assigned
state 1. For larger k one may similarly associate to a column index a k-coloring of the edges of the complete graph. We
therefore refer to a column index as a configuration.

In the step we call the base case, we exhibit a value of m such that this matrix A generically has full row rank.
Then, an extension step builds on the base case, in order to construct a larger set of n nodes which will be used in the

application of Theorem 16. This is accomplished by means of (Allman et al., 2009, Lemma 16, and subsequent remark) which
we paraphrase as follows.

Lemma 17. Suppose for the Q-node-state model, the number of nodes m is such that the Qm * kðm2 Þ matrix A of probabilities of
observing configurations of Km conditioned on node state assignments has rank Qm. Then with n=m2 there exist pairwise disjoint
subsets G1, G2, G3 of the complete set of edges Kn such that for each Gi the Qn * kjGij matrix Mi of probabilities of observing
configurations of Gi conditioned on node state assignments has rank Qn.
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In our applications here, we only determine that A has full row rank generically. Hence the Lemma only allows us to
conclude that the Mi have full row rank generically, and hence have Kruskal rank Qn generically.

We also note (for use in the proof of Theorems 2 and 14) that in the construction of the lemma, each subset Gj is the union of
m complete sets of edges each over m different nodes, and thus contains mðm2Þ edges. In particular, if mZ3, then Gi contains a
complete graph on 3 nodes.

Application of Kruskal’s theorem to the embedded model and conclusion: Next, with v, M1, M2, M3 defined by the embedding
given in the previous paragraphs, we apply Kruskal’s Theorem (Theorem 16) to the table [v;M1, M2, M3]. Knowledge of the
distribution of the random graph mixture model over n nodes implies knowledge of this three-dimensional table. By our
construction of the Mi, condition (4) is satisfied since 3QnZ2Qnþ2. Thus the vector v and the matrices M1, M2, M3 are
uniquely determined, up to simultaneous permutation of the rows.

With these embedded parameters in hand, it is still necessary to recover the initial parameters of the random graph
mixture model: the group proportions and the connectivity vectors. As this requires a rather detailed argument, we leave its
exposition for a specific application.

Finally, we note that by discretizing continuous variables, this approach to establishing identifiability may also be used in
the case of continuous connectivity distributions.

5.2. Proof of Theorem 2

This proof follows the strategy described in the previous section. We use the notation pql ¼PðXij ¼ 1jZi ¼ q,Zj ¼ lÞ ¼ 1$pql.
Base case: The initial step consists in finding a value of m such that the matrix A of size Qm * 2ð

m
2 Þ containing the

probabilities of the configurations over these m nodes, conditional on the hidden node states, generically has full row rank.
The condition of having full row rank can be expressed as the non-vanishing of at least one Qm * Qm minor of A. Composing

the map sending fpqlg-A with this collection of minors gives polynomials in the parameters of the model. To see that these
polynomials are not identically zero, and thus are non-zero for generic parameters, it is enough to exhibit a single choice of the
{pql} for which the corresponding matrix A has full row rank.

With this in mind, we choose to consider {pql} of the form pql=sqsl/(sqsl+tqtl), so pql ¼ tqtl=ðsqslþtqtlÞ, with si,tj40 to be
chosen later. However, since the property of having full row rank is unchanged under non-zero rescaling of the rows of the
matrix A, and all entries of A are monomials with total degree ðm2Þ in fpql,pqlg, we may simplify the entries of A by removing
denominators, and consider the matrix (also called A) with entries in terms of pql=sq sl and pql ¼ tqtl.

The rows of A are indexed by the composite node states I 2 f1, . . . ,Qgm, while its columns are indexed by the edge
configurations f0,1gð

m
2 Þ. For any composite hidden state I 2 f1, . . . ,Qgm and any vertex v 2 f1, . . . ,mg, let I ðvÞ 2 f1, . . . ,Qg

denote the state of vertex v in the composite state I . With our particular choice of the parameters pql, the ðI ,ðxijÞ1r io jrmÞ-
entry of A is given by

Y

1rvrm

sdv
IðvÞt

m$1$dv
I ðvÞ ,

where dv ¼
P

wavxvw is the degree of node v in the graph associated to the configuration ðxijÞ1r io jrm. Note that the entries in
a column of A are now determined by the degree sequence d¼ ðdvÞ1rvrm associated to the configuration.

In general, there is a many-to-one correspondence of configurations to their degree sequences. (E.g., for m=4 nodes, the
configuration with edges (1,2) and (3,4) in state 1, and that with edges (1,3) and (2,4) in state 1, both have degree sequence
(1,1,1,1).) Thus if m43, there will be several identical columns in A. For any degree sequence d¼ ðdvÞ1rvrm arising from an
m-node graph, let Ad denote a corresponding column of A.

Now, for each vertex v 2 f1, . . . ,mg and each q 2 f1, . . . ,Qg, introduce an indeterminate Uv, q and a Qm-entry row vector
U¼ ð

Q
1rvrmUv,I ðvÞÞI2f1,...,Qgm . For each degree sequence d, we have

UAd ¼
X

I2f1,...,Qgm

Y

1rvrm

sdv
I ðvÞt

m$1$dv
I ðvÞ Uv,I ðvÞ ¼

Y

1rvrm

ðsdv
1 tm$1$dv

1 Uv,1þ ' ' ' þsdv
Q tm$1$dv

Q Uv,Q Þ:

To verify this, notice that each monomial ðsd1
i1

tm$1$d1
i1

U1,i1 Þ ' ' ' ðs
dm

im
tm$1$dm

im
Um,im Þ obtained from multiplying out the product on

the right corresponds to a choice of node states iv for nodes v, and hence a vector I ¼ ði1, . . . ,imÞ. Moreover, we obtain one such
summand for each I .

In order to prove that the matrix A has full row rank, it is enough to exhibit Qm independent columns of A. Note, however,
that independence of a set of columns {Ad} is equivalent to the independence of the corresponding set of polynomial functions
{UAd} in the indeterminates {Uv,q}.

Now for a setD of degree sequences, to prove that the polynomials fUAdgd2D are independent, we assume that there exist
scalars ad such that

X

d2D
adUAd . 0 ð5Þ

and show that necessarily all ad=0. To this aim, we prove the following lemma.
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Lemma 18. Suppose Q rm. LetD be a set of degree sequences such that for each node v 2 f1, . . . ,mg, the set of degrees fdvjd 2 Dg
has cardinality at most Q. Then for generic values of si,tj, for each v and each d% 2 fdvjd 2 Dg there exist values of the indeterminates
fUv,qg1rqrQ that annihilate all the polynomials UAd for d 2 D except those for which dv ¼ d%.

Proof. Fix a node v and let {d1,y,dQ} be any set of Q distinct integers with

fdvjd 2 DgDfd1, . . . ,dQ gDf0,1, . . . ,m$1g:

Let M be the Q*Q matrix with ith row ðsdi

1 tm$1$di

1 , . . . ,sdi

Q tm$1$di

Q Þ. Since all the integers di are different, the matrix M has full

row rank for generic choices of si, tj. (One way to see this is to consider a m*m Vandermonde matrix, with (k,l)-entry (ul)
k.

Choosing distinct values of ul this has full rank, and thus the Q*m submatrix composed of rows with indices {di} has rank Q.

But then Q of the columns can be chosen so that the Q*Q submatrix has full rank. Letting the si be the values of ul in these

columns, and tj=1, gives one choice for which the matrix M has full rank.)

Note d%=dk for some k, and let ek be the Q-entry vector of all zeros except for a 1 in the kth position. Then for generic si, tj, the

equation

MðUv,1, . . . ,Uv,Q ÞT ¼ ek

admits a unique solution, one that corresponds to the above-mentioned choice of indeterminates fUv,qg1rqrQ . &

Now consider the following collection:

D¼ ðd1, . . . ,dmÞjdv 2 f1,2, . . . ,Qg for vrm$1, and if
Xm$1

v ¼ 1

dv is even

(

then dm 2 f0,2,4, . . . ,2Q$2g otherwise dm 2 f1,3,5, . . . ,2Q$1g

)

:

Note that D has Qm elements and satisfies the assumption of Lemma 18 on the number of different values per coordinate.
Moreover, if we establish, as we do below, that its elements are realizable as degree sequences of graphs over m nodes, then by
choosing one column of A associated to each degree sequence inD, we obtain a collection of Qm different columns of A. These
columns are independent since for each sequence d% 2 D by Lemma 18 we can choose values of the indeterminates
fUv,qg1rvrm,1rqrQ such that all polynomials UAd vanish, except UAd% , leading to ad% ¼ 0 in Eq. (5).

That each sequence d 2 D is realizable as a degree sequence of a graph over m nodes follows from a result of Erd +os and
Gallai (1961) (see also Berge, 1976, Chapter 6, Theorem 4). Reordering the entries of d so that d1Zd2Z ' ' 'Zdm, a necessary
and sufficient condition for a sequence to be realizable by such a graph is that for 1rkrm$1,

Xk

v ¼ 1

dvrkðk$1Þþ
Xm

v ¼ kþ1

minfk,dvg: ð6Þ

From the definition of d 2 D, with coordinates reordered, it is easy to see that for any 1rkrm$1, we have

Xk

v ¼ 1

dvr ðk$1ÞQþð2Q$1Þ and
Xm

v ¼ kþ1

minfk,dvgZm$k:

Thus, for (6) to be satisfied, it is enough that for any 1rkrm$1, we have

$k2þðQþ2ÞkþQ$1rm:

But for m sufficiently large

max
1rkrm$1

f$k2þðQþ2Þkg¼

Qþ2
2

! "2

if Q is even;

ðQþ1ÞðQþ3Þ
4

if Q is odd:

8
>>><

>>>:

Thus, inequality (6) is satisfied as soon as

mZQ$1þ
Qþ2

2

! "2

if Q is even,

mZQ$1þ
ðQþ1ÞðQþ3Þ

4
if Q is odd:

8
>>><

>>>:

This concludes the proof of the base case. &

The extension step explained in Section 5.1 then applies, so that with n=m2, Kruskal’s Theorem may be applied to identify,
up to simultaneous row permutation, v, M1, M2, and M3 as defined in that section.
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Conclusion: The entries of v obtained via Kruskal’s theorem applied to the embedded model are of the form pn1
1 ' ' 'p

nQ

Q withP
nq ¼ n, while the entries of the Mi contain information on the pql. Although the ordering of the rows of the Mi is arbitrary,

crucially we do know how the rows of Mi are paired with the entries of v.
By focusing on one of the matrices, say M1, and adding appropriate columns to marginalize to a single edge variable (e.g.,

all columns for configurations with x12=1), we recover the set of values fpqlg1rqr lrQ , but without order. However, if row k of
M1 corresponds to the unknown node states I , then performing such marginalizations for each of the 3 edges of a complete
graph C on 3 nodes contained in G1 recovers the set

Rk ¼ fpqlj for some edge ðv,wÞ 2 C,fI ðvÞ,I ðwÞg¼ fq,lgg:

By considering the cardinalities of the sets Rk in the generic case of all pql distinct, we can now determine individual
parameters.

Consider first those k for which Rk has one element. There are exactly Q of these, arising from all 3 nodes being in the same
group. Thus for such k, Rk={pqq} and vk ¼ pn

q . Choosing an arbitrary labeling, we have determined all pq and pqq.
Next consider those k for which the Rk has two elements. These arise from 2 nodes being in the same group, with the other

node in a different group, so Rk={pqq, pql} for some laq. However, having already determined the pqq and since generically the
pql are distinct, we can find exactly two such k1 and k2 of the form Rk1

¼fpqq,pqlg and Rk2
¼fpll,pqlg. Thus, we can also determine

pql for qal.
Finally, note that all generic aspects of this argument, in the base case and the requirement that the parameters pql be

distinct, concern only the pql. Thus if the group proportions pq are fixed to any specific values, the theorem remains valid.

5.3. Proofs relying on moment equations

Proof of Proposition 3. Focusing on Q+1 nodes, let Z=(Z1,y,ZQ + 1) denote the composite node random variable, and
z=(z1,y,zQ +1) any realization of Z. Note that

UQ ðXÞ ¼
X

z2f1,...,QgQ þ 1

Y

1rkrQ þ1

pzk

 !

E
Y

1r io jrQ þ1

ðX$XijÞjZ ¼ z

0

@

1

A¼
X

z2f1,...,QgQ þ 1

Y

1rkrQ þ1

pzk

 !
Y

1r io jrQ þ1

ðX$EðXijjZi ¼ zi,Zj ¼ zjÞÞ

since conditioned on Z=z, the edge variables Xij are independent. Now since there are Q+1 nodes and only Q groups, for each
term in the sum there is some zi=zj. Since

X$EðXijjZi ¼ zi ¼ zj ¼ ZjÞ ¼ X$a

each term in the sum vanishes at X ¼ a, so UQ ðaÞ ¼ 0.

Likewise,

VQ ðX,YÞ ¼
X

z2f1,...,QgQ þ 1

Y

1rkrQ þ1

pzk

 !
E XþðQ$1ÞY$

X

1r irQ

XiðQ þ1Þ

 !
Y

1r io jrQ

ðX$XijÞjZ ¼ z

1

A:

0

@

But

E XþðQ$1ÞY$
X

1r irQ

XiðQ þ1Þ

 !
Y

1r io jrQ

ðX$XijÞjZ ¼ z

1

A¼ XþðQ$1ÞY$
X

1r irQ

EðXiðQ þ1ÞjZi ¼ zi,ZQ þ1 ¼ zQ þ1Þ

 !0

@

*
Y

1r io jrQ

ðX$EðXijjZi ¼ zi,Zj ¼ zjÞÞ:

Letting X ¼ a, one of the factors X$EðXijjZi ¼ zi,Zj ¼ zjÞwill vanish for any z except possibly those with the zi, 1r irQ , distinct.

But in that case, zQ + 1=zi for exactly one value of i 2 f1, . . . ,Qg, so that the first factor becomes

aþðQ$1ÞY$ðQ$1Þb$a:

Thus in addition setting Y ¼ b ensures each summand is zero, so VQ ða,bÞ ¼ 0.

Finally, the coefficient of Y in VQ ða,YÞ is the product of Q$1 and

E
Y

1r io jrQ

ða$XijÞ

0

@

1

A¼
X

z2f1,...,QgQ

Y

1rkrQ

pzk

 !
Y

1r io jrQ

Eða$XijjZi ¼ zi,Zj ¼ zjÞ:
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But
Q

1r io jrQEða$XijjZi ¼ zi,Zj ¼ zjÞ vanishes for all z except possibly for those in which all zi, 1r irQ , are distinct, in which

case it takes the value ða$bÞðQ2Þ. So the coefficient becomes

ðQ$1ÞðQ !Þ
Y

1rkrQ

pk

 !

ða$bÞðQ2Þ:

This is zero if, and only if, a¼ b. &

Proof of Theorem 4. Sincea is a real root of the cubic polynomial U2(X), to showa is uniquely identifiable it is enough to show
that ðd=dXÞU2ðXÞZ0. But

d
dX

U2ðXÞ ¼ 3X2$6m1Xþ3m2 ¼ 3ððX2$m1Þ2þðm2$m2
1ÞÞ:

But m2$m2
1Z0 because, using the Cauchy–Schwarz inequality,

m2 ¼ EðXijXikÞ ¼ E½EðXijjZiÞEðXikjZiÞ& ¼ E½EðXijjZiÞ2&Z ½EðEðXijjZiÞÞ&2 ¼m2
1:

With a identified, since aab, we may uniquely recover b as the root of the linear polynomial V2ða,YÞwith non-zero leading

coefficient. &

Proof of Theorem 6. Using Eq. (1) to eliminate a from Eqs. (3) and (2) respectively, gives two equations

RðbÞ ¼ ab3þbb2þcbþd¼ 0,

SðbÞ ¼ Ab2þBbþC ¼ 0,

where

a¼$2s3
2þ3s2s3$s3

b¼ 3m1ðs3
2$2s2s3þs3Þ

c¼ 3m2
1s3ðs2$1Þ

d¼m3
1s3$m3s3

2

8
>>>><

>>>>:

and

A¼ s3$s2
2,

B¼$2m1ðs3$s2
2Þ,

C ¼m2
1s3$m2s2

2:

8
><

>:

To understand the degrees of these polynomials we need the following.

Lemma 19. Suppose p 2 ½0,1&Q with
PQ

q ¼ 1 pq ¼ 1.

(i) If pq40 for at least two values of q, then aa0.
(ii) A=0 if, and only if, p is uniform on its support.

Proof. To establish claim (i), first observe that 0os2o1. Moreover, since s2
3rs2s4 by the Cauchy–Schwarz inequality, and

s4os2
2 by comparing terms (since at least two pq40), we have s3os3=2

2 . If $2 s2
3+3s2 s3$s3=0, then

s3=2
2 4s3 ¼

2s3
2

3s2$1
,

where the denominator must be positive. Thus

14
2s3=2

2

3s2$1

so

042s3=2
2 $3s2þ1:

However, the function x/2x3=2$3xþ1 is positive on (0,1), so this is a contradiction.

Turning to claim (ii), we have A=s3$s2
2 and by the Cauchy–Schwarz inequality, s2

2 ¼ ð
P

qp
3=2
q p1=2

q Þ
2rs3, with equality if, and

only if, ðp3=2
1 , . . . ,p3=2

Q Þ ¼ lðp1=2
1 , . . . ,p1=2

Q Þ for some value l 2 R. This can only occur if on its support p is uniform. &

Returning to the proof of Theorem 6, if p is not uniform, we thus have Aa0 and dividing the polynomial RðbÞ by SðbÞ
produces a linear remainder TðbÞ, which is calculated to be

TðbÞ ¼
s2

2

s2
2$s3

½ðm2$m2
1Þðs3$3s3s2þ2s3

2Þbþðs3$s2s3Þm3
1þðs

3
2$s3Þm2m1þðs3s2$s3

2Þm3&:

Since any common zero of RðbÞ and SðbÞmust also be a zero of TðbÞ, we can recover the parametersb anda via the rational formulas

b¼
ðs3$s2s3Þm3

1þðs
3
2$s3Þm2m1þðs3s2$s3

2Þm3

ðm2
1$m2Þð2s3

2$3s3s2þs3Þ
, ð7Þ
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a¼ m1þðs2$1Þb
s2

: ð8Þ

Note that a calculation shows

m2
1$m2 ¼ ða$bÞ2ðs2

2$s3Þ, ð9Þ

which, since Aa0, is only zero in the trivial case of a¼ b. Otherwise, since 2s3
2$3s3s2þs3 ¼$aa0 by part (i) of Lemma 19, the

formulas (7) and (8) are valid.
Eq. (9), together with part (ii) of Lemma 19 further shows that if m2am2

1, then p is not uniform.
If m2= m1

2, then p is uniform, and SðbÞ is identically zero. However, in this case the coefficients of

~RðbÞ ¼
Q3

1$Q
RðbÞ ¼ b3þ ~bb2þ ~cbþ ~d

simplify to

~b ¼$3m1, ~c ¼ 3m2
1,

~d ¼
Qm3

1$m3

1$Q
¼$m3

1þ
m3

1$m3

1$Q
:

Thus

~RðbÞ ¼ ðb$m1Þ3þ
m3

1$m3

1$Q
,

which has a unique real root

b¼m1þ
m3

1$m3

Q$1

! "1=3

:

The parameter a can then be found by formula (8). &

Proof of Proposition 9. First, note that the distribution of Kn may be parameterized using the elementary symmetric
polynomials si evaluated at the fpqg1rqrQ , instead of the values fpqg1rqrQ . Indeed, the affiliation model distribution only
involves the pqs through the symmetric expressions

X

q1 ,...,qs ,
qiaqj

pi1
q1
. . .pis

qs
,

with srQ and
P

kr sik ¼ n, and these sums may be expressed as polynomials in the fsiðp1, . . . ,pQ Þg1r irn. Thus for
identifiability of the fpqg from the distribution of Kn, it is necessary that the fpqg be identifiable from the fsiðp1, . . . ,pQ Þg1r irn.
Note also that s1ðp1, . . . ,pQ Þ ¼

PQ
q ¼ 1 pi ¼ 1 carries no information on the pqs that is not already known.

Now if noQ , identifying Q$1 independent choices of the pq from the values of n$1 continuous functions of those pq is

impossible. &

Lemma 20. For the random graph affiliation model on Q nodes, with binary edge state variables, uniform group priors, and
connectivities aab, the moment inequality m414m4

1 holds.

Proof. Note

m41 ¼ E½EðX12X23jZ1,Z3ÞEðX34X41jZ1,Z3Þ& ¼ E½EðX12X23jZ1,Z3Þ2&Z ðE½EðX12X23jZ1,Z3Þ&Þ2 ¼m2
2:

However, equality occurs above only if EðX12X23jZ1,Z3Þ is constant. But

EðX12X23jZ1 ¼ i¼ Z3Þ ¼
1
Q
a2þ

Q$1
Q

b2,

EðX12X23jZ1 ¼ iaj¼ Z3Þ ¼
2
Q
abþ Q$2

Q
b2,

so the difference of these expectations is ða$bÞ2=Qa0. Thus m414m2
2.

A similar argument that m2Zm2
1 was given in the proof of Theorem 4, so the claim is established. &
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5.4. Proofs for the continuous parametric model

Proof of Theorem 12. With pq‘ ¼ 1$pq‘ , the distribution of ðXij,Xik,XjkÞ is given by the mixture
X

1rq,‘,mrQ

pqp‘pm½pq‘d0ðXijÞþpq‘FðXij,yq‘Þ& * ½pqmd0ðXikÞþpqmFðXik,yqmÞ& * ½p‘md0ðXjkÞþp‘mFðXjk,y‘mÞ&: ð10Þ

Since the distributions Fð',yÞhave no point masses at 0 by Assumption 2, the familyM [ fd0ghas identifiable parameters for

finite mixtures, so Theorem 1 of Teicher (1967) applies to it. Thus multiplying out the terms of the mixture in (10) to view it as

a mixture of products fromM [ fd0g, and noting that by Assumption 1 certain of the components arise from unique choices of

q,‘,m we can identify the terms of the form

pqp‘pmpq‘pqmp‘mFðXij,yq‘ÞFðXik,yqmÞFðXjk,y‘mÞ

and the vectors in

C¼ fðpqp‘pmpq‘pqmp‘m; yq‘ ,yqm,y‘mÞj1rq,‘,mrQg

but only as an unordered set. But by Assumption 1, there are only Q vectors in this set for which the last entries ðyq‘ ,yqm,y‘mÞ
are all equal. Indeed, these entries are of the form ðyqq,yqq,yqqÞ for some 1rqrQ , since the case where these entries would be

of the form ðyq‘ ,yq‘ ,yq‘Þ for some qa‘ is not possible. Thus the yqq for 1rqrQ may be identified as well as the corresponding

weights ðpqpqqÞ3, or equivalently the values pqpqq.

Now, among the vectors in C, exactly 3Q(Q$1) of them have two of the last three entries equal. These entries are, up to

order, of the form ðyqq,yq‘ ,yq‘Þ, for any qa‘. Thus we obtain the set fðp2
qp‘p2

q‘pqq; yqq,yq‘ ,yq‘Þg1rqo ‘rQ , without regard to order.

Since we already identified the pairs ðpqpqq,yqqÞ, we may take the ratio between the weights p2
qp‘p2

q‘pqq and pqpqq to recover

the values pqp‘p2
q‘. Thus we identify the set fðpqp‘p2

q‘; yqq,yq‘ ,yq‘Þg1rqo ‘rQ .

Among these vectors, we can match the ones whose two last entries are equal, namely those of the form

ðpqp‘p2
q‘; yqq,yq‘ ,yq‘Þ with ðpqp‘p2

q‘; y‘‘ ,yq‘ ,yq‘Þ. This enables us to recover the values yq‘ , for 1rq,‘rQ .

By marginalizing the distribution of (Xij, Xik, Xjk), we also have the distribution of a single edge variable Xij,
X

1rq,‘rQ

pqp‘½pq‘d0ðXijÞþpq‘FðXij,yq‘Þ&: ð11Þ

and thus by our hypotheses can also identify fðpqp‘pq‘ ,yq‘Þg1rqr ‘rQ , without order. But as the yq‘ have already been

identified, we may use this to matchpqp‘pq‘ with pqp‘p2
q‘ and thus recover pq‘ from the ratio. Frompqpqq and pqq we can then

recover pq.

Thus, all parameters of the model are identified, up to permutation on the group labels. &

Proof of Theorem 13. From the distribution of K3, we can distinguish ða,yinÞ from ðb,youtÞ as follows: The distribution of K3 is
the mixture of either 4 (when Q=2) or 5 (when Q Z3) different three-dimensional components. Since the distributions Fð',yÞ
do not have point masses at 0 by Assumption 2, we can identify from this mixture that part with no such Dirac masses in it,
which is the mixture

a3
XQ

q ¼ 1

p3
q

 !
Fð',yinÞ - Fð',yinÞ - Fð',yinÞþab2

X

1rqa‘rQ

p2
qp‘

 !
Fð',yinÞ - Fð',youtÞ - Fð',youtÞ

þab2
X

1rqa‘rQ

p2
qp‘

 !

Fð',youtÞ - Fð',yinÞ - Fð',youtÞþab2
X

1rqa‘rQ

p2
qp‘

 !

Fð',youtÞ - Fð',youtÞ - Fð',yinÞ

þb3
X

q,‘,m distinct

pqp‘pm

0

@

1

AFð',youtÞ - Fð',youtÞ - Fð',youtÞ,

where the last term appears only when Q Z3.

By Theorem 1 of Teicher (1967) and Assumption 2, this three-dimensional mixture has identifiable parameters, up to label

swapping issues. At most two terms in this mixture have the same measure F in each coordinate. The three remaining terms

have two coordinates which are equal, involving yout, and one different, involving yin. Thus we can distinguish between yin

and yout.

We may also determine a3ð
P

qp3
qÞ as the weight of Fð',yinÞ - Fð',yinÞ - Fð',yinÞ. Similarly from the d0 - Fð',yinÞ - Fð',yinÞ term

in the full mixture, we may recover the weight ð1$aÞa2ð
P

qp3
qÞ. Summing these two weights yields a2ð

P
qp3

qÞ, and then

dividing the first by this, we recover a.

The parameter b is similarly recovered from the weights of Fð',youtÞ - Fð',youtÞ - Fð',yinÞ and d0 - Fð',youtÞ - Fð',yinÞ.
Next we consider the distribution of Kn for various n. This is a mixture of many different ðn2Þ-dimensional a components. As

above, we can identify up to label swapping the components with no d0 factors in this mixture. But as we already know the
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value of yin, we can identify the term-1r io jrnFðXij,yinÞ in this mixture, and thus its corresponding prior an
P

qpn
q . Since a has

been previously identified, this uniquely determines
P

qpn
q . Note that using the distribution of KQ, we can obtain the

distribution of each Kn with nrQ and thus the values f
P

qpn
qgnrQ .

By the Newton identities, these values determine the values of elementary symmetric polynomials fsnðp1, . . . ,pQ ÞgnrQ .

These, in turn, are (up to sign) the coefficients of the monic polynomial whose roots (with multiplicities) are precisely

fpqg1rqrQ . Thus the node priors are determined, up to order. &

5.5. Proof of Theorem 14

The proof follows the strategy described in Section 5.1. We thus proceed with a base case, an extension step, and a
conclusion.

Base case. We consider a subset E of the set of all edges over m vertices, with m and E to be chosen later. Let A be the
Qm * kjEj matrix containing the probabilities of the clumped random variable Y ¼ ðXeÞe2E with state space f1, . . . ,kgjEj,
conditional on the hidden states of the m vertices.

Let I 2 f1, . . . ,Qgm be a vector specifying particular states of all the node variables. For each edge e 2 E, the endpoints are in
some set of hidden states {q, l}, which we denote by I ðeÞ. The ðI ,ðxeÞe2EÞ-entry of the matrix A is then given by

Y

e2E

Yk

k ¼ 1

ðpI ðeÞðkÞÞ1xe ¼ k ,

where 1A is the indicator function for a set A.
For each edge e in the graph, we introducek indeterminates, te,1, . . . ,te,k. We create akjEj- element column vector t indexed

by the states of the clumped variable Y, whose ðxeÞe2E-th entry is given by

Y

e2E

Yk

k ¼ 1

t
1xe ¼ k

e,k :

Then the I th entry of the Qm-entry vector At is the polynomial function

fI ¼
X

ðxeÞe2E

Y

e2E

Yk

k ¼ 1

fpI ðeÞðkÞte,kg1xe ¼ k ¼
Y

e2E
ðpI ðeÞð1Þte,1þ ' ' ' þpIðeÞðkÞte,kÞ:

Independence of the rows of A is equivalent to the independence of the polynomials ffI gI2f1,...,Qgm . Thus, suppose that we
have

X

I
aI fI . 0 ð12Þ

and let us show then that every aI must be 0.
For a specific e 2 E, and any choice {q, l} with 1rqr lrQ , one can choose a point te,fq,lg ¼ ðte,1, . . . ,te,kÞ 2 Rk in the zero set

of all the polynomial functions fI in (12), except those with I ðeÞ ¼ fq,lg. To see this, let M be the ðQ þ1
2 Þ * kmatrix whose {q, l}th

row is given by the vector pql ¼ ðpqlð1Þ, . . . ,pqlðkÞÞ. M has full row rank since its rows are independent by assumption. Thus
there is a solution te,{q, l} to

Mte,fq,lg ¼ efq,lg,

where e{q,l} is the vector of size ðQ þ1
2 Þwith zero entries, except the {q, l}th which is equal to 1. The independence assumption

also implies kZ ðQ þ1
2 Þ.

Note that in this construction we have only specified group assignments to two nodes up to node permutation. Thus if the
{q, l} row of M is related to an edge e=(i, j) because I ðeÞ ¼ fq,lg, we may have that either i is in state q and j is in state l, or i is in
state l and j is in state q.

By evaluating the fI at te,{q, l} for many edges e and choices of node states {q, l}, we can annihilate all the polynomials fI
except those satisfying specific constraints on the node states. More precisely, we can make vanish all the fI except those for
which I satisfies the condition that for some subset of edges EuDE and some sequence of unordered node assignments
ðfqe,legÞe2Eu we have

I 2
\

e2Eu
Sðe; fqe,legÞ, ð13Þ

where Sðe; fqe,legÞ ¼ fI 2 f1, . . . ,QgmjI ðeÞ ¼ fqe,legg.
To conclude that each aI ¼ 0 in Eq. (12), it is enough to construct for every I 2 f1, . . . ,Qgm a set as in (13) containing only I .
In fact, this can be achieved with only m=3 vertices and the full set of edges E ¼ fð1,2Þ,ð1,3Þ,ð2,3Þg. Indeed, up to

permutation of the nodes and of the labels of the groups, I can take only three different values, namely (1,1,1), (1,1,2) and
(1,2,3). Using a node assignment on the edges in Eu¼ fð1,2Þ,ð2,3Þg, we get

fð1,1,1Þg¼ Sðð1,2Þ; f1,1gÞ \ Sðð2,3Þ; f1,1gÞ,fð1,1,2Þg¼ Sðð1,2Þ; f1,1gÞ \ Sðð2,3Þ; f1,2gÞ,fð1,2,3Þg¼ Sðð1,2Þ; f1,2gÞ \ Sðð2,3Þ; f2,3gÞ:
Thus, we proved the following lemma.
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Lemma 21. With E the complete set of edges over m=3 vertices, the Q3 * k3 matrix A containing the probabilities of the clumped
variable Y ¼ ðXeÞe2E , conditional on the hidden states Z ¼ ðZ1,Z2,Z3Þ 2 f1, . . . ,Qg3 has full row rank Q3, provided the k-entry vectors
fpqlg1rqr lrQ are linearly independent.

Conclusion of the proof : The lemma provides the base case, with the extension step of Section 5.1 then applying. Thus with
n=m2=9 nodes, Kruskal’s theorem may be applied to identify, up to simultaneous row permutation, v, M1, M2, and M3 as
defined in that section.

The rest of the proof follows the same lines as the conclusion in the proof of Theorem 2, replacing the numbers pql by the
vectors pql and noting that these vectors are assumed to be linearly independent.

5.6. Proof of Theorem 15

For convenience, we present the argument assuming the state space of the mql is a subset of R. The more general situation
of a multidimensional state space can be handled similarly, along the lines of the proof of Theorem 9 of Allman et al. (2009).

Let Mql denote the c.d.f. of mql ¼ ð1$pqlÞd0þpqlFql. Since the measures fmqlj1rqr lrQg are assumed to be linearly
independent, so are the functions fMqlj1rqr lrQg. Applying Lemma 17 of Allman et al. (2009) to this set of functions, there
exists some k 2 N and cutpoints u1ou2o ' ' 'ouk$1 such that the vectors

fðMqlðu1Þ,Mqlðu2Þ, . . . ,Mqlðuk$1Þ,1Þj1rqr lrQg

are independent. Note kZ ðQ þ1
2 Þ. Also by adding additional cutpoints if necessary, and thereby increasing k, we may assume

that among the ui are any specific real numbers we like.
The independence of the above vectors is equivalent to the independence of the vectors fMqlj1rqr lrQg, where

Mql ¼ ðMqlðu1Þ,Mqlðu2Þ$Mqlðu1Þ, . . . ,Mqlðuk$1Þ$Mqlðuk$2Þ,1$Mqlðuk$1ÞÞ:

Note that the kth entry of Mql is simply the probability that a variable with distribution mql takes values in the intervals
Ik=(uk$1, uk] (with the convention that u0 ¼$1,uk ¼1). To formalize this, let

Yij ¼
Xk

k ¼ 1

k1Ik
ðXijÞ

be the random variable with state space f1,2, . . . ,kg indicating the interval in which the value of Xij lies. Thus, conditional on
Zi=q, Zj= l, the random variables Xij and Yij have respective c.d.f.s Mql and Mql.

Now from the distribution of the continuous random graph mixture model on K9, with edge variables ðXijÞ1r io jr9, by
binning the values of the 36 edge variables into sets of the form

Q
1r io jr9Ikij

with 1rkijrk, we obtain the distribution for
the discrete edge variables ðYijÞ1r io jr9 of a random graph mixture model with the same group priors on the nodes, and with
mixture components built from the distributions Mql associated to mql. By Theorem 14, the parameters of the discrete model
are identifiable, up to label swapping. Imposing an arbitrary labeling, we have identified the node group priors pq, 1rqrQ ,
and for each pair of groups qr l the vector Mql. By summing entries of Mql, we obtain values of Mql(uk) for k¼ 1,2, . . . ,k$1.
Since we may additionally determine Mql(t) for any real number t by including it as a cutpoint, Mql, and hence mql, is uniquely
determined.
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Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A., 2004. The architecture of complex weighted networks. Proc. Nat. Acad. Sci. 101 (11),

3747–3752.
Berge, C., 1976. Graphs and Hypergraphs (E. Minieka, Trans.), second rev. ed. North-Holland Mathematical Library, vol. 6. North-Holland Publishing

Company, Amsterdam, Oxford; American Elsevier Publishing, New York.
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