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variables when conditioned on the groups of the nodes being connected. In the binary
random graph case, in which edges are either present or absent, these models are known
as stochastic blockmodels and have been widely used in the social sciences and, more
Keywords: recently, in biology. Their generalizations to weighted random graphs, either in
ld?“tiﬁab“iw parametric or non-parametric form, are also of interest. Despite these many applications,
:g:g;;i g‘r(;?)il t_he parameter iQentiﬁability issue for. such.mo'dels has (_)nly been touched upon in the
Stochastic blockmodel literature. We give here a thorougt} 1nvest1ga.t10n of this p_roblfem. Our work also has

consequences for parameter estimation. In particular, the estimation procedure proposed
by Frank and Harary for binary affiliation models is revisited in this article.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In modern statistical analyses, data are often structured using networks. Complex networks appear across many fields of
science, including biology (metabolic networks, transcriptional regulatory networks, protein-protein interaction networks),
sociology (social networks of acquaintance or other connections between individuals), communications (the Internet), and
others.

The literature contains many random graph models which incorporate a variety of characteristics of real-world graphs
(such as scale-free or small-world properties). We refer to Newman (2003) and the references therein for an interesting
introduction to networks.

One of the earliest and most studied random graph models was formulated by Erdés and Rényi (1959). In this setup, binary
random graphs are modeled as a set of independent and identically distributed Bernoulli edge variables over a fixed set of
nodes. The homogeneity of this model led to the introduction of mixture versions to better capture heterogeneity in data.
Stochastic blockmodels (Daudin et al., 2008; Frank and Harary, 1982; Holland et al., 1983; Snijders and Nowicki, 1997) were
introduced in various forms, primarily in the social sciences (White et al., 1976) to study relational data, and more recently in
biology (Picard et al., 2009). In this context, the nodes are partitioned into latent groups (blocks) characterizing the relations
between nodes. Blockmodelling thus refers to the particular structure of the adjacency matrix of the graph (i.e., the matrix
containing edge indicators). By ordering the nodes by the groups to which they belong, this matrix exhibits a block pattern.
Diagonal and off-diagonal blocks, respectively, represent intra-group and inter-group connections. In the special case where
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blocks exhibit the same behavior within their type (diagonal or off-diagonal), we obtain a model with an affiliation structure
(Frank and Harary, 1982).

Although the literature from the social sciences has focused mostly on binary relations, there is a growing interest in
weighted graphs (Barrat et al., 2004; Newman, 2004). Mixture models have also been considered in the case of a finite number
of possible relations (Nowicki and Snijders, 2001), and more recently with continuous edge variables (Ambroise and Matias,
2010; Mariadassou et al., 2010). Some variations that we shall not discuss here include models with covariates
(Tallberg, 2005), mixed membership models (Airoldi et al., 2008; Latouche et al., to appear), and models with continuous
latent variables (Daudin et al., in press; Handcock et al.,2007). We also note that Newman and Leicht (2007) proposed another
version of a binary mixture model, slightly different from the stochastic blockmodel considered here.

Many different parameter estimation procedures have been proposed for these models, such as Bayesian methods
(Nowicki and Snijders, 2001; Snijders and Nowicki, 1997), variational expectation-maximization (EM) procedures (Daudin
etal., 2008; Picard et al., 2009), online classification EM methods (Zanghi et al., 2008, 2010) and more recently, direct mixture
model based approaches (Ambroise and Matias, 2010). Consistency of all these procedures relies strongly on the
identifiability of the model parameters. However, the literature on these models has not addressed this question in any
depth. The trivial label-swapping problem is often mentioned: it is well known that the parameters may be recovered only up
to permutations on the latent class labels. Whether this is the only issue preventing unique identification of parameters from
the distribution, however, has never been investigated. Given the complex form of the model parameterization, this is not
surprising, as any such analysis seems likely to be very involved.

In earlier work (Allman et al., 2009, Theorem 7), the authors made a first step towards an understanding of the parameter
identifiability issue in binary random graph mixture models. While that article addressed a variety of models with latent
variables, the present one focuses more specifically on random graph mixtures, giving parameter identifiability results for a
broad range of such models. Moreover, part of our work sheds some new light on parameter estimation procedures.

Allman et al. (2009) emphasized the usefulness of an algebraic theorem due to Kruskal (1976, 1977) (see also Rhodes,
2010) to establish identifiability results in various models whose common feature is the presence of latent groups and at least
three conditionally independent variables. Here, we rather focus on the family of random graph mixture models and explore
various techniques to establish their parameters’ identifiability. Thus while the method developed by Allman et al. (2009) is
presented in Section 5.1 and finds further use in several arguments, it is only one of several techniques we use. The issue at the
core of Kruskal’s result is the decomposition of a 3-way array as a sum of rank one tensors. While there exist approximate
methods of performing this decomposition (see, e.g., Tomasi and Bro, 2006), we mention that this approach seems poorly
suited to explicitly recover the parameters from the distribution, and thus to construct estimation procedures.

Some of our results focus on moment equations, as did those of Frank and Harary (1982), in one of the earliest works on
binary affiliation models. In particular, we revisit some of their claims. The method consists in looking at the distribution of K;,,
a complete set of edge variables over a set of n nodes. A natural question is then: What is the minimal value of n such that the
complete distribution over all edge variables (a potentially infinite set) is characterized by the distribution of K,,? Despite this
question’s simplicity, we are far from having a complete answer to it. When looking at finite state distributions (e.g., for binary
random graphs), the knowledge of the distribution of K, is equivalent to the knowledge of a certain set of moments of the
distribution. Expressing the moments in terms of parameters gives a nonlinear polynomial system of equations, which one
uses to identify parameters. The uniqueness of solutions to those systems, up to label swapping on parameters, is the issue at
stake for identifiability.

For random graphs with continuous edge weights given by a parametric family of distributions we shall see that the
information contained in the model might be recovered from the distribution of K, for very small values of n. In this case, we
rely on classical results on the identifiability of the parameters of a multivariate mixture due to Teicher (1967). Note that the
main difference between classical mixtures and random graph mixtures is the non-independence of the variates.

In contrast to the approach based on Kruskal’s Theorem, both the method utilizing moment equations and the one relying
on multivariate mixtures lead to practical estimation procedures. These are further developed by Ambroise and Matias
(2010).

In Allman et al. (2009), a large role was played by the notion of generic identifiability, by which every parameter except
those lying on a proper algebraic subvariety, are identifiable. In other words, in a parametric setting, the non-identifiable
parameters are included in a subset whose dimension is strictly smaller than the dimension of the full parameter space. Thus
with probability one with respect to the Lebesgue measure, every parameter is identifiable. This notion of generic
identifiability is important for finite mixtures of multivariate Bernoulli distributions (Allman et al., 2009; Carreira-Perpifian
and Renals, 2000; Gyllenberg et al., 1994) and also for hidden Markov models (Allman et al., 2009; Petrie, 1969). Here, we
stress that some of our identifiability results are generic, while others are strict.

Finally, we note that our focus throughout will be on undirected graph models. While many of our results may be
generalized to directed graphs, one must pay careful attention to the models’ parametrization in doing so. For instance, some
of the results would become simpler if the connectivities from group g to group I differed from group [ to group g, as symmetry
in a model can have a strong impact on identifiability questions. However, such asymmetric models require an increase in the
number of parameters which may be excessive for data analysis.

This paper is organized as follows. Section 2 presents the various random graph mixture models: with either binary or,
more generally, finite-state edges; both parametric and non-parametric models for edges with continuous weights; and
the particular affiliation variant of these models. Section 3 gives parameter identifiability results for binary random graphs.
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Note that the affiliation model has to be handled separately. Section 4 takes up weighted random graphs, in both parametric
and non-parametric variants. All the proofs are postponed to Section 5. In particular, Section 5.1 is devoted to a brief
presentation of Kruskal’s result and our use of it in the proofs of Theorems 2 and 14.

A concise guide to the model variants we consider, and our identifiability results on each of them, is provided in Table 2 at
the end of this article. Referring to this table occasionally for brief reminders of the model parameterizations may facilitate
reading the text.

2. Notation and models

We consider a probabilistic model on undirected and possibly weighted graphs as follows. Let n be a fixed number of
nodes, with Z4,...,Z, independent identically distributed (i.i.d.) random variables, taking values in Z={1,...,Q} for some
Q > 2. These random variables represent the Q groups the nodes are partitioned among, and are used to introduce
heterogeneity in the model. With g = P(Z; = q) € (0,1), s0 >_,7q = 1, the vector & = (nq) thus gives the priors on the groups.
Let {Xjj}1 < i <j < n be random edge variables taking values in a state space X. Conditional on Z;,...,Z,, we assume that the edge
variables {Xj}; .- jn are independent, and that the conditional distribution of X; depends only on Z; and Z;, the groups
containing its endpoints.

We are interested in random graphs of various types: For binary random graphs, where X = {0,1}, an absent edge is
represented by 0 and a present one by 1. Random graphs whose edges may be of finitely many types are modeled with
X ={1,...,k}, or equivalently, {0, ...,k—1}. More general weighted random graphs are obtained when X = N or R®,s > 1.

In the binary state case, the distribution of X;; conditional on Z;, Z; follows a Bernoulli distribution with parameter
pzz = P(Xj = 11Z;,Z)). As we consider only undirected graphs, we implicitly assume equality of the parameters pg=pjq, for all
1<ql<Q.

More generally, in the finite state case, with X ={1,...,x}, the vector Pz =(pzz(1), ...,pzz(K)) contains the values
pzz(k) = PXy = k|Z;,Z)), for 1 <k <1, with 37, pzz (k) = 1. We also implicitly assume equality of the vectors pg=pyq, for all
1 < q,l < Q.Weintroduce this model primarily as a tool in the study of continuously weighted random graphs, though it might
be useful for studying relationships between nodes of different types (colors), or of varying but discrete strengths (viewing
the states as ordered). Note that a related model is described by Nowicki and Snijders (2001), where the authors consider
more general relation types (not necessarily edges, whether directed or not) occurring between a pair of nodes.

In the weighted random graph case, edges may be viewed as either absent (X;;=0) or present (X;; #0), with those present
having a weight, namely a non-zero value in X = N, R, or R°. The distribution of X;; conditional on Z; Z;may be assumed to have
either a parametric or non-parametric form. More precisely, we assume that the distribution of Xj; conditional on Z;, Z; is the
probability measure Uz,z, 0n X given by

Hg=A=pg)do+paFy, 1<ql<Q,

where py; € (0,1]is a sparsity parameter, dg is the Dirac mass at zero and Fy; is a probability measure on X with density f;; with
respect to either the counting measure on N or the Lebesgue measure on R or R®. We also implicitly assume g = ,,, for all
1 <q,I < Q. In the parametric case, we assume moreover that Fy = F(-,04) and f;; = f(-,04) where the parameter 0 belongs to
© c RP. In the non-parametric case we assume Fg is absolutely continuous.

We shall always assume that Fy; has no point mass at zero, otherwise the sparsity parameter pg cannot be identified from
the mixture p. For instance, when considering Poisson weights, f;; is the Poisson density truncated at zero,

Hk
fatky= 25 € =171, k=1.

A particular instance of these models is the affiliation one, which assumes additionally only two distributions of
connections between the edges, one for intra-group connections and another for inter-group connections. Thus the binary
state case of the affiliation model assumes

a ifg=I
Pgi = B if gl forall gl e{1,...,Q}.
The affiliation model in the continuous observations case is described similarly with g = pin1g = 1+ foye 1421, for all
1 <q,l < Q. More precisely, in the continuous parametric case, for all g,/ € {1,...,Q} we set

a ifg=I q 0 O ifg=1,
Pa=9p if gzl " YT\ 0 if gL

For all these models, we consider restrictions of the model distribution by focusing on a subset of the nodes. We denote by
K, the complete set of (}) edge variables associated to a subset of n nodes. Note that the distribution of these variables is
independent of the choice of which n nodes one considers. Also, while this notation is motivated by that used in graph theory,
where K;, denotes the complete graph on n nodes, we emphasize that here K, is a set of random variables, and we are making
no statement as to whether these edges are present or absent in any realization of our model.
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3. Binary random graphs

We first focus on models with binary edge states, considering the more general case with arbitrary connectivity
parameters, followed by affiliation models.

3.1. The binary non-affiliation model

When X = {0,1}, a first result on identifiability of parameters was obtained by Allman et al. (2009) for the special case of
Q=2 groups. For completeness, we recall the statement here.

Theorem 1 (Allman et al., 2009, Theorem 7). The parameters mty,7, = 1—71,p11,P12.P22 of the random graph mixture model with
binary edge state variables and Q=2 groups are identifiable, up to label swapping, from the distribution of Ky provided that the
connectivity parameters {p11, P12, P22} are distinct.

In particular, the result remains valid when the group proportions 4 are fixed.

Note the assumption that py; #p,> limits this theorem to the strict non-affiliation case.

The proof of this theorem is based on a clever application of an algebraic result, due to Kruskal (1976, 1977) (see also
Rhodes, 2010), that deals with decompositions of 3-way arrays. While generalizing the proof to more than two groups
requires substantially more effort, the basic method still applies. Here we prove the following theorem.

Theorem 2. The parameters ng, 1 <q<Q, and py =PX; =1|Z;=q,Z; =1, 1 <q<1<Q, of the random graph mixture model
with binary edge state variables and Q > 3 groups are generically identifiable, up to label swapping, from the distribution of K, 2,
when

m>Q-14+(Q+2)*/4 if Q is even,
m=>Q-1+(Q+1)Q+3)/4 if Q is odd.

Moreover, the result remains valid when the group proportions g are fixed.

Note that the stated number of nodes ensuring that parameters are generically identifiable from the distribution of the
edges may not be optimal. In particular, when Q=2, the proof of this theorem is still valid, yet it gives a minimal number of
m?= 25 nodes. This is larger than the bound 16 obtained in Theorem 1, and that number may itself not be optimal.

Also, while Theorem 1 gives exact restrictions on parameters producing identifiability, Theorem 2 is not explicit about the
generic conditions. However, for any fixed Q the argument in our proof does yield a straightforward, though perhaps lengthy,
means of checking whether a particular choice of parameters meets the conditions. Among these is a requirement that the py
be distinct, so the theorem does not apply to the affiliation model.

Moreover, a careful reading of the proof of the theorem shows that its generic aspect concerns only the part of the
parameter space with the connectivities pg. This enables us to conclude that even when considering subsets defined by
restriction of the group proportions 7, (for instance assuming the group proportions are fixed, or equal), the result
remains valid.

3.2. The binary affiliation model

In the particular case of the affiliation model, we can obtain results from arguments based on moments of the distribution.
For a small number of nodes, one may obtain explicit formulas for the moments in terms of model parameters. By analyzing
the solutions to this nonlinear multivariate polynomial system of equations, one can address the question of parameter
identifiability, as well as develop estimation procedures.

3.2.1. Relying on the distribution of Ks.

Frank and Harary (1982) presented a method for estimation of the parameters of the binary affiliation model based only on
the distribution of triplet cycles (Xj, Xjw, X«i), 1 <i<j<k<n, of edge variables. From an identifiability perspective, this
corresponds to identifying the parameters from the distribution of K3. They suggest estimation of the parameters by solving
the empirical moment equations. However, they omit discussing uniqueness of the solutions to these equations, even though
this issue is a delicate one for nonlinear equations.

In the following, we first explore the use of the distribution of only K3 to identify model parameters. As a consequence, we
exhibit a new estimation procedure for the parameters.

The distribution of a triplet (Xj;, Xjk, Xk;) is expressible in terms of the indeterminates «, f and 7ys. Let us denote by s, and s3
the sums of the squares and cubes of the 74s and, more generally, let

Q
Se= Y Tg.

qg=1
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Then one easily computes (see also Frank and Harary, 1982) the moment formulas

my = EXy) = 200+ (1-52)p, M
my = EXXin) = 5302 +2(52—53)0f +(1—25, +53) 7, )
m3 = EXXXii) = 530° +3(52—53)0tf° + (1352 +253)°, 3)

which completely characterize the distribution of (Xj;, Xjk, Xi)-

Note that in the important case of a uniform node distribution, where y = 1/Q for all g, we have sk=Q' ¥ This implies
s3=s3, and hence m,=m3, so these equations reduce to two independent ones. As a consequence, the claim by Frank and
Harary (1982) that it is then possible to estimate the three unknowns Q,, 8 relying only on these moment equations is not
correct.

Still, there are indeed several situations in which parameters are identifiable from these moments, as we next discuss.

With Q=2 latent groups and a possibly non-uniform group distribution, there are three independent parameters in the
affiliation model. In this case, the three moments above are enough to identify parameters. To show this, we first construct
certain polynomials with roots at the connectivity parameters. Since the construction easily extends to larger Q, we give it
more generally.

Proposition 3. Consider the random graph affiliation mixture model with Q > 2 groups and binary edge state variables, on Q+1
nodes. Then the parameter o is a real root of the degree (Qf) univariate polynomial

UQ(X)=[E< 11 (x-x,»j)).

1<i<j<Q+1

The polynomial

VQ(X,Y):[E<<X+(Q—1)Y— > Xi(Q+1)> 11 (X—X,-j)>

1<i<Q 1<i<j<Q

of degree ($)+1in X, and degree 1 inY, vanishes at (X,Y) = («, §). Moreover, the coefficient of Y in V(oY) is non-zero precisely when
o f.

The utility of these polynomials is that from the distribution of Ky +1, the polynomial Ug allows one to recover at most (23 1)
candidate values for o, and therefore each such value V, allows one to recover a unique candidate for 5. While some of these
candidates could be ruled out as not lying in (0,1), we do not know when this leaves a unique o and £ for Q > 3. In the case of
Q=2 groups, however, we prove that these polynomials uniquely identify the parameters.

Theorem 4. In the random graph affiliation mixture model with Q=2 groups and binary edge state variables, the parameter o is the
unique real root of the polynomial

Us(X) = X3 —3m1 X% +3myuX—ms.
Moreover, as soon as o.+# f3, the parameter f3 is the unique real root of the polynomial V,(c,Y) where

VoX,Y) = X2 +XY=3m X—m;Y +2m,.

Once o and f are uniquely identified, we may determine from Eq. (1) the value of s, (again using that o+ f3), and hence 74,
75, up to permutation. This proves the following corollary.

Corollary 5. The parameters {7y, = 1—m1}, up to label swapping, and a8 of the random graph affiliation mixture model with
Q=2 groups and binary edge state variables are strictly identifiable from the distribution of K5 provided o # 5.

Identifiability of « and f when Q and the nys are known. When the ngs are known, Frank and Harary (1982) suggested solving
any two of the three empirical counterparts of Egs. (1)-(3), leading to three different methods of estimating « and . However,
numerical experiments convinced us that two equations are in general not sufficient to uniquely determine the parameters.
In fact, it is not immediately clear that even with the three moment equations (either the theoretical ones for the question of
identification, or their empirical counterparts for estimation) a unique solution is determined. Below we give explicit
formulas for the solution to the system, which in most cases are even rational, involving no extraction of roots. These can thus
be easily used to construct estimators.

Theorem 6. If m, =m?, then x is non-uniform and we can recover the parameters f§ and o via the rational formulas

f— (53—5253)M3 +(S3—53)Mamy +(S352—S3)m3 g M +(s2—-1)p
(M2 —my)(253—3535, +53) ’ Sy
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If my=m3, then m is uniform and we have

1/3

3
B=m+ (%) and o=Qm;+(1-Q)p.

Implicit in this statement is the fact that denominators in the above formulas are non-zero. Note that the uniform group
prior case formula is used for estimation by Ambroise and Matias (2010).
We immediately obtain the following corollary.

Corollary 7. For any fixed and known values of mq € (0,1), 1 < q < Q, both parameters o, of the random graph affiliation model
with binary edge state variables are identifiable from the distribution of Ks.

The proofs of the previous statements lead to an interesting polynomial in the moments, whose vanishing detects the
Erd6s-Rényi model, corresponding to a single node group.

Proposition 8. The moments of a random graph affiliation model with binary edge state variables, Q node states, and o # [ satisfy
2m3-3mymy+ms =0
if, and only if, Q=1.
This proposition follows from expressing the moments in terms of parameters to see that
2m3—3mymy+ms3 = (0—P)> (25335253 +53)

together with the determination in the proof of Lemma 19 in Section 5.3 that 253 —3s,53 +53 = 0 when 74 > 0 for more than one
group q.

3.2.2. Relying on the distribution of K4

We next investigate parameter identifiability from the distribution of the edge variables over more than three nodes,
paying particular attention to the case of n=4 nodes.

Necessary conditions for identifiability of the nys, when Q is known. First, we establish that for an affiliation model, if the 74s
are unknown and are to be recovered from the distribution of K,,, then one must look at at least n=Q nodes. Note that this
applies not only to the binary edge state model, but to more general weighted edge models as well.

Proposition 9. In order to identify, up to label swapping, the parameters {rtg}1 < q < o from an affiliation random graph mixture
distribution on K,, (either binary or weighted), it is necessary that n > Q.

The condition in this lemma is in general not sufficient to identify the 4. Indeed, the binary edge state affiliation model
with Q=3 has four parameters. However, the set of distributions over K3 has dimension at most 3 (according to Egs. (1)-(3)),
which is not sufficient to identify the four parameters.

Distribution on K,4: The moment formulas describing the distribution of the affiliation random graph mixture model on K,
are given in Table 1. Note that m3; is the same as ms in the last subsection, and that we omit E(X;2X34) = (E(X12))? since edge
variables with no endpoints in common are independent. To facilitate understanding of the moments in the table, their
corresponding induced motifs are shown in Fig. 1.

With Q arbitrary, but a uniform prior on the nodes (7y =1/Q, so si=Q' 1), there are algebraic relationships between the
moments on Ky, including

m; = m%, M3y =M33 = m?, My = 1M1 M3
and more complicated ones that can be computed using Grobner basis methods to eliminate «, 5, and 1/Q from the equations.

(Cox etal., 1997, provide an excellent grounding on this computational algebra.) However, the three parameters «, 3, Q of this

Table 1
Moment formulas describing the distribution of K4, the complete graph on four nodes, for the binary affiliation model.

my E(X12) S04+ (1-52)

m; E(X12X13) S302 4 200f(S3—53) +(1—255 +53) B

msy E(X12X13X23) 5303 +3(s3—53)a 8 +(1—35, +253)8°

msz EX12X13X14) 5403 43(53—54)02 B+ 3(S3— 253 +54)0 B> + (1—355 + 353 —54) 8

ms3 E(X12X23X34) 54083 4 (53 + 253 —354)02 f+ (35— 253 — 453 + 352)0 8% +(1—35 +52 +253—54)8°

My E(X12X23X34X41) 54004+ 2(52 +253—354)02 2 +4(5y—53—253 4+ 254)0 3> + (145, + 252 +4s3—354)5*

Mgy EX12X13X14X23) 54004 4 (53—54)083 B+ (52 + 253 —354)02 f° + (453 — 252 — 753 + 554)0ti° + (1—45 +53 +453—254) *

ms E(X12X23X34X41X13) 5400 4+ 2(53—54)03 > + (253454 +252)02 3 + (552 —453 — 1053 + 954)f* + (1—557 + 252 + 653 —4s4) f°

mg E(X12X23X34X41X13X24) 54008 +4(53—54)03 8 +3(52—54)02 f* + 6(52—52 — 253 + 254)018° + (1—65, + 853 —654 + 352)°
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Table 2
Summary of models and corresponding identifiability results. The models differ only through the distribution of the edge observations X;; conditional on the
latent node groups Z;Z; (third column). For Q groups, the space of group distributions is denoted II = {(71, ...,7q)|7Tg > 0, ZqQ:l mq = 1} (fourth column).

When the set of identifiable parameters forms a dense open subset of the parameter space, the result is only generic.

Model Specific case Conditional distribution Set S of identifiable parameters Statement
Binary Non-affiliation PXj=11Zi=q.Zi=)=pg (a) S=1I x §p, with Sp a dense open Theorems 1, 2
subset of $ = {(pg)1 < gi< o}
Affiliation Eq. (a) with py=alg_ 1+ 14, If Q=2, S=1II x {(o, ), 0t} Corollary 5
If Q >3 and = known, S = {(a, ), # 8} Corollary 7
If & uniform, S = {(o, B),a:# B). Moreover, Corollary 11
Q is identified
Weighted Parametric, PXi1Zi = q.Zj =) ~ (1=pg)do(-)+Pgif (.0q) (D) S=1IT x {(Pq1,09D1 < ¢, < 0-Ogall different} Theorem 12
non-affiliation
Parametric, Eq. (b) with pgy = a1, _;+ 1,4, and S=1II x {(o,5,0in,00ut),0in # Oout} Theorem 13
affiliation Oqt = Oin1q = 1+0out1g1
Non-parametric  P(X;|Z; = q,Zj =) ~ (1—pg)do +PqgFq S=1II x {(pq.Fq).Fq absolutely continuous, Theorem 15

(Fg)1 <1< q linearly independent}

3

my ma M31 M3z mg Myq My2 Ms Mg
v ; M M I/I D j

Fig. 1. Correspondence between moments and motifs for Kj.

affiliation model are, in fact, identifiable. Indeed such calculations show that the formulas for my, ms1, and m4; alone imply
the following.

Proposition 10. The number of node groups, Q, in a random graph affiliation model with binary edge state variables and uniform
group priors can be identified from the moments my, msq, and my; by
—m%, —m3; —3maym§ +3m3,m}—6mém3, +4mms; +4m3m3,

(m}—my )

Q=

Note that, replacing the moments with empirical estimators, this formula could be used for estimation of Q.

Of course once the formula in Proposition 10 is given, it can be most easily verified by expressing the moments in terms of
parameters, and simplifying. Note that the denominator here does not vanish, as may be seen in two different ways: either by
Lemma 20 in Section 5.3, or by checking that

(QQ_:) 0.

Once Qs identified by this formula, since we are assuming 7y = 1/Q, Corollary 7 applies so that o and f are identifiable as
well. Thus we have shown the following.

Mgy —mj = (o—p)*

Corollary 11. The parameters o, f3, and Q of the random graph affiliation mixture model with binary edge state variables and
uniform groups priors (mq =1/Q) are identifiable from the distribution of K.

4. Weighted random graphs
4.1. The parametric weighted model

In the parametric case, where Fy has parametric form F(-,04), we can uniquely identify the connectivity parameters under
very general conditions by considering the distribution of K5 only. Indeed, each triplet (Xj;, X, Xj) follows a mixture of Q@
distributions, each with three variates, comprising

® Q terms of the form g, (Xi)ttgq (Xit) 4gq(Xjk), €ach with prior ng, where 1 <q<Q,

® 3Q(Q—1)terms of the form g, (Xj) ey (X 1qi(Xj) (Permuting i,j and k), each with prior né n;, with distinctg,l € {1,2,...,Q},

® Q(Q—-1)(Q—2) terms of the form fig(Xj)ftgm Xit) m Xii), €ach with prior mqmmm, with distinct g,L,m € {1,2,...,Q}.
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By an old result due to Teicher (1967), the identifiability of finite mixtures of some family of distributions is equivalent to
identifiability of finite mixtures of (multivariate) product distributions from this same family. In addition, identifiability of
continuous univariate parametric mixtures is generally well understood (Teicher, 1961, 1963). Thus, we introduce the
following assumptions.

Assumption 1. The Q(Q+1)/2 parameter values 0,4, 1 <q <1< Q are distinct.

Assumption 2. The family of measures M = {F(-,0)|0 € O} satisfies

(i) all elements F(-,0) have no point mass at 0,
(ii) the parameters of finite mixtures of measures in M are identifiable, up to label swapping. In other words, for any integer
m>1,

m m m m
if Z OCI‘F(~,01‘) = Z O({F(-,Qi/) then Z OCi(sgi = Z 06{505,

i=1 i=1 i=1 i=1

where J,y denotes the Dirac mass at 0.

Remark. Note that most of the classical parametric families satisfy this assumption. In particular, the truncated Poisson,
Gaussian and Laplace families {f(-,0),0 € RP} satisfy Assumption 2 (see e.g., Teicher, 1961, 1963; Titterington et al., 1985).

Theorem 12. Under Assumptions1 and 2, the parameters w, 0q;, pqi, 1 < q <1< Q of the parametric random graph mixture model
with weighted edge variables are identifiable, up to label swapping, from the distribution of K.

The previous result is not applicable to the parametric affiliation model, for which the set {044,1 <q <1< Q} reduces to
{0in,00ut}, SO Assumption 1 is violated. However, in this case a similar argument again yields a full identifiability result. As
suggested by Proposition 9, we use Q nodes to identify the group priors.

Theorem 13. Under Assumption2, the parameters o, f3,0;n,00ut 0f the parametric affiliation random graph mixture model with
weighted edge variables are strictly identifiable from the distribution of K3 provided 0;, # Oout. Once these have been identified, the
group priors  can further be identified, up to label swapping, from the distribution of Kq.

A similar approach to that of this theorem has been successfully used by Ambroise and Matias (2010) to estimate the
parameters of these models. They first estimated the sparsity parameters from the induced binary edge state model, but a
procedure based on the preceding theorems would not require that these be distinct.

We turn next to models with a finite number, x, of edge weights. Our primary reason for investigating such models is the
role they play in our analysis of models with non-parametric conditional distributions of edge weights, in Section 4.2. Thus we
limit our investigation to the single result we need there.

Theorem 14. The parameters of the random graph mixture model, with k-state edge variables and Q > 2 latent groups, are
identifiable, up to label swapping, from the distribution of Ko, provided k > (23 ) and the k-entry vectors {Pgi}1 < q <1< q arelinearly
independent.

Note that the condition given here on the number of edge states is likely far from optimal. In case Q=2 the condition
requires at least k = 3 edge states whereas we know from Theorem 1 that the parameters are identifiable for this Q with only
K =2 edge states.

4.2. The non-parametric weighted model

In the most general case of non-parametric distributions, our arguments for identifiability depend on binning the values of
the edge variables into a finite set. We then apply Theorem 14 to this discretization, to obtain the following.

Theorem 15. The parameters {7tq, ity = (1—Ppgi)So+PgiFq : 1 < q,1 < Q} of the random graph weighted non-parametric mixture
model are identifiable, up to label swapping, from the distribution of Ko provided the measures pg,1<q<1<Q are linearly
independent.

5. Proofs
5.1. Method of proofs based on Kruskal’s theorem

In this section we review Kruskal’s theorem and describe our technique for employing it in the proofs of Theorems 2
and 14.

Kruskal’s result: We first present Kruskal’s result in a statistical context. Consider a latent random variable V with state
space {1,...,r} and distribution given by the column vector v =(vy,..., v,). Assume that there are three observable random
variables U;forj=1,2,3, each with finite state space {1, . . .,x;}. The U;s are moreover assumed to be independent conditional on
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V. Let M;,j=1,2,3 be the stochastic matrix of size r x x; whose ith row is mi =P(U; = - |V =i). Then consider the k; x K x K3
tensor [v; M{,M,,M3] defined by

.
[v: M1, M,M3] = > v;m! @ m; @ m?.
i=

Thus [v;M;, M5, M3] is a three-dimensional array whose (s, t, u) element is

.
[V; My, My, M3 = > vim}(s) mf(t) m}(u) = P(Uy =s,U; =t,Us =)
i=1

forany 1 <s<k4,1 <t<ky,1<u<ks.Note that [v;M;,M,, M3] is left unchanged by simultaneously permuting the rows of
all the M and the entries of v, as this corresponds to permuting the labels of the latent classes. Knowledge of the distribution of
(Uy,U3, Us) is equivalent to knowledge of the tensor [v; M{,M,, M3].

To state Kruskal’s result, we need some algebraic terminology. For a matrix M, the Kruskal rank of M will mean the largest
number I such that every set of I rows of M are independent. Note that this concept would change if we replaced “row” by
“column,” but we only use the row version in this article. With the Kruskal rank of M denoted by rankgM, we have

ranky M <rank M

and equality of rank and Kruskal rank does not hold in general. However, in the particular case when a matrix M of size p x q
has rank p, it also has Kruskal rank p.
The fundamental algebraic result of Kruskal is the following.

Theorem 16 (Kruskal, 1976, 1977, see also Rhodes, 2010). Let I;=ranky M;. If
L+ +13>2r+2, “4)

then [v;M, M3, M3] uniquely determines v and the M;, up to simultaneous permutation of the rows. In other words, the set of
parameters {(v,P(U; = - |V))} is uniquely identified, up to label swapping, from the distribution of the random variables (Uy, U, U3).

Now, it will be useful to note that condition (4) holds for generic choices of the M;, provided the k; are large enough to allow
it. More precisely, Kruskal’s condition on the sum of Kruskal ranks can be expressed through a Boolean combination of
polynomial inequalities ( # ) involving matrix minors in the parameters. If we show there is even a single choice of parameters
for which Kruskal’s condition is satisfied, then the algebraic variety of parameters for which it does not hold is a proper
subvariety (defined by negating the polynomial condition above, and so by a Boolean combination of equalities) of parameter
space. As proper subvarieties are necessarily of Lebesgue measure zero, it follows that the Kruskal condition holds generically.

Our proof strategy for showing identifiability of certain random graph mixture models is to embed them in the model we
just described. Applying Kruskal’s result to the embedded model, we derive partial identifiability results on the embedded
model, and then, using details of the embedding, relate these to the original model.

Embedding the random graph mixture model into Kruskal’s context. Let x denote the cardinality of X, in either the binary state
case or the general finite state case.

To place the random graph mixture model in the context of Theorem 16, we define a composite hidden variable and three
composite observed variables that reflect the conditional independence structure integral to Kruskal’s theorem.

For some n (to be determined), let V=(Zy, Z,...,Z,) be the latent random variable, with state space {1,...,Q}", which
describes the state of all n nodes collectively, and denote by v the corresponding vector of its probability distribution. Note
that the entries of v are of the form =" - -n"QQ withng>0and > ng=n.

The observed variables will correspond to three pairwise disjoint subsets Gy, G,,G3 of the complete set of edges K. By
choosing the G; to have no edges in common, we ensure their conditional independence.

The construction of the set of edges G; proceeds in two steps. We begin by considering a small complete graph, and an
associated matrix: For a subset of m nodes, we define a Q™ x x® matrix A, with rows indexed by assignments Z < {1, ...,Q}™
of states to these m nodes, columns indexed by the state space of the complete set of () edges between them, and entries
giving the probability of observing the specified states on all edges, conditioned on the specified node states. In the case k = 2,
itis helpful to note that each column index corresponds to a different graph on the m nodes, composed of those edges assigned
state 1. For larger k one may similarly associate to a column index a x-coloring of the edges of the complete graph. We
therefore refer to a column index as a configuration.

In the step we call the base case, we exhibit a value of m such that this matrix A generically has full row rank.

Then, an extension step builds on the base case, in order to construct a larger set of n nodes which will be used in the
application of Theorem 16. This is accomplished by means of (Allman et al., 2009, Lemma 16, and subsequent remark) which
we paraphrase as follows.

Lemma 17. Suppose for the Q-node-state model, the number of nodes m is such that the Q™ x k® matrix A of probabilities of
observing configurations of K, conditioned on node state assignments has rank Q™. Then with n=m? there exist pairwise disjoint
subsets Gy, G», Gz of the complete set of edges K, such that for each G; the Q" x k%! matrix M; of probabilities of observing
configurations of G; conditioned on node state assignments has rank Q".
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In our applications here, we only determine that A has full row rank generically. Hence the Lemma only allows us to
conclude that the M; have full row rank generically, and hence have Kruskal rank Q" generically.

We also note (for use in the proof of Theorems 2 and 14) that in the construction of the lemma, each subset G; is the union of
m complete sets of edges each over m different nodes, and thus contains m(%) edges. In particular, if m > 3, then G; contains a
complete graph on 3 nodes.

Application of Kruskal’s theorem to the embedded model and conclusion: Next, with v, M1, M, M3 defined by the embedding
given in the previous paragraphs, we apply Kruskal’s Theorem (Theorem 16) to the table [v;M;, M5, Ms]. Knowledge of the
distribution of the random graph mixture model over n nodes implies knowledge of this three-dimensional table. By our
construction of the M;, condition (4) is satisfied since 3Q" > 2Q"+2. Thus the vector v and the matrices M, M,, M3 are
uniquely determined, up to simultaneous permutation of the rows.

With these embedded parameters in hand, it is still necessary to recover the initial parameters of the random graph
mixture model: the group proportions and the connectivity vectors. As this requires a rather detailed argument, we leave its
exposition for a specific application.

Finally, we note that by discretizing continuous variables, this approach to establishing identifiability may also be used in
the case of continuous connectivity distributions.

5.2. Proof of Theorem 2

This proof follows the strategy described in the previous section. We use the notation py = P(X;; =1|Z;=q,Z; =) =1-py.

Base case: The initial step consists in finding a value of m such that the matrix A of size Q™ x 2% containing the
probabilities of the configurations over these m nodes, conditional on the hidden node states, generically has full row rank.

The condition of having full row rank can be expressed as the non-vanishing of at least one Q™ x Q™ minor of A. Composing
the map sending {py} —A with this collection of minors gives polynomials in the parameters of the model. To see that these
polynomials are not identically zero, and thus are non-zero for generic parameters, it is enough to exhibit a single choice of the
{pq} for which the corresponding matrix A has full row rank.

With this in mind, we choose to consider {pg} of the form pg=sgsi/(sqs1+tqt1), SO Dy = tqti/(SqS1+tqt), with s;,t; > 0 to be
chosen later. However, since the property of having full row rank is unchanged under non-zero rescaling of the rows of the
matrix A, and all entries of A are monomials with total degree (%) in {pq,p4}, we may simplify the entries of A by removing
denominators, and consider the matrix (also called A) with entries in terms of pg=s, s; and py; = tqt;.

The rows of A are indexed by the composite node states 7  {1,...,Q}™, while its columns are indexed by the edge
configurations {0,1}®). For any composite hidden state 7 < {1,...,Q}™ and any vertex v € {1,...,m}, let Z(v) € {1,...,Q}
denote the state of vertex v in the composite state Z. With our particular choice of the parameters pg, the (Z,(Xj)1 < i <j < m)-
entry of A is given by

d, sm—1-d,
IT stwtre

T<v<m

whered, =3, Xuw is the degree of node v in the graph associated to the configuration (x;) . ; - j < m- Note that the entries in
a column of A are now determined by the degree sequence d =(d,); -, - ,, associated to the configuration.

In general, there is a many-to-one correspondence of configurations to their degree sequences. (E.g., for m=4 nodes, the
configuration with edges (1,2) and (3,4) in state 1, and that with edges (1,3) and (2,4) in state 1, both have degree sequence
(1,1,1,1).) Thus if m > 3, there will be several identical columns in A. For any degree sequence d = (dy); - , <, arising from an
m-node graph, let Aq denote a corresponding column of A.

Now, for each vertex v € {1,...,m} and each q € {1, ...,Q}, introduce an indeterminate U, 4 and a Q™-entry row vector
U=(T; <y < mUvzw)zen,..qm- For each degree sequence d, we have

dy —-1-d, by ¢m—1—d, dy, ym—1-d,
UAq = Z H STt " Unzay = H (s el Upa+ - +sgtg Uyo)

Ze(l,..,Q"l<v<m 1<v<m

Im_“Im

the right corresponds to a choice of node states i, for nodes v, and hence a vector Z = (iy, . . . ,im). Moreover, we obtain one such
summand for each Z.

In order to prove that the matrix A has full row rank, it is enough to exhibit Q™ independent columns of A. Note, however,
thatindependence of a set of columns {Aq4} is equivalent to the independence of the corresponding set of polynomial functions
{UAq} in the indeterminates {U, 4}.

Now for a set D of degree sequences, to prove that the polynomials {UAq4}4cp are independent, we assume that there exist
scalars aq such that

> "aqUAq=0 5)

deD

To verify this, notice that each monomial (s;il1 ti”:‘]‘d1 Upi)--- (sdm gm—1—dm Up.i,,) obtained from multiplying out the product on

and show that necessarily all aq=0. To this aim, we prove the following lemma.
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Lemma 18. Suppose Q < m. Let D be a set of degree sequences such that for each node v € {1, ...,m}, the set of degrees {d,|d € D}
has cardinality at most Q. Then for generic values of s;.tj, for each v and each d* € {d,|d € D} there exist values of the indeterminates
{Uv.gh1 < q < q that annihilate all the polynomials UAq for d € D except those for which d, = d".

Proof. Fix a node v and let {d',...,d%} be any set of Q distinct integers with
{dydeDyc=(d!,....dYy={0,1,...,m—1}.

Let M be the Q x Q matrix with ith row (s¢' ¢/~ ... ,sin tg*“d"). Since all the integers d' are different, the matrix M has full
row rank for generic choices of s;, t;. (One way to see this is to consider a m x m Vandermonde matrix, with (k,[)-entry (u)k.
Choosing distinct values of u; this has full rank, and thus the Q x m submatrix composed of rows with indices {d'} has rank Q.
But then Q of the columns can be chosen so that the Q x Q submatrix has full rank. Letting the s; be the values of u; in these
columns, and t;=1, gives one choice for which the matrix M has full rank.)

Note d* =d* for some k, and let e be the Q-entry vector of all zeros except for a 1 in the kth position. Then for generics;, tj, the
equation

MUy, ...,.Uy)" =e
admits a unique solution, one that corresponds to the above-mentioned choice of indeterminates {Uyq}1 <g<qo- O

Now consider the following collection:
m—1

D= {(dl,...,dm)|d,, €{1,2,...,Q} for v<m-1, and if )" d, is even

v=1

then d,, € {0,2,4, ...,2Q—2} otherwise d; € {1,3,5, ... ,2Q—l}}.

Note that D has Q™ elements and satisfies the assumption of Lemma 18 on the number of different values per coordinate.
Moreover, if we establish, as we do below, that its elements are realizable as degree sequences of graphs over m nodes, then by
choosing one column of A associated to each degree sequence in D, we obtain a collection of Q™ different columns of A. These
columns are independent since for each sequence d* € D by Lemma 18 we can choose values of the indeterminates

That each sequence d € D is realizable as a degree sequence of a graph over m nodes follows from a result of Erdos and
Gallai (1961) (see also Berge, 1976, Chapter 6, Theorem 4). Reordering the entries of d so thatd; > d, > --- > dp,, a necessary
and sufficient condition for a sequence to be realizable by such a graph is that for 1 <k <m-1,

k m
Z d, <k(k—1)+ Z min{k,d,}. (6)
v=1 v=k+1

From the definition of d € D, with coordinates reordered, it is easy to see that for any 1 <k <m-1, we have

k m
Yy dy<(k-1)Q+2Q-1) and )  min{kd,}>m-k.
v=1 v=k+1
Thus, for (6) to be satisfied, it is enough that for any 1 <k <m-—1, we have
K+ Q+2)k+Q-1<m.

But for m sufficiently large

2
(%) if Q is even,

2

max {—k*+(Q+2)k}=

1<k<m-1 ) Q+1)(Q+3) if Q is odd
— .
Thus, inequality (6) is satisfied as soon as
2
m>Q—-1+ (%) if Q is even,
m=Q-1 +w if Q is odd.

This concludes the proof of the base case. O
The extension step explained in Section 5.1 then applies, so that with n=m?, Kruskal’s Theorem may be applied to identify,
up to simultaneous row permutation, v, M, M, and M3 as defined in that section.
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Conclusion: The entries of v obtained via Kruskal’s theorem applied to the embedded model are of the form 7'- - -nga with
>~ ng =n, while the entries of the M; contain information on the py. Although the ordering of the rows of the M; is arbitrary,
crucially we do know how the rows of M; are paired with the entries of v.

By focusing on one of the matrices, say M1, and adding appropriate columns to marginalize to a single edge variable (e.g.,
all columns for configurations with x;,=1), we recover the set of values {py}; < q <1 < o, but without order. However, if row k of
M; corresponds to the unknown node states Z, then performing such marginalizations for each of the 3 edges of a complete
graph C on 3 nodes contained in G, recovers the set

Ry = {pq| for some edge (v,w) € C{Z(v),Z(W)} ={q.l}}.

By considering the cardinalities of the sets Ry in the generic case of all py distinct, we can now determine individual
parameters.

Consider first those k for which Ry has one element. There are exactly Q of these, arising from all 3 nodes being in the same
group. Thus for such k, Rx={pqq} and v, = 7. Choosing an arbitrary labeling, we have determined all 774 and pqq.

Next consider those k for which the R, has two elements. These arise from 2 nodes being in the same group, with the other
node in a different group, so Rx={pqq, pq} for some I+ q. However, having already determined the p4, and since generically the
Pq are distinct, we can find exactly two such k; and k; of the form Ry, ={pqq.Pq1} and Ry,={py,pq}. Thus, we can also determine
pq for g+#1.

Finally, note that all generic aspects of this argument, in the base case and the requirement that the parameters py be
distinct, concern only the py. Thus if the group proportions 74 are fixed to any specific values, the theorem remains valid.

5.3. Proofs relying on moment equations

Proof of Proposition 3. Focusing on Q+1 nodes, let Z=(Zy,...,Zg+1) denote the composite node random variable, and
z=(z1,...,.2g+1) any realization of Z. Note that

U= > ( I1 nzk>rE [[ &xXpz=z|= > < n) [[ &-EXizi=2.2=2)
ze(1,..,Q)2+1 \1 <k<Q+1 1<i<j<Q+1 ze{1,..,0)¢ " \1<k<Q+1 1<i<j<Q+1

since conditioned on Z=z, the edge variables X; are independent. Now since there are Q+1 nodes and only Q groups, for each
term in the sum there is some z;=z;. Since

X—[E(XU|Z, =Zi=2Z =Zj) =X—u
each term in the sum vanishes at X =, so Ug(a) = 0.
Likewise,

Vo(X,Y) = Z ( H nzk>[E<<X+(Q—1)Y— in(QH)) H (x—x,-j)|2=z>.
1@t \1<k<Q+1

ze(1,...,Q 1<i<Q 1<i<j<Q

But

[E<<X+(Q—1)Y— > Xi(Q+1)> 11 (X—Xij)Z=2)=<X+(Q—1)Y— > [E(Xi(Q+1)|Zi=Zi,ZQ+1=ZQ+1)>

1<i<Q 1<i<j<Q 1<i<Q

x H X—-EX;|Z; = z1,Z; = ).
1<i<j<Q
Letting X = o, one of the factors X—[E(X;;|Z; = z;,Z; = z;) will vanish for any z except possibly those with the z;, 1 < i < Q, distinct.
But in that case, zq+1=2; for exactly one value of i € {1,...,Q}, so that the first factor becomes
a+(Q-1DY—-(Q-1)f—o.
Thus in addition setting Y = § ensures each summand is zero, so Vq(a,f) = 0.
Finally, the coefficient of Y in Vy(a,Y) is the product of Q—1 and

E ( H (O(—Xij)) = Z ( H TCZk> H [E(OC—XU\ZI =Zi,Zj = Zj).

1<i<j<Q ze(1,..,Q)e \1<k=<Q 1<i<j<Q
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But[[ o< oE@—XylZi =21.Z; = 2)) vanishes for all z except possibly for those in which all z;, 1 <i < Q, are distinct, in which
case it takes the value (z—p)®. So the coefficient becomes

(Q—D(Q!)( 11 nk>(a—ﬁ)<‘%>.
1<k<Q
This is zero if, and only if, x = . O

Proof of Theorem 4. Since o is areal root of the cubic polynomial U,(X), to show ¢ is uniquely identifiable it is enough to show
that (d/dX)U,(X) > 0. But

% Uz(X) = 3X2—6m X +3my = 3((X2—m)? + (my—m?)).

But m,—m? > 0 because, using the Cauchy-Schwarz inequality,
my = EXyXix) = EIEQXGIZ) Xl Z0)] = EEXG1Z0)*] = [EEXGIZ)F = m].

With o identified, since o # 8, we may uniquely recover f as the root of the linear polynomial V5 (o, Y) with non-zero leading
coefficient. 0O

Proof of Theorem 6. Using Eq. (1) to eliminate o from Eqs. (3) and (2) respectively, gives two equations

R(B)=ap’+bp* +cf+d =0,

S(B)=AB* +BB+C=0,
where
a=—2s3+35253—S3
b=3m(s3—2s353 +53)
c=3ms3(s2—1)
d=m3s3—mss3

2
A=s53-55,

and B=—2m;(s3—s3),
C=m3s3—mys3.

To understand the degrees of these polynomials we need the following.
Lemma 19. Suppose = € [0,1]2 with ¢ 7y =1.

(i) If mg > O for at least two values of q, then a+0.
(ii) A=0 if, and only if,  is uniform on its support.

Proof. To establish claim (i), first observe that 0 < s, < 1. Moreover, since s2 < s,s4 by the Cauchy-Schwarz inequality, and
S4 < s% by comparing terms (since at least two g > 0), we have s3 < 53/2. If —2 s3+3s5 53—53=0, then

3
3/2 252
S >S3 = .
2 37 35,1

where the denominator must be positive. Thus

253"
352 -1

1>

SO
0>2s7%-3s,+1.

However, the function x+— 2x3/2—3x+1 is positive on (0,1), so this is a contradiction.
Turning to claim (ii), we have A=s; —s3 and by the Cauchy-Schwarz inequality, s2 = 2 rl/?? < 55, with equality if, and
2 q™q Tq
only if, (3, ..., m/*) = A(ny/?, ... ,my?) for some value 4 € R. This can only occur if on its support 7 is uniform. [

Returning to the proof of Theorem 6, if 7 is not uniform, we thus have A#0 and dividing the polynomial R(f) by S(/5)

produces a linear remainder T(f), which is calculated to be
$3
s3—

T(p) =

S [(Ma—m2)(s3—35352 +253) B+ (S3—5253)M; + (53 —S3)M2 My + (S35, —53)M3].
3

Since any common zero of R(f) and S(f§) must also be a zero of T(3), we can recover the parameters f§ and « via the rational formulas

= (S3—5253)M3 + (53 —S3)Mam + (S35, —53)m3
(M2 —my)(253—3535, +53)

) )
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_Mits=-Dp

S2 (8
Note that a calculation shows
mi—my = (—f)*(s3-53), 9

which, since A#0, is only zero in the trivial case of o« = 8. Otherwise, since 2s3—3s35, +53 = —a=0 by part (i) of Lemma 19, the
formulas (7) and (8) are valid.

Eq. (9), together with part (ii) of Lemma 19 further shows that if m, #m?, then = is not uniform.

If my= m3, then = is uniform, and S(f) is identically zero. However, in this case the coefficients of
Q3

R(ﬂ)— T—gRB= B +bpr+ef+d

simplify to

~  Qmij—mj3 3 m1 ms

d= 10 =—-mj+ 10
Thus

R(B) = (B—myy+ (’2"3

which has a unique real root

m3—m;
e ()

The parameter « can then be found by formula (8). O

1/3

Proof of Proposition 9. First, note that the distribution of K, may be parameterized using the elementary symmetric
polynomials ¢; evaluated at the {74}, - 4 < . instead of the values {4}, . 4 < o- Indeed, the affiliation model distribution only
involves the mys through the symmetric expressions

En.. s
S

q1s-dss
9;#4j

with s<Q and )", _ i, =n, and these sums may be expressed as polynomials in the {o(ry,...,mg)}1 <i<n. Thus for
identifiability of the {m4} from the distribution of K, it is necessary that the {74} be identifiable from the {ci(71, ...,7@)}1 <i<n-
Note also that o1(n1, ...,mg) = quzl m; =1 carries no information on the 74s that is not already known.

Now if n < Q, identifying Q— 1 independent choices of the n, from the values of n—1 continuous functions of those n is
impossible. [

Lemma 20. For the random graph affiliation model on Q nodes, with binary edge state variables, uniform group priors, and
connectivities o+ 3, the moment inequality mg; > m$ holds.

Proof. Note
My = E[E(X12X23121,23)E(X34X41121,23)] = E[E(X12X23121,Z3)°] > (E[E(X12X231Z1,Z3)])* = m3.
However, equality occurs above only if F(X12X53|Z1,Z3) is constant. But
L

EX12X231Z1 =i=23) = a o B2,

Q-2

EX12X231Z1 =i#j= Z3)——°</3+ a

so the difference of these expectations is (¢—f)?/Q #0. Thus my; > m3.

A similar argument that m, > m? was given in the proof of Theorem 4, so the claim is established. O
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5.4. Proofs for the continuous parametric model

Proof of Theorem 12. With p,, = 1—pg,, the distribution of (X;,Xy,Xj) is given by the mixture

Z TqTeeTem[D g 00 (Xi) +PacF(Xij, 0q0)] X [Dgm0Xi) +PamF Xik, Ogm)] X [P gm 0(Xji) +PemF (Kjte, Orm)]- (10
1<qtm=<Q
Since the distributions F(-,0) have no point masses at 0 by Assumption 2, the family M U {do} has identifiable parameters for
finite mixtures, so Theorem 1 of Teicher (1967) applies to it. Thus multiplying out the terms of the mixture in (10) to view it as
a mixture of products from M U {d¢}, and noting that by Assumption 1 certain of the components arise from unique choices of
g,t,m we can identify the terms of the form

nqn(nmqupqmpimF(Xijveq{)F(Xik,qu)F(}gk:Hl’m)
and the vectors in
C = {(qTeTmPgcPamPems Oge,Ogm, Oem)|1 < q,6,m < Q}

but only as an unordered set. But by Assumption 1, there are only Q vectors in this set for which the last entries (04¢,04m,0¢m)
are all equal. Indeed, these entries are of the form (0yq,044,04¢) for some 1 < q < Q, since the case where these entries would be
of the form (04¢,04¢,04¢) for some q+ ¢ is not possible. Thus the 04, for 1 < g < Q may be identified as well as the corresponding
weights (1qpgq)®, or equivalently the values 7qpgq.

Now, among the vectors in C, exactly 3Q(Q— 1) of them have two of the last three entries equal. These entries are, up to
order, of the form (04q,04¢,04¢), for any q +# ¢. Thus we obtain the set {(nﬁmpfﬂpqq; 04q.0q0,090}1 < q < < o» Without regard to order.
Since we already identified the pairs (74pgq,0qq), we may take the ratio between the weights 73 7,pg,pqq and 7m4pqq to recover
the values 7y7p,. Thus we identify the set {(tq7t;pZ;; 0gq,0q6,04001 < g < ¢ < @-

Among these vectors, we can match the ones whose two last entries are equal, namely those of the form
(nqnfpczﬂ; 04q,04¢,040) With (nqmpfﬂ; 0¢6,04¢,04¢). This enables us to recover the values 0g, for 1 <q,£ <Q.

By marginalizing the distribution of (Xj;, Xi« Xji), we also have the distribution of a single edge variable Xj;,

> mamilPardo(Xij)+ParF(Xj, 0q0))- (11)
1<qt<Q
and thus by our hypotheses can also identify {(7q7:Pqe,0q0)}1 < q < ¢ <. Without order. But as the 04 have already been
identified, we may use this to match 747,pg, With 7473, and thus recover py, from the ratio. From 7gpgq and pgq we can then
recover 7.
Thus, all parameters of the model are identified, up to permutation on the group labels. O

Proof of Theorem 13. From the distribution of K3, we can distinguish (¢, 0;,) from (f8,00uc) as follows: The distribution of K3 is
the mixture of either 4 (when Q=2) or 5 (when Q > 3) different three-dimensional components. Since the distributions F(-,0)
do not have point masses at 0 by Assumption 2, we can identify from this mixture that part with no such Dirac masses in it,
which is the mixture

Q
0(3 <Z 7Z%)F('-Oin) ® F('voin) ® F(-,Om)—l—dﬁz < Z n§n€> F('vOin) ® F('-oout) ® F('-oout)

qg=1 T<q#t<Q

—Hxﬁz ( Z 7'557'5{> F('vgout) ® F('vein) ® F('vgout)+aﬂz < Z 7'537'5[> F(',Qout) ® F('.Qout) ® F(',Qin)

1<q#t<Q 1<q#<Q

+ﬁ3 ( Z chn(’nm> F(-,00ut) ® F(-,00ut) ® F(:,00ut),
q,¢,m distinct
where the last term appears only when Q > 3.

By Theorem 1 of Teicher (1967) and Assumption 2, this three-dimensional mixture has identifiable parameters, up to label
swapping issues. At most two terms in this mixture have the same measure F in each coordinate. The three remaining terms
have two coordinates which are equal, involving 0.y, and one different, involving 0;,. Thus we can distinguish between 0;,
and Ooy¢.

We may also determine o (3, 73) as the weight of F(-,0i) ® F(-,0in) ® F(-,0y). Similarly from the dp ® F(-,0in) ® F(-,0iy) term
in the full mixture, we may recover the weight (1—-o)o(3>,73). Summing these two weights yields «*(3_,73), and then
dividing the first by this, we recover o.

The parameter f is similarly recovered from the weights of F(-,0out) ® F(-,00ut) ® F(-,0in) and dg ® F(-,00ut) ® F(-,0in).

Next we consider the distribution of K, for various n. This is a mixture of many different (})-dimensional a components. As
above, we can identify up to label swapping the components with no o factors in this mixture. But as we already know the
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value of 0;,, we can identify the term ®1 < ; < j < nF(Xj;,0in) in this mixture, and thus its corresponding prior " 3 7. Since o has
been previously identified, this uniquely determines >_,7f. Note that using the distribution of Ko, we can obtain the
distribution of each K,, with n < Q and thus the values > g7 <q-

By the Newton identities, these values determine the values of elementary symmetric polynomials {o,(71,...,7g)}n < -
These, in turn, are (up to sign) the coefficients of the monic polynomial whose roots (with multiplicities) are precisely
{7g}1 < q < @- Thus the node priors are determined, up to order. [

5.5. Proof of Theorem 14

The proof follows the strategy described in Section 5.1. We thus proceed with a base case, an extension step, and a
conclusion.

Base case. We consider a subset £ of the set of all edges over m vertices, with m and £ to be chosen later. Let A be the
Q™ x k¥l matrix containing the probabilities of the clumped random variable Y = (X,),.. with state space {1,...,k},
conditional on the hidden states of the m vertices.

LetZ € {1,...,Q}™ be avector specifying particular states of all the node variables. For each edge e € &, the endpoints are in
some set of hidden states {q, I}, which we denote by Z(e). The (Z,(X.)..¢)-entry of the matrix A is then given by

H H (Prey(R)) e =¥,
ecf k=1

where 1, is the indicator function for a set A.
For each edge e in the graph, we introduce k indeterminates, t, 1, . . ., te . We create a x/°!- element column vector t indexed
by the states of the clumped variable Y, whose (x.),..-th entry is given by

L
ITIT ek
eefk=1
Then the 7 th entry of the Q™-entry vector At is the polynomial function
K
fr=">" 11 11 Preo®tery e =¥ =] [(Prey(Dtea + - - - +Prie)()te ).
(Xe)ecs€EE k =1 ec&

Independence of the rows of A is equivalent to the independence of the polynomials {f7}7¢
have

Zazfz =0 (12)
A

gyn- Thus, suppose that we

and let us show then that every a; must be 0.

For a specifice € £ and any choice {g, I} with 1 <q <1< Q, one can choose a point t, 4, = (te1, . . ..tex) € R" in the zero set
of all the polynomial functions f7 in (12), except those with Z(e) = {q,1}. To see this, let M be the (25 !) x k matrix whose {g, I}th
row is given by the vector py = (pgi(1), . ..,pqi(x)). M has full row rank since its rows are independent by assumption. Thus
there is a solution t. g, 1 to

Mte g1y =€,

where e(qj is the vector of size (Qj 1y with zero entries, except the {g, I}th which is equal to 1. The independence assumption
also implies k > (¢31).

Note that in this construction we have only specified group assignments to two nodes up to node permutation. Thus if the
{q, I} row of M is related to an edge e=(i, j) because Z(e) = {q,l}, we may have that eitheriis in state g and j is in state [, oriisin
state [ and j is in state q.

By evaluating the f7 at t. ¢, ; for many edges e and choices of node states {q, [}, we can annihilate all the polynomials f;
except those satisfying specific constraints on the node states. More precisely, we can make vanish all the f; except those for
which 7 satisfies the condition that for some subset of edges £ = £ and some sequence of unordered node assignments
({qevle})eeg' we have

T € [)S(e: {Gele)), (13)
ees’
where S(€; {qe.le)) = {Z € {1,...,Q)"|Z(e) = {qe,le}}.
To conclude that each ar = 0in Eq. (12), it is enough to construct forevery Z € {1,...,Q}™ asetas in(13) containing only Z.
In fact, this can be achieved with only m=3 vertices and the full set of edges £={(1,2),(1,3),(2,3)}. Indeed, up to
permutation of the nodes and of the labels of the groups, Z can take only three different values, namely (1,1,1), (1,1,2) and
(1,2,3). Using a node assignment on the edges in &£ = {(1,2),(2,3)}, we get

{(1,1,1)} =8((1,2); {1,1H N S((2,3); {1,11),{(1,1,2)} = S((1,2); {1,1}) N S((2,3); {1,2}),{(1,2,3)} = S((1,2); {1,2}) N S((2,3); {2,3)).
Thus, we proved the following lemma.
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Lemma 21. With & the complete set of edges over m=3 vertices, the Q3 x i3 matrix A containing the probabilities of the clumped
variable Y = (Xe),c¢, conditional on the hidden states Z = (Z1,Z,,Z3) € (1, .. .,Q}> has full row rank Q?, provided the x-entry vectors
{Pgi}1 <q <1<q are linearly independent.

Conclusion of the proof : The lemma provides the base case, with the extension step of Section 5.1 then applying. Thus with
n=m?=9 nodes, Kruskal’s theorem may be applied to identify, up to simultaneous row permutation, v, M;, M5, and M5 as
defined in that section.

The rest of the proof follows the same lines as the conclusion in the proof of Theorem 2, replacing the numbers py; by the
vectors pg; and noting that these vectors are assumed to be linearly independent.

5.6. Proof of Theorem 15

For convenience, we present the argument assuming the state space of the i, is a subset of R. The more general situation
of a multidimensional state space can be handled similarly, along the lines of the proof of Theorem 9 of Allman et al. (2009).

Let My denote the c.d.f. of pg = (1-pg)do+pgFy. Since the measures {uyl1<q<I1<Q)} are assumed to be linearly
independent, so are the functions {My|1 < q <1< Q}. Applying Lemma 17 of Allman et al. (2009) to this set of functions, there
exists some x € N and cutpoints u; <u, < --- <u,_1 such that the vectors

{(Mgi(u1),Mg(u), ... .Mg(ue_1),DI1 <q<1<Q})

are independent. Note k > (23 1). Also by adding additional cutpoints if necessary, and thereby increasing x, we may assume
that among the u; are any specific real numbers we like. o
The independence of the above vectors is equivalent to the independence of the vectors {M|1 <q <1< Q}, where

Mql = (Mql(ul)qul(HZ)_Mql(ul ) oo qul(ukfl)_Mql(quz)vl_Mql(qu1))~

Note that the kth entry of My, is simply the probability that a variable with distribution Ug takes values in the intervals
I,=(ug_1, ug] (with the convention that ug = —oo,u, = c0). To formalize this, let

K
Y,’j = Z l<1,k(Xij)
k=1
be the random variable with state space {1,2, ...,x} indicating the interval in which the value of Xj; lies. Thus, conditional on
Zi=q, Zj=1, the random variables X; and Y;; have respective c.d.f.s Mg and My,.

Now from the distribution of the continuous random graph mixture model on Ko, with edge variables (Xj); <; <o, by
binning the values of the 36 edge variables into sets of the form [T, _; _ ;. olx; with 1 <k; <k, we obtain the distribution for
the discrete edge variables (Yj); < ;  j <  of a random graph mixture model with the same group priors on the nodes, and with
mixture components built from the distributions M associated to . By Theorem 14, the parameters of the discrete model
are identifiable, up to label swapping. Imposing an arbitrary labeling, we have identified the node group priors g, 1 < g <Q,
and for each pair of groups q < I the vector M. By summing entries of My, we obtain values of Mg(uy) for k=1,2,...,k—1.
Since we may additionally determine Mg(t) for any real number t by including it as a cutpoint, My, and hence p, is uniquely
determined.
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