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Consider the convolution model Yk = Xk + εk, k = 1, . . . , n, where the (Xk)’s and the (εk)′s,
are two independent sequences of independent and identically distributed random variables, the
(Xk)’s with unknown density g and the (εk)′s having the Gaussian density fε with zero mean
and unit variance. In this model we aim at estimating, using the observations Y1, . . . , Yn, some

linear functionals of the density g of the form Γf (y) =
∫

f(x)g(x)fε(y−x) dx, where f is a known

function, either polynomial or trigonometric. We extend Taupin’s results [21] by giving lower
bounds for pointwise minimax risk and upper and lower bounds for minimax Lp(R)-risk, when
2 ≤ p ≤ ∞.
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1. Introduction
Consider the convolution model

Yk = Xk + εk, k = 1, . . . , n,

where the (Xk)’s and the (εk)’s are two independent sequences of independent
and identically distributed (i.i.d.) real-valued random variables, the (Xk)’s with
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unknown density g with respect to the Lebesgue measure on R and the (εk)’s
having the Gaussian density fε with zero mean and unit variance. In this model we
aim at estimating linear integral functionals of the unknown density g of the form

Γf (y) =
∫

f(x)g(x)fε(x− y) dx for y ∈ R,

where f is a known function, using the observations Y1, . . . , Yn. We focus here
on the cases where f is either a polynomial or a trigonometric function with a
particular interest to the special case f ≡ 1 corresponding to the density h of the
observations Y1, . . . , Yn, which is, due to independence between Xk and εk, given
by the convolution product

h(y) = g ∗ fε(y) =
∫

g(x)fε(x− y) dx for y ∈ R.

Let us first motivate the interest in those functionals. Consider a nonlinear
structural errors-in-variables regression model described by the observation of the
random variables (Z1, Y1), . . . , (Zn, Yn) satisfying the relations

Zk = fβ0(Xk) + ηk, Yk = Xk + εk, k = 1, . . . , n,

where the function f is known up to a finite-dimensional parameter β0 and the
errors (η1, ε1), . . . , (ηn, εn) are centered, i.i.d., with respective variances σ2

η and
σ2

ε = 1 for the sake of simplicity. We assume furthermore that the errors (εk) are
normally distributed. The sequence (Xk)1≤k≤n is not observed and is a sequence of
i.i.d. random variables with unknown density g. Moreover, the sequences (Xk)k≥0,
(ηk)k≥0, and (εk)k≥0 are independent. In this errors-in-variables regression model,
the purpose is to estimate the parameter β0 in the presence of the unknown density
g of the unobserved variables considered as a nuisance parameter. In this context,
Taupin [21] proposed an estimator of this parameter β0 based on the criterion

1
n

n∑

i=1

W (Yi)[Zi − E (fβ(Xi) | Yi)]2,

W (·) being a compactly supported weight function, where the conditional expecta-
tion E (fβ(Xi) | Yi) is replaced by a nonparametric estimator based on the sample
Y1, . . . , Yn. Denoting by X, Y , and ε the generic variables, and using the indepen-
dence between X and ε, the conditional expectation E (fβ(X) | Y ) can be written
as

E (fβ(X) | Y ) =
∫

fβ(x)g(x)fε(Y − x) dx∫
g(x)fε(Y − x) dx

=
Γfβ

(Y )
h(Y )

.

Taupin [21] proposed an estimator of this conditional expectation obtained by es-
timating separately the numerator and the denominator. In particular, she con-
structed an estimator of this functional Γf for general functions f and gave the cor-
responding upper bounds on the pointwise quadratic risk and on uniform-risk for
various classes of functions f such as polynomial functions, exponential functions,
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trigonometric functions, and more generally functions f admitting an analytic con-
tinuation into a strip Bγ = {x + iy; (x, y) ∈ R2, |y| ≤ γ}, or functions f belonging
to Sobolev classes.

The upper bound for the rate of convergence of the estimator of β0 may depend
on the asymptotic properties of the pointwise quadratic risk and of the L∞-risk
of the estimator of Γf . Therefore it is of interest to study deeply the estimation
problem of such functionals.

The estimator. The functional Γf is simply estimated by a plug-in deconvolu-
tion kernel density estimator as given in Fan [11] or Butucea [4], that is

Γ̂f,n(y0) =
∫

f(x)fε(y0 − x)ĝn(x) dx(1)

with ĝn(x) =
Cn

n

n∑

i=1

K̃n(Cn(x− Zi)),

where K̃n

?
(t) = K?(t)/f?

ε (tCn), K being a kernel to be chosen, (Cn)n≥0 is a
sequence increasing to infinity, and u?(t) =

∫
exp(itx)u(x) dx denotes the Fourier

transform of u. The choice of the kernel will be adapted to the function f in Γf ,
but has to satisfy the following conditions.
[K1] The Fourier transform K? of K has a bounded support and |K?| ≤ 1[−τ,τ ].
[K2] The kernel K belongs to L2(R) and is an even function.
[K3] K?(t) = 1 for any t in [−1, 1] and K? is nonnegative.

Condition [K1] ensures, in particular, the existence of the deconvolution density
estimator ĝn and consequently also the existence of Γ̂f,n. Condition [K2] ensures
that the Fourier transform of the kernel is an even real-valued function, and Con-
dition [K3] allows the control of the bias term since |1−K?(t)| ≤ 1|t|≥1, for all t.
The so-called sine kernel defined by

(2) S(x) = sin(x)/(πx), x ∈ R, with S?(t) = 1[−1;1](t),

satisfies Conditions [K1]–[K3]. Since the kernel S is not integrable, we may prefer,
for instance, a kernel, called the analogue of the de La Vallée-Poussin kernel (see
Nikol’skii [16]), defined for all x in R by

(3) V (x) =
cos(x)− cos(2x)

πx2
with V ?(t) =





1 if t ∈ [−1, 1],
0 if |t| ≥ 2,

(2− |t|) if |t| ∈ [1, 2],

which satisfies Conditions [K1]–[K3] and belongs to L1(R). Subsequently, S will
denote the sine kernel and V the de La Vallée-Poussin kernel. It is easy to see
that, according to Parseval’s Formula, Γ̂f,n(y0) is the same estimator as the one
proposed by Taupin [21]. It is also noteworthy that when f ≡ 1 we have Γ1 = h,
and ĥn(y0) is simply a kernel density estimator based on the kernel K, so that ĥ

(k)
n ,

k = 0, . . . , `, is also given by

(4) ĥ(k)
n (y0) =

1
n

n∑

j=1

K(k)
n (y0 − Yj) =

Ck+1
n

n

n∑

j=1

K(k)(Cn(y0 − Yj)),

where Kn(·) = CnK(Cn·).



4 C. Matias and M.-L. Taupin

Our aim is to provide lower bounds for the minimax risk with respect to various
loss functions, and to show that the estimator defined by (1) achieves those optimal
rates of convergence when f is either a polynomial function or a trigonometric
function. Note that when f is an exponential function, we have the relation Γf (y) =∫

exp(βx)g(x)fε(x− y) dx = exp(yβ + β2/2)h(y + β), and therefore estimating Γf

corresponds to a special case of estimating h.

Minimax risks. We consider various minimax risks: the pointwise minimax
quadratic risk for the estimation of Γf (y0) when y0 is fixed and the minimax Lp(R)-
risk (2 ≤ p ≤ ∞) for the global estimation of Γf . Denote by G the set of probability
densities g with respect to the Lebesgue measure on R and by H the set of densities
written as the convolution of a density g in G with the standard Gaussian density
fε, that is

G =
{

g; g ≥ 0,

∫

R
g(x) dx = 1

}
, H =

{
g ∗ fε; g ≥ 0,

∫

R
g(x) dx = 1

}
.

For a fixed function f , Gf denotes the set of densities g for which the linear func-
tional Γf exists, that is

Gf =
{

g ∈ G such that ∀y ∈ R, f(·)g(·)fε(· − y) ∈ L1(R)
}

.

Note that when f is a polynomial function of degree `, the functionals Γf are
defined for densities g in Gf having at least ` finite moments. This condition relies
on the fact that we use the functional Γf to estimate E (f(X) | Y ) and then when
f is a polynomial function of degree `, we need that E (|X|`) < ∞. When f is a
trigonometric function, the functional Γf exists for any density g.

The pointwise minimax quadratic risk over the set Gf is defined for any y0 ∈ R
by

Rn(f, y0) = inf
Tn

sup
g∈Gf

E 1/2[Γf (y0)− Tn]2,

where the infimum is taken over all the estimators Tn based on the observations
Y1, . . . , Yn. In the same way, the minimax Lp(R)-risk is defined by

Rn,p(f) = inf
Tn

sup
g∈Gf

E ‖Γf − Tn‖p, 2 ≤ p ≤ ∞,

where the infimum is taken over all the estimators Tn based on the observations
Y1, . . . , Yn, and where ‖u‖p =

[∫ |u(x)|p dx
]1/p and ‖u‖∞ = supx∈R |u(x)|.

Previous results. Let us present previous results starting with the particular
case f ≡ 1 corresponding to the problem of estimating the density h = fε ∗ g. Take
K ≡ S and Cn =

√
log n. Then by classical calculations on kernel estimation (see

Ibragimov and Hasminskii [15] and Taupin [21]) the following results hold:

lim sup
n→∞

√
n

(log n)1/4
sup
h∈H

E 1/2
[
ĥn(y0)− h(y0)

]2
< +∞,
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and

lim sup
n→∞

√
n

(log n)1/4
√

log log n
sup
h∈H

E ‖ĥn − h‖∞ < +∞.

Note that, due to the structure of the convolution model, the regularity of the
density h is determined by the density of ε’s, which is supposed to be the stan-
dard Gaussian density. Then the density fε ∗ g has obviously strong smoothness
properties.

First, the class H is embedded into the totally bounded (with respect to the
L2(R)-norm) set Aγ of analytic densities on the strip Bγ = {x + iy; (x, y) ∈
R2, |y| ≤ γ} satisfying

∫
(Re h(x + iγ))2 dx ≤ Cγ , where Re(z) denotes the real

part of the complex number z. Golubev and Levit [14] proved that the optimal
rate of convergence of the quadratic risk over this class is of order

√
log n/

√
n,

which implies that the order of the minimax quadratic risk on H is less than or
equal to

√
log n/

√
n. Secondly, by the fact that |(fε ∗ g)?| ≤ f?

ε , the class H is
contained in the even smaller class B1,1/2(2), where the class BA,ρ(r) is defined as
BA,ρ(r) =

{
φ density; |φ?(t)| ≤ Ae−ρ|t|r}. These smoothness classes have been

considered by Davis [9, 10], and lately by Levit1 and Artiles Martinez (see [1] and
[2]). Since the minimax quadratic risk for estimating a density over the class BA,ρ(r)
is of order (log n)1/(2r)/

√
n, the minimax quadratic risk on H is less than or equal

to (log n)1/4/
√

n. Taupin [20] established a lower bound for the minimax quadratic
risk over the class H, which shows that the (log n)1/4/

√
n rate cannot be further

improved.
The results obtained for the estimation of h lead us to make some remarks about

the convolution model.
The smoothness properties of h come from the convolution, h = fε∗g, of a density

g with the Gaussian density, without any additional assumption on g. Therefore
adaptivity is not of our concern since our density h has a regularity which does not
depend on unknown parameters.

Secondly, we would like to stress the difference between our objective and the
one in deconvolution problems. In the latter case the purpose is to estimate the
density g of X. It is known that the slowest rates of convergence for estimating g are
obtained for the smoothest error densities, whereas the faster rates of convergence
for estimating h = g ∗ fε are obtained for the smoothest errors densities. We refer,
e.g., to Pensky and Vidakovic [17], Cator [6], Butucea [4], Butucea and Tsybakov [5]
or Comte and Taupin [7] for recent results on deconvolution density estimation.

We now turn to the problem of estimating Γf focusing on polynomial and trigono-
metric functions f . In the polynomial case, when f(x) =

∑`
k=0 βkxk with ` ≥ 1

and β = (β0, · · · , β`) a fixed (` + 1)-tuple of real numbers, Taupin [21] established
the following upper bounds: for any y0 in R, if Cn =

√
log n and K ≡ S in Γ̂f,n

defined by (1), then

lim sup
n→∞

√
n

(log n)(2`+1)/4
E 1/2 [Γ̂f,n(y0)− Γf (y0)]2 < ∞,

1May 1996, talk at the Ecole Normale in Paris (ULM). Unpublished
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and if ZC denotes any compact subset of R,

lim sup
n→∞

√
n

(log n)(2`+3)/4
E [ sup

y∈Zc

|Γ̂f,n(y)− Γf (y)| ] < ∞.

Note that, due to the fact that the errors ε are Gaussian, for a polynomial
function f the functional Γf can be related to the derivatives of h up to order `
(see Lemma 2.1). Therefore the problem of estimating Γf is related to the problem
of estimating the derivatives of the density h up to order `.

When f(x) =
∑`

k=0 βk cos(kx) or f(x) =
∑`

k=0 βk sin(kx) with ` ≥ 1 and β =
(β0, . . . , β`) a fixed (` + 1)-tuple of real numbers, Taupin [21] proved the following
upper bounds: for any y0 in R, if Cn =

√
log n and K ≡ S in Γ̂f,n defined by (1),

then

lim sup
n→∞

√
n

exp{`√log n}E
1/2[Γ̂f,n(y0)− Γf (y0)]2 < ∞,

and if ZC denotes any compact subset of R, then

lim sup
n→∞

√
n√

log n exp{`√log n}E [ sup
y∈ZC

|Γ̂f,n(y)− Γf (y)| ] < ∞.

Taupin [21] noticed that for general f , the smoother is f the faster is the rate
of convergence for the estimation of Γf . In both cases considered (polynomial or
trigonometric functions), f admits an analytic continuation in the whole complex
plane and so does the functional Γf but the rates of convergence are really different.
We will show in this paper that these rates cannot be essentially improved (see
below).

Results. Our aim here is threefold. First, we improve the existing upper bounds
with respect to the uniform norm. As a matter of fact, these previous bounds were
obtained for y lying in a compact set and were not optimal. We give new upper
bounds for the uniform norm on R when f is a polynomial or a trigonometric
function. Secondly, we extend those results by giving upper bounds for Lp(R)-
risks, when 2 ≤ p < ∞. Finally, our main contribution concerns lower bounds.
We prove that all these rates of convergence obtained in the polynomial case are
optimal in the minimax sense (pointwise and for Lp(R)-risks, 2 ≤ p ≤ ∞), and
are nearly optimal in the trigonometric case (pointwise and for L∞(R)-risks), in
the sense that there is a small loss in lower bounds, negligible with respect to the
dominating term in the rate of convergence.

This paper is organized as follows. Section 2 presents some elementary prop-
erties of Γf and Γ̂f,n in the cases we are interested in. In Section 3, we give the
results about pointwise estimation, starting by recalling previous results on up-
per bounds and then giving lower bounds. In Sections 4 and 5 we deal with the
problem of estimation with respect to Lp(R)-risk, when 2 ≤ p ≤ ∞, starting with
upper bounds (Section 4) and finally establishing the optimality properties of our
estimator through lower bounds (Section 5). The proofs are presented in Sections 6
and 7 (for the main results) and in Section 8 (for technical lemmas).
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2. Some Properties of our Functionals
Subsequently, we will denote by Pβ,` any polynomial function of the form Pβ,` :

x 7→ ∑`
j=0 βjx

j with β` different from zero. In the same way, we will denote
by Cβ,`, ` ≥ 1, any linear combination of cosine functions of the form Cβ,` : x 7→∑`

j=0 βj cos(jx) and similarly Sβ,` : x 7→ ∑`
j=0 βj sin(jx), with β` different from

zero. In both cases ` is a fixed integer and the parameters (βj)0≤j≤` are real fixed
numbers. These particular forms of the function f considered here imply that the
corresponding functional Γf satisfies some useful formulae given below.

Lemma 2.1. For a fixed integer ` let f be of type Pβ,`, then there exist poly-
nomial functions {Qβ,j} for 1 ≤ j ≤ ` of degree deg(Qβ,j) = j such that for all y
in R

(5) Γf (y) = β`h
(`)(y) +

`−1∑

k=0

Qβ,`−k(y)h(k)(y), for all y ∈ R.

Moreover, the corresponding estimator Γ̂f,n defined by (1) satisfies

(6) Γ̂f,n(y) = β`ĥ
(`)
n +

`−1∑

k=0

Qβ,`−k(y)ĥ(k)
n (y), for all y ∈ R.

This lemma follows immediately from the following remarks. Denoting Γk(y) =∫
xkfε(x − y)g(x) dx, we have the recurrence formula Γk(y) =

∫
(x − y)kfε(x −

y)g(x) dx +
∑k−1

j=0

(
k
j

)
yk−jΓj(x). Moreover, there exist coefficients {αj} such that

h(k)(y) =
∫

(x − y)kfε(x − y)g(x) dx +
∑k−1

j=0 αj

∫
(x − y)jfε(x − y)g(x) dx. This

gives the result for Γf and the proof of (6) follows the same lines. Consequently,
when f is a polynomial function of degree `, the estimation of the functional Γf is
a problem equivalent to the estimation of the derivatives h(k) up to order `. We
now turn to the trigonometric case.

Lemma 2.2. For a fixed integer ` ≥ 1 let f be of type Cβ,`. Consider the
functional Γf , its estimator Γ̂f,n defined by (1), and ĥn defined by (4). Then we
have

Γf (y) =
∑̀

j=0

βj
e−j2/2

2
[
eijyh(y + ij) + e−ijyh(y − ij)

]
,(7)

Γ̂f,n(y) =
∑̀

j=0

βj
e−j2/2

2

[
eijyĥn(y + ij) + e−ijyĥn(y − ij)

]
.(8)

Analogously, when f is of type Sβ,`, we get

Γf (y) =
∑̀

j=0

βj
e−j2/2

2i

[
eijyh(y + ij)− e−ijyh(y − ij)

]
,(9)

Γ̂f,n(y) =
∑̀

j=0

βj
e−j2/2

2i

[
eijyĥn(y + ij)− e−ijyĥn(y − ij)

]
.(10)
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This lemma follows from the fact that h is the convolution of a density with
the Gaussian density, and hence it admits an analytic continuation on the whole
complex plane. Therefore, the results follow by writing that if f(x) = cos(jx) =
[exp(ijx) + exp(−ijx)]/2, then Γf (y) can also be written as

Γf (y) =
e−j2/2

2
√

2π

[ ∫
eijye−(y+ij−x)2/2g(x) dx +

∫
e−ijye−(y−ij−x)2/2g(x) dx

]

=
e−j2/2

2
[
eijyh(y + ij) + e−ijyh(y − ij)

]
.

Any kernel K satisfying Conditions [K1]–[K3] also admits an analytic contin-
uation on the whole complex plane, so that the formulae are also valid for the
estimator Γ̂f,n.

Remark 1. Formulae (5) to (10) are useful for obtaining lower bounds, espe-
cially for constructing sub-families related to the density h.

3. Pointwise Estimation: Upper and Lower Bounds
We first consider polynomial functions, starting by recalling the results by Tau-

pin [21] about upper bounds for the pointwise quadratic risk and then giving the
corresponding lower bounds.

Proposition 3.1. (Consequence of Proposition 3.1 in Taupin [21].) Fix an
integer ` ≥ 1 and a polynomial function f of type Pβ,`. Consider the estimator
Γ̂f,n defined by (1) with the kernel S defined by (2) and the bandwidth Cn =

√
log n.

Then for all y0 in R,

lim sup
n→∞

sup
g∈Gf

1
|β`|

(
π(2` + 1)

h(y0)

)1/2 √
n

(log n)(2`+1)/4
E 1/2

[
Γ̂f,n(y0)− Γf (y0)

]2

≤ 1.

The following theorem states that this rate of convergence is the best achievable
one and hence the estimator defined by (1) achieves it.

Theorem 3.1. Fix an integer ` ≥ 1 and a real number y0. Then there exists a
density h0 in H such that

lim inf
n→∞

inf
Tn

sup
h∈H

√
n

(log n)(2`+1)/4
E 1/2

[
Tn − h(`)(y0)

]2

≥
(

h0(y0)
π(2` + 1)

)1/2

.

Furthermore, if f is a polynomial function of type Pβ,`, then

lim inf
n→∞

inf
Tn

sup
g∈Gf

√
n

(log n)(2`+1)/4
E 1/2 [Tn − Γf (y0)]

2 ≥ |β`|
(

h0(y0)
π(2` + 1)

)1/2

.

These infima are taken over all estimators Tn based on the observations Y1, . . . , Yn.

Remark 2. Note that the rate obtained in Theorem 3.1 is optimal but with a
constant different from the one obtained in Proposition 3.1. Nevertheless, it seems
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that it cannot be further improved for all g ∈ Gf . Indeed, as noticed above, these
bounds hold whatever be the density g, without additional assumptions on g. We
could have the same constants in the upper and lower bounds if we restricted g to
belong to a smoothness class. Then we would obtain a local minimax asymptotic
result. Without smoothness constraints on g, it seems that there is no hope to
obtain the constant h(y0)/[π(2` + 1)] in both bounds.

The lower bound when ` = 0 was obtained by Taupin [20]. The main tool in the
proof is the van Trees inequality (see Gill and Levit [13]).

We now turn to trigonometric functions. The upper bound for the pointwise
estimation is given in the following theorem.

Theorem 3.2. (Consequence of Proposition 3.1 in Taupin [13].) For a fixed
integer ` ≥ 1 let f be a trigonometric function of the form Cβ,` or Sβ,`. Let
Γ̂f,n be defined by (1), with the kernel S defined by (2) and the bandwidth Cn =√

log n− (1
2 ) log log n. Then, for all y0 in R,

lim sup
n→∞

sup
g∈Gf

(
2π

|β`|e−`2/2[h ∗ ϕ`(y0)]1/2

) √
n

exp{`√log n}E
1/2[Γ̂f,n(y0)−Γf (y0) ]2 ≤ 1,

where ϕ`(y) = 1/(y2 + `2).

We give a new proof of this theorem based on Lemma 2.2 (which was not used
in [21]). This proof is of interest since it uses techniques specifically related to this
link between trigonometric functionals and the density h.

The following theorem states that the estimator defined by (1) or equivalently
by (8) is “nearly minimax”. As a matter of fact, the upper bound is of order
n−1/2 exp{`√log n} and the lower bound of order n−1/2(log n)−1/4 exp{`√log n},
with a loss of order (log n)1/4 negligible with respect to the considered rate.

Theorem 3.3. For a fixed integer ` ≥ 1 let f be a trigonometric function of
type Cβ,` or Sβ,`. Then there exists a density h0 = g0 ∗ fε in H such that for all y0

in R,

lim inf
n→∞

inf
Tn

sup
g∈Gf

√
n(log n)1/4

exp{`√log n}E
1/2[Tn − Γf (y0)]2 ≥ Γ0(y0)

(4π`2h0(y0))1/2
,

where the infimum is taken over all the estimators Tn based on the observations
Y1, . . . , Yn, and Γ0(y0) =

∫
f(x)g0(x)fε(x− y0) dx.

4. Upper Bounds for the Lp(R)-Risk
Now we come to our main contribution, that is estimating Γf and h with respect

to Lp(R)-norm, when 2 ≤ p ≤ ∞. We start with upper bounds for the rate of
convergence of the Lp(R)-risk before showing that these rates are the best achievable
and that our estimator defined in (1) with suitable kernel essentially achieves these
rates.

4.1. Upper bound of the Lp(R)-risk for polynomial functions. In
this subsection, we are interested in upper bounds for the Lp(R)-risk of Γ̂f,n when f
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is a polynomial function of type Pβ,`, with ` ≥ 1. According to Lemma 2.1, we start
with the rate of convergence of the estimators of the derivatives h(k), 0 ≤ k ≤ `.

Theorem 4.1. Let ` be a fixed integer and ĥ
(`)
n the estimator defined by (4) with

the kernel V defined by (3) and the bandwidth Cn =
√

log n. If 2 ≤ p < ∞, then

lim sup
n→∞

sup
h∈H

√
n

(log n)(2`+1)/4
E ‖ĥ(`)

n − h(`)‖p < +∞.

If p = ∞, then

lim sup
n→∞

sup
h∈H

√
n

(log n)(2`+1)/4
√

log log n
E ‖ĥ(`)

n − h(`)‖∞ < +∞.

The result for p = ∞ and ` = 0 was obtained by Taupin [21].

Remark 3. The main tool for the proof of upper bounds is Rosenthal’s inequal-
ity with optimal constants. This tool does not allow us to give the exact constant
in these upper bounds.

Now we turn to a general polynomial function f . We start by presenting some
additional conditions needed for the control of the Lp(R)-risks related to the esti-
mation of x`−kh(k)(x).

First note that Theorem 4.1 holds for any integrable kernel K satisfying Condi-
tions [K1]–[K3]. And when f is a polynomial function of degree less or equal to
`, by using Lemma 2.1 and according to (6), we have to choose a kernel admitting
a more regular Fourier transform than V (which means a kernel admitting more
finite moments) in order to estimate the functional Γf . This new kernel has to
satisfy the following condition.
[K4] For all 0 ≤ k ≤ `− 1 and for all p ≥ 2, the integral

∫ |x|p(`−k)|K(k)(x)|p dx
is finite.

Classical analysis results ensure the existence of an integrable kernel satisfying
Conditions [K1]–[K4] even if Assumption [K4] has to hold for all k ∈ N. Moreover,
Theorem 4.1 still holds with any kernel satisfying Conditions [K1]–[K4].

Secondly, for a polynomial function, the density g has to admit a finite moment
of order p`. Consequently, for any M > 0 and any r ≥ 1, we define the set

Gr(M) =
{

g ∈ G;
∫
|y|rh(y) dy ≤ M, where h = g ∗ fε

}
.

This condition concerns only the densities g since all the moments of the Gaussian
variable are bounded.

Corollary 4.1. For a fixed integer `, let f be a polynomial function of type Pβ,`.
Consider the estimator Γ̂f,n defined by (1) with a kernel K satisfying [K1]–[K4]
and the bandwidth Cn =

√
log n. If 2 ≤ p < ∞, then for any finite Mp` > 0

lim sup
n→∞

sup
g∈Gp`(Mp`)

√
n

(log n)(2`+1)/4
E ‖Γ̂f,n − Γf‖p < +∞.



Estimation of Functionals in the Convolution Model 11

If p = ∞, for any infinite sequence {Mp′`}p′ , p′ ≥ 2, of positive finite numbers
satisfying

(11) Mp′` ≤ V Kp′ exp
{
(p′/2− 1)e2p′ + (p′)2/2− (p′/2) log p′

}

with V,K positive constants, we have

lim sup
n→∞

sup
g∈

⋃
p′ Gp′`(Mp′`)

√
n

(log n)(2`+1)/4
√

log log n
E ‖Γ̂f,n − Γf‖∞ < +∞.

Remark 4. Note that the second part of Corollary 4.1 improves the result of
Taupin [21] since her result gave an upper bound only for a uniform norm on a
compact set and the rate she gave, namely

√
n(log n)−(2`+1)/4(log n)−1/2, is slower

than this one. Also observe the classical loss of order
√

log log n between the rate
of convergence of the Lp(R)-risk for 2 ≤ p < ∞ and the rate of the L∞(R)-risk.

Our result holds when we consider Lp(K)-norms on a compact set K without
any condition on E (|Y |p`). When we consider Lp(R)-norms, the uniform control of
the p`th moment of g seems unavoidable. Furthermore, the method used for the
uniform convergence requires the control of these p`th moments for all p, which is
even stronger. Also note that the condition on the growth of the moments E |Y |m
is satisfied for usual distributions admitting all finite moments. In particular, this
condition is fulfilled by distributions satisfying the classical condition E |Y |m ≤
V Km−2m! with V, K positive constants.

4.2. Upper bound of the Lp(R)-risk for trigonometric functions.

Theorem 4.2. For a given integer ` ≥ 1, let f be a fixed trigonometric function
of type Cβ,` (resp. Sβ,`). Consider Γ̂f,n as defined by (1) with the kernel S (defined

by (2)) and the bandwidth Cn =
√

log n− 1
2 log log n. If 2 ≤ p < ∞, then we have

lim sup
n→∞

sup
g∈Gf

√
n

exp(`
√

log n)
E ‖Γ̂f,n − Γf‖p < +∞.

If p = ∞, then we have

lim sup
n→∞

sup
g∈Gf

√
n

exp(`
√

log n)
√

log log n
E ‖Γ̂f,n − Γf‖∞ < +∞.

Even for trigonometric functions, we observe the classical loss of order
√

log log n
between the rate of convergence of the Lp(R)-risk for 2 ≤ p < ∞ and the rate of
the L∞(R)-risk.

5. Lower Bounds
5.1. Lower bounds for the L∞(R)-risk. The following theorem gives

the lower bound for the minimax uniform risk over H for the estimation of the
density h of the observations and its derivatives h(`) when ` ≥ 1.
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Theorem 5.1. For any integer ` ≥ 0, we have

lim inf
n→∞

inf
Tn

sup
h∈H

√
n

(log n)(2`+1)/4
√

log log n
‖h(`) − Tn‖∞ > 0,

with the infimum taken over all estimators Tn based on the observations Y1, . . . , Yn.

The following corollary to Theorem 5.1, which is a consequence of Lemma 2.1,
gives the lower bound for the uniform estimation of Γf when f is a polynomial
function.

Corollary 5.1. For an integer ` ≥ 1, let f be a polynomial function of type
Pβ,`. Then we have

lim inf
n→∞

inf
Tn

sup
g∈Gf

√
n

(log n)(2`+1)/4
√

log log n
‖Γf − Tn‖∞ > 0,

with the infimum taken over all estimators Tn based on the observations Y1, . . . , Yn.

The next theorem gives the lower bound for the minimax uniform risk when f
is a trigonometric function.

Theorem 5.2. For an integer ` ≥ 1, let f be a trigonometric function of type
Cβ,` or Sβ,`. Then we have

lim inf
n→∞

inf
Tn

sup
g∈Gf

√
n(log n)3/4

exp(`
√

log n)
√

log log n
‖Γf − Tn‖∞ > 0,

with the infimum taken over all estimators Tn based on the observations Y1, . . . , Yn.

By comparing Theorems 5.2 and 4.2, we observe, as for the pointwise risk, a
loss of order (log n)3/4, which is negligible with respect to the considered rate of
convergence.

5.2. Lower bounds for the Lp(R)-risk, 2 ≤ p < ∞, for polynomial
functions. The following theorem gives a lower bound for the minimax Lp(R)-risk
over H, for the estimation of the density h and its derivatives h(`) when ` ≥ 1.

Theorem 5.3. For any integer ` ≥ 0 and any p ≥ 2, we have

lim inf
n→∞

inf
Tn

sup
h∈H

√
n

(log n)(2`+1)/4
‖h(`) − Tn‖p > 0,

with the infimum taken over all estimators Tn based on the observations Y1, . . . , Yn.

The following corollary to Theorem 5.3, which is a consequence of Lemma 2.1,
gives a lower bound for the estimation of Γf when f is a polynomial function. Its
proof is a generalization of the methods used in the proof of Theorem 5.3.

Corollary 5.2. For an integer ` ≥ 1, let f be a polynomial function of type
Pβ,`. Then, for any 2 ≤ p < ∞, we have

lim inf
n→∞

inf
Tn

sup
g∈Gf

√
n

(log n)(2`+1)/4
‖Γf − Tn‖p > 0,

with the infimum taken over all estimators Tn based on the observations Y1, . . . , Yn.
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6. Proofs of Pointwise Results

6.1. Proof of pointwise results for polynomial functions.

6.1.1. Proof of Theorem 3.1 (lower bound for polynomial functions). The first
step of the proof consists in constructing a one-dimensional family of densities
{hθ,`}|θ|≤θn

, θn =
√

log n/
√

n, contained in H for n large enough. Then we consider
the sub-family {Γθ,`}|θ|≤θn

with θn =
√

log n/
√

n, where, according to Lemma 2.1,
Γθ,` is given by Γθ,` = β`h

(`)
θ,` +

∑`−1
k=0 Qβ,`−kh

(k)
θ,` . Therefore, by construction, the

sub-family {Γθ,`}|θ|≤θn
is contained in {Γf ; g ∈ Gf} for a polynomial function f of

type Pβ,`. The second step consists in applying the van Trees inequality (see Gill
and Levit [13]).

We start by constructing the family of densities. Consider the kernel Sn(x) =
CnS(Cnx) with S(x) = sin(x)/(πx) and (Cn)n≥0 a sequence of real positive num-
bers tending to infinity. Denote by g2 the probability density x 7→ g2(x) =
sin2(x)/(πx2), and define g0 and h0 to be the probability densities

g0 = g2 ∗ g2 and h0 = fε ∗ g0.

Moreover, define the normalizing constant

(12) S
(`)

n (y0) =
∫

S(`)
n (y0 − u)h0(u) du.

For some fixed sequence of parameters (θn)n≥0 decreasing to zero (to be specified
later), we define the parametric path {hθ,`}|θ|≤θn

by

(13) hθ,`(y) = h0(y)
[
1 + θ

(
S(`)

n (y0 − y)− S
(`)

n (y0)
)]

,

for all |θ| ≤ θn and y ∈ R. Note that the constant S
(`)

n (y0) ensures that the density
hθ,` integrates to one.

Also note that our path involves the derivative S
(`)
n of the kernel Sn. The rate

of convergence in this lower bound will be the same if we use Sn instead of S
(`)
n .

But the use of Sn would provide a different constant.
Denote by I(θ, `) the Fisher information for the family of probability densities

{hθ,`}|θ|≤θn
given by

I(θ, `) =
∫ [

∂ log hθ,`(x)
∂θ

]2

hθ,`(x) dx =
∫ (

S
(`)
n (y0 − x)− S

(`)

n (y0)
)2

1 + θ
(
S

(`)
n (y0 − x)− S

(`)

n (y0)
)h0(x) dx.

The following lemma is an immediate extension of a result due to Taupin [20] in case
` = 0. It ensures that with an appropriate choice of the parameters (Cn)n≥0 and
(θn)n≥0, the family of densities defined by (13) is contained in the set H. Moreover,
it gives an evaluation of the Fisher information of this family.

Condition 1. θnC`+1
n e(Cn+2)2/2 −→

n→∞
0.
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Lemma 6.1. Under Condition 1 and for large enough n, the path {hθ,`}|θ|≤θn

is contained in H. Moreover,

I(θ, `) = C2`+1
n

h0(y0)
π(2` + 1)

(1 + o(1)) for all |θ| ≤ θn.

We now use the van Trees inequality to get a lower bound for the minimax qua-
dratic risk for the estimation of the derivatives h(`) and consequently for polynomial
functionals Γf , by using Lemma 2.1. Let θ 7→ λ0(θ) be a probability density on
[−1, 1] satisfying λ0(−1) = λ0(1) = 0 such that λ0 is continuously differentiable on
]− 1; 1[. Its Fisher information is defined by

I0 =
∫ 1

−1

λ′0
2(θ)

λ0(θ)
dθ.

By rescaling this probability density on the interval [−θn; θn], we define the prob-
ability density λ(θ) = θ−1

n λ0(θ−1
n θ) with Fisher information I(λ) = θ−2

n I0. For any
fixed y0 in R we have

inf
ĥn

sup
h∈H

E [ĥn − h(`)(y0)]2 ≥ inf
ĥn

sup
|θ|≤θn

Ehθ
[ĥn − h

(`)
θ,`(y0)]2

≥ inf
ĥn

∫ +θn

−θn

Ehθ,`
[ĥn − h

(`)
θ,`(y0)]2λ(θ) dθ,

where the infima are taken over all the estimators ĥn based on the observations
Y1, . . . , Yn. Applying the van Trees inequality [13], we get

inf
ĥn

sup
h∈H

E [ĥn − h(`)(y0)]2(14)

≥
[ ∫ θn

−θn

∂h
(`)
θ,`(y0)
∂θ

λ(θ) dθ

]2[
n

∫ θn

−θn

I(θ, `)λ(θ) dθ + I(λ)
]−1

.

By definition, h
(`)
θ,` satisfies

∂h
(`)
θ,`(y0)
∂θ

=
d`

dy`
[h0(y)S(`)

n (y0 − y)]
∣∣
y=y0

− h
(`)
0 (y0)S

(`)

n (y0),

and using that S
(2`)
n (0) = C2`+1

n S(2`)(0) = C2`+1
n [π(2` + 1)]−1, we obtain

[
d`

dy`
h0(y)S(`)

n (y0 − y)
]∣∣∣∣

y=y0

= C2`+1
n h0(y0)(−1)`S(2`)(0)(1 + o(1)).

We now use that S
(`)

n (y0) = S
(`)
n ∗ h0 and therefore, for all t in R, the following

equality holds:

(
S(`)

n ∗ h0 − h
(`)
0

)?(t) = (it)`h?
0(t)(S

?
n(t)− 1).
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Using the properties of the kernel Sn and the fact that the function |h∗(t)| is
bounded by e−t2/2, we get

(15) ‖S(`)
n ∗ h0 − h

(`)
0 ‖∞ ≤ 2(π)−1C`−1

n e−C2
n/2,

which yields

(16) S
(`)

n (y0) = h
(`)
0 (y0)(1 + o(1)).

Consequently

[ ∫ θn

−θn

∂h
(`)
θ,`(y0)
∂θ

λ(θ) dθ

]2

=
[
h0(y0)C2`+1

n S(2`)(0)
]2

(1 + o(1)).

Apply Lemma 6.1 to get the following lower bound

inf
ĥn

sup
h∈H

E [ĥn − h(`)(y0)]2 ≥ C
2(2`+1)
n h2

0(y0)[π(2` + 1)]−2(1 + o(1))
nC2`+1

n h0(y0)[π(2` + 1)]−1(1 + o(1)) + θ−2
n I0

.

Maximize this bound under the constraint given by Condition 1 and choose Cn =√
log n − 2

√
2 and θn = n−1/2

√
log n to obtain the desired result for h(`) and

consequently for Γf by using Lemma 2.1. The result for Γf follows by noting that
the previous calculations hold if we replace ∂h

(`)
θ,`(y0)/∂θ by ∂Γθ,`(y0)/∂θ. ¤

6.2. Proofs of pointwise results for trigonometric functions.

6.2.1. Proof of Theorem 3.2 (upper bound for trigonometric functions). For the
sake of simplicity, we only give the proof for the function f : x 7→ cos(`x). Using
the triangle inequality, the risk E [Γ̂f,n(y0)−Γf (y0)]2 is bounded by the sum of the
squared bias term E [Γ̂f,n(y0)]− Γf (y0) and the variance term Var(Γ̂f,n). We start
with the bound for the bias E [Γ̂f,n(y0)]−Γf (y0), which is, by Lemma 2.2, given by

e−`2/2

2

[
ei`y0

(
ESn(y0+i`−Y1)−h(y0+i`)

)
+e−i`y0

(
ESn(y0−i`−Y1)−h(y0−i`)

)]
.

By using Parseval’s identity we infer that for δ ∈ {−1; +1}
∫

Sn(y0 + δi`− x)h(x) dx =
1
2π

∫
eity0−δt`h?(t)S?

n(t) dt,

and h(y0 + δi`) =
1
2π

∫
eity0−δt`h?(t) dt,

which implies the following bound:

∣∣ESn(y0 + δi`− Y1)− h(y0 + δi`)
∣∣ ≤ 1

2π

∫
eδt`|h?(t)||S?

n(t)− 1| dt.
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Hence, by using that S satisfies Conditions [K1]–[K3] we get the bound for the
bias

(17) sup
y0∈R

∣∣E [Γ̂f,n(y0)]− Γf (y0)
∣∣2 ≤ 1

4π2

e−(Cn−`)2

(Cn − `)2
.

We now come to the variance term. Using the independence of the variables and
Var(X) ≤ E [|X|2] we get

Var(Γ̂f,n(y0)) ≤ e−`2

2n

[
E |Sn(y0 + i`− Y1)|2 + E |Sn(y0 − i`− Y1)|2

]
.

By definition, setting δ in {−1; 1}, we get

E |Sn(y0 + δi`− Y1)|2 = Cn

∫
|S(u + δi`Cn)|2h(y0 + u/Cn) du

with

|S(u + δi`Cn)|2 =
e2`Cn + e−2`Cn − 2 cos(2u)

4π2(u2 + `2C2
n)

.

Consequently the variance is bounded as follows:

Var(Γ̂f,n(y0)) ≤ e−`2Cn(e2`Cn + 3)
4π2n

∫
h(y0 + u/Cn)

u2 + `2C2
n

du

≤ e−`2(e2`Cn + 3)
4π2n

∫
h(y0 + v)
v2 + `2

dv.

Combine this inequality with (17) and get the result by choosing

Cn =
√

log n− 1
2 log log n. ¤

6.2.2. Proof of Theorem 3.3 (lower bound for trigonometric functions). We only
give the proof for the function f : x 7→ cos(`x). To prove this theorem, we consider
the special case {hθ,0}|θ|≤θn

of the path used in the proof of Theorem 3.1, shorten
as {hθ}|θ|≤θn

, and let

(18) Γθ(y) =
e−`2/2

2
[
ei`yhθ(y + i`) + e−i`yhθ(y − i`)

]
.

Under Condition 1, the family {hθ}|θ|≤θn
is contained in H, so that by construction

and Lemma 2.2, the family {Γθ}|θ|≤θn
belongs to {Γf ; g ∈ Gf}. Proceeding as for

polynomial functions, we consider a probability density λ0(θ) on the interval [−1, 1]
with Fisher information given by

I0 =
∫ 1

1

λ′0
2(θ)

λ0(θ)
dθ,
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where λ0(−1) = λ0(1) = 0 and λ0 is continuously differentiable on ] − 1; 1[. Ap-
plying the van Trees inequality we see that the pointwise minimax quadratic risk
is bounded from below as follows:

inf
Γ̂n

sup
g∈Gf

E [Γ̂n − Γf (y0)]2 ≥
[ ∫ θn

−θn

∂Γθ(y0)
∂θ

λ(θ) dθ

]2[
n

∫ θn

−θn

I(θ)λ(θ) dθ + I(λ)
]−1

.

The denominator is studied by applying Lemma 6.1 in the proof of Theorem 3.1
with ` = 0. Thus, it remains to study the behavior of the numerator. Using
definitions (13) and (18) we get

∂Γθ(y0)
∂θ

=
e−`2/2

2

[
ei`y0h0(y0+i`)Sn(−i`)+e−i`y0h0(y0−i`)Sn(i`)

]
−Γ0(y0)Sn(y0),

where Γ0(y0) = 1
2e−`2/2

[
ei`y0h0(y0 + i`) + e−i`y0h0(y0− i`)

]
. Using that the kernel

S is an even function, and applying (16) we get

∂Γθ(y0)
∂θ

= Γ0(y0)
(
CnS(i`Cn)− Sn(y0)

)
= Γ0(y0)CnS(i`Cn)(1 + o(1)).

The definition of the kernel S leads to

[ ∫ θn

−θn

∂Γθ(y0)
∂θ

λ(θ) dθ

]2

=
Γ0(y0)2

4π2`2
e2`Cn [1 + o(1)],

which, combined with Lemma 6.1, gives that

inf
Γ̂n

sup
g∈Gf

E [Γ̂n − Γf (y0)]2 ≥ (4π2`2)−1Γ0(y0)2e2`Cn(1 + o(1))
nCnh0(y0)π−1(1 + o(1)) + θ−2

n I0

.

Under Condition 1, choose Cn =
√

log n − 2
√

2 and θn =
√

log n/
√

n to get the
result. ¤

7. Proofs of results for Lp(R)-risk

7.1. Proofs of upper bounds for the Lp(R)-risk when 2 ≤ p ≤ ∞.

6.2.2. Proof of Theorem 4.1 (upper bound of Lp(R)-risk for the density and its
derivatives). By using the triangle inequality, we get

(19) E ‖h(`) − ĥ(`)
n ‖p ≤ ‖h(`) − E ĥ(`)

n ‖p + E ‖ĥ(`)
n − E ĥ(`)

n ‖p.

The first term in (19) (bias term) ‖E ĥ
(`)
n − h(`)‖p, is bounded, for 2 ≤ p ≤ ∞,

by a method valid for any kernel K satisfying Assumption [K2]. The second term
E ‖ĥ(`)

n −E ĥ
(`)
n ‖p for 2 ≤ p < ∞ is controlled by applying Rosenthal’s inequality [19],

with optimal constants given in Pinelis [18]. The control of E ‖ĥ(`)
n − E ĥ

(`)
n ‖∞ is

obtained following Ibragimov and Hasminskii [15].
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Let us start with the control of ‖E ĥ
(`)
n − h(`)‖p for 2 ≤ p ≤ ∞. Using that

the kernel V satisfies Conditions [K1]–[K3], we apply the same reasoning as for
inequality (15) to obtain

‖E ĥ(`)
n − h(`)‖∞ = ‖V (`)

n ∗ h− h(`)‖∞ ≤ 2
π

C`−1
n e−C2

n/2.

Consider now the case 2 ≤ p < ∞. For any function u ∈ L2(R) with u? ∈ L1(R),

(20) ‖u‖p
p ≤

1
(2π)p−1

‖u?‖p−2
1 ‖u?‖22.

Apply this result to the function V
(`)
n ∗h−h(`) to obtain a bound on ‖E ĥ

(`)
n −h(`)‖p

when 2 ≤ p < ∞,

‖V (`)
n ∗ h− h(`)‖p

≤ 1
(2π)(p−1)/p

( ∫
|t|`e−t2/21|t|>Cn

dt

) p−2
p

( ∫
|t|2`e−t21|t|>Cn

dt

)1/p

.

Note that ∫
|t|`e−t2/21|t|>Cn

dt ≤ 2C`−1
n e−C2

n/2(1 + o(1))

and ∫
|t|2`e−t21|t|>Cn

dt ≤ C2`−1
n e−C2

n(1 + o(1))

to get the bound

(21) ‖V (`)
n ∗ h− h(`)‖p ≤ 1

21/pπ1−1/p
C`−1+1/p

n e−C2
n/2(1 + o(1)).

We now aim at bounding the term E ‖ĥ(`)
n − E ĥ

(`)
n ‖p for 2 ≤ p < ∞. Write

ĥ
(`)
n − E ĥ

(`)
n as a sum of independent random variables

(
ĥ(`)

n − E ĥ(`)
n

)
(x) =

1
n

n∑

j=1

X (`)
n (x, Yj),

where the random variables X (`)
n (x, Yj) are centered and defined by X (`)

n (x, Yj) =
V

(`)
n (x − Yj) − EV

(`)
n (x − Yj). Using the concavity of the function x 7→ x1/p for

p ≥ 1 and applying Fubini’s Theorem we infer that

E ‖ĥ(`)
n − E ĥ(`)

n ‖p = E
∥∥∥∥

1
n

n∑

j=1

X (`)
n (·, Yj)

∥∥∥∥
p

(22)

≤
[ ∫

E
∣∣∣∣
1
n

n∑

j=1

X (`)
n (x, Yj)

∣∣∣∣
p

dx

]1/p

.
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We now apply Rosenthal’s inequality, with optimal constants as given in Pinelis [18],
to the quantity E

∣∣n−1
∑n

j=1 X (`)
n (x, Yj)

∣∣p. We will see later that the optimal con-
stants are useful in the case p = ∞.

Lemma 7.1 (Corollary 1 in [18]). Let X1, . . . , Xn be n independent centered
random variables. Put Sn = X1 + · · · + Xn and X?

n = max1≤i≤n |Xi|. Then there
exists an absolute constant κ such that, for all p ≥ 1,

E 1/p |Sn|p ≤ κ
[
e
√

pE 1/2|Sn|2 + pE 1/p|X?
n|p

]
.

An immediate consequence of this inequality is that

(23) E 1/p

∣∣∣∣
Sn

n

∣∣∣∣
p

≤ eκ
√

p√
n
E 1/2|X1|2 +

κp

n1−1/p
E 1/p|X1|p.

Apply inequality (23) to obtain that there exists an absolute constant κ such that

E
∣∣∣∣
1
n

n∑

j=1

X (`)
n (x, Yj)

∣∣∣∣
p

≤ 2p−1

[
eκ
√

p√
n
E 1/2|X (`)

n (x, Y1)|2
]p

+ 2p−1

[
κp

n1−1/p
E 1/p|X (`)

n (x, Y1)|p
]p

and therefore

E ‖ĥ(`)
n − E ĥ(`)

n ‖p ≤
{

2p−1

[
eκ
√

p√
n

]p ∫
E p/2|X (`)

n (x, Y1)|2 dx

+ 2p−1

[
κp

n1−1/p

]p ∫
E |X (`)

n (x, Y1)|p dx

}1/p

.

By using Fubini’s Theorem, the last term
∫
E |X (`)

n (x, Y1)|pdx is bounded as follows:

(24)
∫
E |X (`)

n (x, Y1)|p dx ≤ 2p

∫∫
|V (`)

n (x−y)|ph(y) dy dx = 2pC(`+1)p−1
n ‖V (`)‖p

p.

It remains now to bound the first and main term
∫
E p/2|X (`)

n (x, Y1)|2 dx. Note that
E |X (`)

n (x, Y1)|2 = Var(V (`)
n (x− Y1)) ≤ E |V (`)

n (x− Y1)|2, so that

∫
E p/2|X (`)

n (x, Y1)|2 dx ≤
∫ ( ∫

C2`+1
n (V (`)(u))2h(x + u/Cn) du

)p/2

dx.

Proceed to a Taylor expansion of u 7→ h(x + u/Cn) (the function h in H ad-
mits an analytic continuation on the whole complex plane) valid since the integral∫

u[V (`)(u)]2 du is finite. Hence we get

(25)
∫
E p/2|X (`)

n (x, Y1)|2 dx ≤ C(2`+1)p/2
n ‖V (`)‖p

2 ‖h‖p/2
p/2(1 + o(1)) as n →∞.
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Combining (24) and (25) we find that E ‖ĥ(`)
n − E ĥ

(`)
n ‖p is bounded by

2κ

{[
e
√

p√
n

]p

C(2`+1)p/2
n ‖V (`)‖p

2 ‖h‖p/2
p/2(1+o(1))+2p

[
p

n1−1/p

]p

C(`+1)p−1
n ‖V (`)‖p

p

}1/p

.

Finally for p > 2 we have

(26) E ‖ĥ(`)
n − E ĥ(`)

n ‖p ≤ 2
eκ
√

p√
n

C(2`+1)/2
n ‖V (`)‖2 ‖h‖1/2

p/2 (1 + o(1)),

and for p = 2,

E ‖ĥ(`)
n − E ĥ(`)

n ‖2 ≤ 2κ‖V (`)‖2
√

2e2 + 16
C

(2`+1)/2
n√

n
(1 + o(1)).

Note that these two bounds are uniformly bounded for h ∈ H since ‖h‖∞ ≤
(2π)−1/2 and hence ‖h‖p/2 ≤ ‖h‖2/p

1 = 1. The final result for 2 ≤ p < ∞ fol-
lows by gathering (21) and (26) and taking Cn =

√
log n.

For p = ∞, the control of the analogue of the variance term E ‖ĥ(`)
n − E ĥ

(`)
n ‖∞

follows arguing as Ibragimov and Hasminskii [15]. More precisely, the bound for
E ‖ĥ(`)

n −E ĥ
(`)
n ‖∞ is deduced from the following lemma (see Nikol’skii [16]). Denote

by MC,p the set of functions belonging to Lp(R) and having a Fourier transform
compactly supported on [−C; C].

Lemma 7.2 (Nikol’skii [16], p. 150). If 1 ≤ p ≤ p′ ≤ ∞, then for g in MC,p we
have ‖g‖p′ ≤ 2C1/p−1/p′‖g‖p.

We apply Lemma 7.2 to ĥ
(`)
n − E ĥ

(`)
n ∈M2Cn,p and infer that for any p ≤ ∞,

‖ĥ(`)
n − E ĥ(`)

n ‖∞ ≤ 2(2Cn)1/p‖ĥ(`)
n − E ĥ(`)

n ‖p.

Take p = log Cn to get that

‖ĥ(`)
n − E ĥ(`)

n ‖∞ ≤ 2(2Cn)1/ log Cn‖ĥ(`)
n − E ĥ(`)

n ‖p,

and therefore, by applying (26) with ‖h‖1/2
p/2 ≤ 1 for all p, we find

E ‖ĥ(`)
n − E ĥ(`)

n ‖∞ ≤ 4κe2

√
log Cn√

n
C(2`+1)/2

n ‖V (`)‖2(1 + o(1)),

and the result follows for p = ∞ again by taking Cn =
√

log n.
This final argument shows how the optimal constants in Rosenthal’s inequality

are important to get the result when p = ∞. ¤
7.1.2. Proof of Corollary 4.1 (upper bound of Lp(R)-risk for polynomial func-

tions). According to Lemma 2.1, the main point of the proof lies in showing that
the rate of convergence of Γ̂f,n is given by the rate of convergence of ĥ

(`)
n . This

follows by using Theorem 4.1 and the triangle inequality. More precisely, denoting
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by Qs the function y 7→ ys, it suffices to show that there exist constants C and C ′

such that for all 0 ≤ k ≤ `− 1 and for all 0 ≤ s ≤ `− k, we have, when 2 ≤ p < ∞,

E ‖Qs(ĥ(k)
n − h(k))‖p ≤ C(log n)(2`+1)/4

√
n

(1 + o(1)),

and when p = ∞ then

E ‖Qs(ĥ(k)
n − h(k))‖∞ ≤ C ′(log n)(2`+1)/4

√
log log n√

n
(1 + o(1)).

We follow the lines of the proof of Theorem 4.1. The control of the bias term
defined by ‖Qs(h(k) −K

(k)
n ∗ h)‖p (2 ≤ p ≤ ∞) uses the following identity valid for

all t ∈ R

[Qs(h(k) −K(k)
n ∗ h)]∗(t) =

1
is

∂s

∂ts
[h(k) −K(k)

n ∗ h]∗(t) = ik−s ∂s

∂ts
[Qkh∗(1−K∗

n)](t).

Consequently

‖Qs(h(k) −K(k)
n ∗ h)‖∞ ≤ 1

2π

s∑

j=0

(
s

j

) ∫ ∣∣∣∣
∂j

∂tj
Qkh∗

∣∣∣∣(t)
∣∣∣∣
∂s−j

∂ts−j
(1−K∗

n)
∣∣∣∣(t) dt.

Under Assumptions [K2] and [K4], the kernel K has the property that for all
0 ≤ j ≤ s, there exists a constant C(s) such that

∣∣∣∣
∂s−j

∂ts−j
(1−K∗

n)
∣∣∣∣(t) ≤ C(s)1|t|≥Cn

.

Moreover, the quantity ∂jQkh∗(t)/∂tj is a linear combination of powers of t times
derivatives of h∗ at t. Note that h∗ = f∗ε g∗, so that its derivative is a linear
combination of derivatives of f∗ε times derivatives of g∗. Since E |X|k < ∞ for all
k ≤ `, the kth derivative of g∗ exists and is uniformly bounded. Consequently, we
bound the bias term in the following way:

‖Qs(h(k) −K(k)
n ∗ h)‖∞ ≤ C

∫
|t|k+se−t2/21|t|≥Cn

dt ≤ O(1)Ck+s−1
n e−C2

n/2,

where 0 ≤ k ≤ `− 1 and 0 ≤ s ≤ `− k, and finally

‖Qs(h(k) −K(k)
n ∗ h)‖∞ ≤ O(1)C`−1

n e−C2
n/2.

Arguing as in the proof of Theorem 4.1, by using (20), we bound the bias term for
the Lp(R)-risk (p < ∞) by writing that

‖Qs(h(k) −K(k)
n ∗ h)‖p ≤ O(1)

[ ∫
|t|k+se−t2/21|t|≥Cn

dt

](p−2)/p

×
[ ∫

|t|2(k+s)e−t21|t|≥Cn
dt

]1/p

≤ O(1)C`−1
n e−C2

n/2,

the last inequality being valid since 0 ≤ k ≤ `− 1 and 0 ≤ s ≤ `− k.



22 C. Matias and M.-L. Taupin

Let us study the analogue of the variance term E ‖Qs(ĥ
(k)
n − K

(k)
n ∗ h)‖p for

0 ≤ k ≤ `− 1, 0 ≤ s ≤ `− k, and 2 ≤ p < ∞. Denote

Qs(x)(ĥ(k)
n −K(k)

n ∗ h)(x) =
1
n

n∑

j=1

xsX (k)
n (x, Yj)

and apply Rosenthal’s inequality (23) to get that

(27) E ‖Qs(ĥ(k)
n −K(k)

n ∗ h)‖p ≤
{

2p−1

[
eκ
√

p√
n

]p ∫
E p/2{|X (k)

n (x, Y1)|2|x|2s} dx

+ 2p−1

[
κp

n1−1/p

]p ∫
E |X (k)

n (x, Y1)|p|x|ps dx

}1/p

.

Arguing as in the proof of Theorem 4.1, we need to control
∫
E p/2{|X (k)

n (x, Y1)|2|x|2s} dx and
∫
E |X (k)

n (x, Y1)|p|x|ps dx.

First, by using that x2s ≤ 22s−1(|x− y|2s + |y|2s), we get
∫
E p/2{|X (k)

n (x, Y1)|2|x|2s} dx ≤ 2(2s−1)p/2

∫ ( ∫
|x− y|2s|K(k)

n (x− y)|2h(y) dy

+
∫
|K(k)

n (x− y)|2|y|2sh(y) dy

)p/2

dx.

Setting u = Cn(y − x) in the outer integral we obtain that

(28)
∫
E p/2{|X (k)

n (x, Y1)|2|x|2s} dx

≤ 2sp−1C(k+1)p−1
n

(
‖QsK

(k)‖p
p +

( ∫
|y|2sh(y) dy

)p/2

‖K(k)‖p
p

)
.

Now, by using Jensens’s inequality, we infer that
∫
E |X (k)

n (x, Y1)|p|x|ps dx ≤ 2p

∫∫
|x|ps|K(k)

n (x− y)|ph(y) dy dx,

which is bounded by

2p(s+1)

∫∫
|x−y|ps|K(k)

n (x−y)|ph(y) dy dx+2p(s+1)

∫∫
|y|ps|K(k)

n (x−y)|ph(y) dy dx,

and therefore, for 0 ≤ s ≤ `− k,

(29)
∫
E |X (k)

n (x, Y1)|p|x|ps dx

≤ 2p(s+1)

[
‖QsK

(k)‖p
p + ‖K(k)‖p

p

( ∫
|y|psh(y) dy

)]
C(k+1)p−1

n .
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Combining (27)–(29) we obtain that E ‖Qs(ĥ
(k)
n −K

(k)
n ∗ h)‖p is bounded by

(30) 2s+2eκ

[√
pp

np

(‖QsK
(k)‖p

p + M
p/2
2s ‖K(k)‖p

p

)

+
pp

np−1

(‖QsK
(k)‖p

p + E (|Y |ps)‖K(k)‖p
p

)]1/p

C(k+1)−1/p
n .

Since k + 1 ≤ `, we see that for any density g such that all the moments E (|Y |2s)
and E (|Y |ps) (with 0 ≤ s ≤ `) are uniformly bounded by Mp`

E ‖Qs(ĥ(k)
n −K(k)

n ∗ h)‖p ≤ O(1)
C

`−1/p
n√

n
≤ O(1)

(
(log n)(2`+1)/4

√
n

)
,

and the result of Corollary 4.1 follows for 2 ≤ p < ∞.
One ends up the proof for p = ∞ in the same way as the proof of Theorem 4.1.

Namely, we apply Lemma 7.2 with p = log Cn in (30). Since Cn = ep and log n =
C2

n = e2p, under the condition g ∈ Gp`(Mp`) we have

sup
g∈Gp`(Mp`)

E (|Y |p`) ≤ Mp` ≤ V Kp exp
(
(p/2− 1)e2p + p2/2− (p/2) log p

)
,

and using that k + 1 ≤ `, we ensure the bound

Mps ≤ C
p/2+1
n np/2−1

pp/2
, i.e.,

p

n1−1/p
M1/p

ps C(k+1)−1/p
n ≤

√
pC

`+1/2
n√
n

.

The result for p = ∞ follows since

E ‖Qs(ĥ(k)
n −K(k)

n ∗ h)‖∞ ≤ 2s+3e2κ‖K(k)‖∞
√

log Cn

n
C`

n(1 + o(1)). ¤

7.1.3. Proof of Theorem 4.2 (upper bound of Lp(R)-risk for trigonometric func-
tions). We only give the proof for the function f : x 7→ cos(`x). Again using the
triangle inequality, we aim at bounding ‖Γf − E Γ̂f,n‖p and E ‖Γ̂f,n − E Γ̂f,n‖p, for
2 ≤ p ≤ ∞, starting with ‖Γf −E Γ̂f,n‖p for 2 ≤ p ≤ ∞. According to Lemma 2.2,
we have

Γf (y)− E Γ̂f,n(y) =
e−`2/2

4π

[
ei`y

∫
(1− S?

n(t))eiyte−`th∗(t) dt

+ e−i`y

∫
(1− S?

n(t))eiyte`th?(t) dt

]
,

and therefore

(31) ‖Γf − E Γ̂f,n‖∞ ≤ e−(Cn−`)2/2

2π(Cn − `)
(1 + o(1)).
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We now turn to the control of ‖Γf − E Γ̂f,n‖p when 2 ≤ p < ∞. For δ ∈ {−1, 1},
set

ϕδ(t) = (1− S?
n(t))e−`δth∗(t).

Then we have

‖Γf − E Γ̂f,n‖p ≤ e−`2/2

4π

(‖ϕ?
1‖p + ‖ϕ?

−1‖p

)
.

Arguing as for (20), we obtain that ‖ϕ?
δ‖p

p ≤ 2π‖ϕδ‖p−2
1 ‖ϕδ‖22, and therefore

‖Γf − E Γ̂f,n‖p ≤ e−(Cn−`)2/2

(Cn − `)1−1/p
(1 + o(1)).

It remains now to control the variance terms E ‖Γ̂f,n−E Γ̂f,n‖p for 2 ≤ p < ∞ and
E ‖Γ̂f,n−E Γ̂f,n‖∞. We start with the case 2 ≤ p < ∞. The term E ‖Γ̂f,n−E Γ̂f,n‖∞
will be studied by applying Lemma 7.2 and the arguments used for the density or
the polynomial case. Write Γ̂f,n−E Γ̂f,n as a sum of independent random variables

Γ̂f,n(x)− E Γ̂f,n(x) =
1
n

n∑

j=1

Xn,`(x, Yj),

where the Xn,`(x, Yj) are centered random variables defined by

Xn,`(x, Yj) =
e−`2/2

2
ei`x

[
Sn(x + i`− Yj)− ESn(x + i`− Yj)

]

+
e−`2/2

2
e−i`x

[
Sn(x− i`− Yj)− ESn(x− i`− Yj)

]
.

By applying inequality (23) to E
∣∣∣n−1

∑n
j=1 Xn,`(x, Yj)

∣∣∣
p

, we infer that

E
∣∣∣∣
1
n

n∑

j=1

Xn,`(x, Yj)
∣∣∣∣
p

≤ 2p−1

[
eκ
√

p√
n
E 1/2|Xn,`(x, Y1)|2

]p

+ 2p−1

[
κp

n1−1/p
E 1/p|Xn,`(x, Y1)|p

]p

,

and therefore, using inequality (22), the quantity E ‖Γ̂f,n−E Γ̂f,n‖p is bounded by

{
2p−1

[
eκ
√

p√
n

]p ∫
E p/2|Xn,`(x, Y1)|2 dx+2p−1

[
κp

n1−1/p

]p ∫
E |Xn,`(x, Y1)|p dx

}1/p

.

By using Fubini’s Theorem and the fact that
∫

h(x + u/cn) dx = 1, the last term∫
E |Xn,`(x, Y1)|p dx is controlled by

∫
E |Xn,`(x, Y1)|p dx ≤ 2p−1e−p`2/2Cp−1

n

∫ (|S(u + i`Cn)|p + |S(u− i`Cn)|p) du.
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Note that for any real number u and any δ in {−1;+1}

(32) |S(u + iδ`Cn)|2 ≤ e2`Cn

π2(u2 + `2C2
n)

,

and consequently, denoting ϕ`(y) = (y2 + `2)−1,

(33)
∫
E |Xn,`(x, Y1)|p dx ≤ 2p

πp
‖ϕ`‖p/2

p/2 e−p`2/2e`pCn .

It remains now to bound the term
∫
E p/2|Xn,`(x, Y1)|2 dx. First notice that

E p/2|Xn,`(x, Y1)|2 ≤ e−p`2/42p/2−1
(
E p/2|Sn(x+ i`−Y1)|2 +E p/2|Sn(x− i`−Y1)|2

)
,

and secondly, use bound (32) to get that for δ ∈ {−1, 1},
∫
E p/2|Sn(x + δil − Y1)|2 dx ≤ e`pCn

πp
‖h ∗ ϕ`‖p/2

p/2.

Since ‖h ∗ ϕ`‖p/2 ≤ ‖h‖1‖ϕ`‖p/2 = ‖ϕ`‖p/2, the above bound is uniform in h ∈ H.
Consequently for all 2 ≤ p < ∞, we get the bound

(34)
∫
E p/2|Xn,`(x, Y1)|2 dx ≤

‖ϕ`‖p/2
p/2e

−p`2/42p/2

πp
e`pCn .

Combining (33) and (34) we find that

E ‖Γ̂f,n − E Γ̂f,n‖p ≤
{

2p−1

[
eκ
√

p√
n

]p

‖ϕ`‖p/2
p/2

e−p`2/42p/2

πp
e`pCn

+ 2p−1

[
κp

n1−1/p

]p

‖ϕ`‖p/2
p/2

2p

πp
e−p`2/2e`pCn

}1/p

.

Finally by using that 2 ≤ p < ∞ we conclude that

E ‖Γ̂f,n − E Γ̂f,n‖p ≤ 4eκe−`2/4

π
‖ϕ`‖1/2

p/2

(√
pp

√
np

+
pp

np−1

)1/p

e`Cn(35)

≤ 4(1 +
√

2)eκe−`2/4

π
‖ϕ`‖1/2

p/2

√
p

n
e`Cn(1 + o(1)).(36)

The result for 2 ≤ p < ∞ follows by gathering (31), (36) and by taking Cn =√
log n− 1

2 log log n.

We now turn to the case p = ∞. Note that Γ̂f,n − E Γ̂f,n belongs to MCn+`,p

since its Fourier transform at the point t equals

e−t2/2

2n

n∑

j=1

[
K̃n

?
(

t + `

Cn

)(
ei(t+`)Yj −h?(t+`)

)
+K̃n

?
(

t− `

Cn

)(
ei(t−`)Yj −h?(t−`)

)]
,
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where K̃n

?(
(t + δ`)/Cn

)
= S?

n

(
(t + δ`)/Cn

)/
f?

ε (t + δ`) (with δ ∈ {−1; 1}) is com-
pactly supported on [−Cn − `, Cn + `]. Use the same arguments as for the density
or for the polynomials with ‖ϕ`‖1/2

p/2 ≤ ‖ϕ`‖1/p
1 (which tends to 1 as p →∞), apply

Lemma 7.2 with p′ = ∞ and p = log Cn, and then use (36) to get

(37) E ‖Γ̂f,n − E Γ̂f,n‖∞ ≤ 8e2κe−`2/4

π
‖ϕ`‖1/2

∞

√
log Cn√

n
e`Cn(1 + o(1)).

Take Cn =
√

log n− 1
2 log log n in (37) to complete the proof. ¤

7.2. Proofs of lower bounds for the Lp(R)-risk: use of Fano’s
lemma. The proofs of lower bounds of Lp(R)-risks are based on Fano’s lemma [12]
(see, e.g., Cover and Thomas [8]) in its new version due to Birgé [3], which we recall
here. Consider a metric space (Θ, d) and a set of probability measures P indexed
by Θ: P = {Pθ; θ ∈ Θ}. The problem is to give an infimum bound for the minimax
risk related to the estimation of θ in Θ from an observation X with law Pθ,

R(Θ) = inf
θ̂(X)

sup
θ∈Θ

Eθ

(
d(θ; θ̂(X))

)
,

where the infimum is over all estimators θ̂(X) with values in Θ. Consider a finite
subset Θ′ of Θ of cardinality |Θ′| ≥ 3 such that d(θ, θ′) ≥ δ > 0 for any pair (θ, θ′)
of distinct points in Θ′, Then we have

R(Θ) ≥ δ

2
inf

T̂ (X)

(
1− inf

θ∈Θ′
Pθ(T̂ (X) = θ)

)

when T̂ (X) ranges over all estimators with values in Θ′. Now, we use the following
result based on Fano’s lemma (see Fano [12] or Birgé [3]).

Lemma 7.3. Let θ0 be a fixed point in Θ′ and set

K =
1
|Θ′|

∑

θ∈Θ′
K(Pθ; Pθ0),

where K(Pθ; Pθ0) denotes the Kullback–Leibler divergence between Pθ and Pθ0 .
There exists an absolute constant α such that if T̂ (X) is an estimator taking values
in Θ′, we have

inf
θ∈Θ′

Pθ(T̂ (X) = θ) ≤ α ∨ K
log(|Θ′|+ 1)

.

As an immediate consequence, we obtain

R(Θ) ≥ δ

2

(
1− α ∨ K

log(|Θ′|+ 1)

)
.

We are going to apply this result to P = {h dλ; h ∈ H}⊗n, where dλ is the Lebesgue
measure on R, and (Θ, d) = ({Γf ; g ∈ Gf}, ‖ · ‖p) when 1 ≤ p ≤ ∞ and f is a fixed
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polynomial or trigonometric function. In other words, we estimate the functional
Γf and compute an infimum bound for the minimax Lp(R)-risk

Rn,p(f) = inf
Tn

sup
g∈Gf

E ‖Tn − Γf‖p,

where the infimum is taken over all the estimators Tn based on the observations
Y1, . . . , Yn. Fix an integer m ≥ 3 and denote by ` the degree of the fixed function f
when f is a polynomial or a trigonometric function (of the form Cβ,` or Sβ,`). The
application of Fano’s lemma relies on four steps described below.

Step 1: To define a family of probability densities {(ϕm,a,`)}a∈A belonging to
H indexed by some finite set A whose cardinality depends on m. Note that this
family will depend on the integer ` (implying different regularity conditions on the
family for different `).

Step 2: To calculate the Kullback–Leibler distance between points in this family
of probabilities by noting that

K(P⊗n
m,a,`; P

⊗n
m,0,`) = nK(ϕm,a,`; ϕm,0,`),

where Pm,a,` denotes the probability ϕm,a,` dλ.
Step 3: To calculate the minimum distance between two points in the family of

parameters (Γf,m,a)a∈A induced by this family of densities, i.e., find δm such that
infa,a′∈A ‖Γf,m,a − Γf,m,a′‖p ≥ δm (for m large enough).

Step 4: To check that there exists a constant C1 ≤ α and a particular point
ϕm,0,` in the family such that

n
∑

a∈AK(ϕm,a,`;ϕm,0,`)
|A| log(|A|+ 1)

≤ C1.

Then we conclude that
Rn,p(f) ≥ α

2
δm.

The construction of the family (step 1) will be essentially the same for all lower
bounds. Therefore, the first two steps will be checked in a general setting, whereas
the last two steps are described in each case.

7.2.1. Step 1: Construction of the family. Define the functions on R

α`(x) = C`

(
sin x

πx

)2`+2

,

where C` is a normalizing constant such that
∫

α` = 1, α0,` = α` ∗ α`, and
h0,` = α0,` ∗ fε. Note that α` and hence α0,` and h0,` are probability densities
on R. Moreover, the support of the Fourier transform α?

0,` of α0,` is contained in
[−2`−2; 2`+2]. In what follows, we fix the kernel K to be the de La Vallée-Poussin
kernel V (defined by (3)) or more generally its rescaling Vλ(·) = V (λ · ) (for some
λ ≥ 1) and we put

Km,j(x) = θmK(mx− j), 1 ≤ j ≤ m− 1; Km,0 = 0,
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where m is an integer greater than or equal to 3, and the sequence (θm)m≥0 is
positive and converges to zero as m →∞.

We denote by Km,j the normalizing constant

(38) Km,j =
∫

h0,`(x)Km,j(x) dx for 0 ≤ j ≤ m− 1,

and consider the following family of functions

(39) ϕm,a,`(x) = h0,`(x) +
m−1∑

j=1

a(j)h0,`(x)(Km,j(x)−Km,j),

where a ranges over the set A of mappings of {1; . . . ; m − 1} to {0; 1} with the
convention ϕm,0,` = h0,`. The functions ϕm,a,` are also given by

ϕm,a,`(x) =
(

1−
m−1∑

j=1

a(j)Km,j

)
α0,` ∗ fε(x) +

m−1∑

j=1

a(j)h0,`(x)Km,j(x).

Note that the constants Km,j , 1 ≤ j ≤ m− 1, ensure that ϕm,a,` integrates to one.

Lemma 7.4. Fix K equal to Vλ(·) = V (λ · ) for some parameter λ ≥ 1, then
there exists a constant Cλ such that

(40) sup
x∈R

m−1∑

j=1

|K(mx− j)| ≤ Cλ < +∞.

Moreover we have the bounds

(41)
m−1∑

j=1

|Km,j | ≤ θmCλ

and

(42) |Km,j | ≤ θm

m
‖h0,`‖∞‖K‖1.

7.2.2. Proof of Lemma 7.4. The proof of (40) consists in noting that

sup
x∈R

m−1∑

j=1

|Vλ(mx− j)| = sup
k∈Z

sup
x∈[ 2k−1

2m ; 2k+1
2m ]

m−1∑

j=1

|Vλ(mx− j)|.

Now, when x belongs to the interval [(2k−1)/2m; (2k+1)/2m], the quantity mx−j
belongs to the interval [k − j − 1/2; k − j + 1/2]. Hence

sup
x∈R

m−1∑

j=1

|Vλ(mx− j)| ≤ sup
k∈Z

( ∑

j<k

2
πλ2(k − j − 1/2)2

+
∑

j>k

2
πλ2(k − j + 1/2)2

+ ‖V ‖∞
)
≤ 4

πλ2

∑

n∈Z

1
(n− 1/2)2

+ ‖V ‖∞,
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which is a finite constant, denoted by Cλ. The bound (41) is a direct consequence
of (40), and the bound (42) follows from the definition of Km,j . ¤

The following lemma states that the set of functions {ϕm,a,`}a∈A is a family of
probability densities contained in H under a suitable assumption on the parameter
θm related to the support [−2λ; 2λ] of the Fourier transform V ?

λ of the kernel Vλ.

Condition 2. mθme2λ2m2+4λ(`+1)m −→
m→∞

0.

Lemma 7.5. Under Condition 2 and for m large enough, the family {ϕm,a,`}a∈A
is contained in H.

The proof of this lemma is postponed to Section 8.
Let us now compute the Kullback–Leibler distance between two densities, which

characterizes the size of the family. We do not need to use the whole family indexed
by the set A (which is large), hence we will restrict our family to the densities
parametrized by particular finite subsets A1 and A2, which are chosen according
to the norm we consider.

7.2.3. Step 2: Calculation of the Kullback–Leibler distance.
Calculation of the Kullback–Leibler distance for the L∞(R)-norm. Fol-

lowing Ibragimov and Hasminskii [15], we consider the subset A1 of A consist-
ing of the mappings from {1; . . . ; m − 1} to {0; 1} taking value 0 everywhere
except for one point. The subset A1 has cardinality |A1| = m. In this case
ϕm,a,` = h0,`(x)(1 + Km,j(x) −Km,j) with j being the index such that a(j) = 1.
For the sake of simplicity, we put

ϕm,j,`(x) = h0,`(x)(1 + Km,j(x)−Km,j), for all 0 ≤ j ≤ m− 1.

The resulting family {ϕm,a,`}a∈A1∪{0} is exactly the family {ϕm,j,`}0≤j≤m−1. We
compute the Kullback–Leibler divergence related to this family,

K(ϕm,j,`; ϕm,0,`) = K(ϕm,j,`; h0,`) =
∫

log
(

ϕm,j,`(x)
h0,`(x)

)
ϕm,j,`(x) dx.

By using that log(1 + u) ≤ u for u ≥ 0, we get

K(ϕm,j,`;h0,`) ≤
∫

(Km,j(x)−Km,j)h0,`(x)(1 + Km,j(x)−Km,j) dx.

Since
∫

(Km,j(x)−Km,j)h0,`(x) dx = 0, we have

K(ϕm,j,`; h0,`) ≤
∫

(Km,j(x)−Km,j)2h0,`(x) dx,

which gives the bound

(43) K(ϕm,j,`; h0,`) ≤
∫

K2
m,j(x)h0,`(x) dx ≤ θ2

m

m
‖h0,`‖∞‖K‖22.
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Calculation of the Kullback–Leibler distance for the Lp(R)-norm, 2 ≤
p < ∞. Again following Ibragimov and Hasminskii [15], we select a specific family
for the Lp(R)-risk when 2 ≤ p < ∞, and consider the subset A2 of mappings of
{1; . . . ;m− 1} to {0; 1} containing the mapping identically equal to zero and such
that for all a 6= a′ in A2, we have

(44)
m−1∑

j=1

|a(j)− a′(j)| > 1
4
(m− 1).

Therefore the cardinality of this set of mappings satisfies |A2| ≥ exp{(m − 1)/8}
(see Ibragimov and Hasminskii [15]). We denote by {ϕm,a,`}a∈A2 the resulting
family.

Compute the Kullback–Leibler divergence between ϕm,a,` and h0,` by using once
again that log(1 + u) ≤ u. We obtain

K(ϕm,a,`; h0,`) ≤
m−1∑

j=1

a(j)
∫

(Km,j(x)−Km,j)h0,`(x)

×
(

1 +
m−1∑

k=1

a(k)(Km,k(x)−Km,k)
)

dx.

The right-hand side of this expression also equals

m−1∑

j=1

m−1∑

k=1

a(j)a(k)
∫

(Km,j(x)−Km,j)(Km,k(x)−Km,k)h0,`(x) dx,

and we get the bound

K(ϕm,a,`; h0,`) ≤
m−1∑

j=1

m−1∑

k=1

a(j)a(k)
[ ∫

Km,j(x)Km,k(x)h0,`(x) dx−Km,jKm,k

]
.

Apply inequality (42) to get

K(ϕm,a,`;h0,`) ≤ θ2
m

∫ ( m−1∑

j=1

|K(mx− j)|
)( m−1∑

k=1

|K(mx− k)|
)

h0,`(x) dx

+ (m− 1)2
θ2

m

m2
‖h0,`‖2∞‖K‖21,

which combined with (40) gives that

(45) K(ϕm,a,`; h0,`) ≤
(C2

λ + ‖h0,`‖2∞‖Vλ‖21
)
θ2

m.

7.3. Proofs of lower bounds for L∞(R)-risk. In this section, we
take λ = 1 in Vλ, that is K is chosen equal to the de La Vallée-Poussin kernel V
defined by (3).
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7.3.1. Proof of Theorem 5.1 (lower bound of L∞(R)-risk for the derivatives).
The main purpose of this proof is now to check steps 3 and 4.

Step 3: We need a lower bound for the distance between the parameters in
the family that we wish to estimate, that is to say between the derivatives of the
densities {ϕ(`)

m,j,`}0≤j≤m−1. This will be done in the following lemma, which will be
proved after completing step 4.

Lemma 7.6. For any integer ` ≥ 0 and m large enough, there exists a positive
constant C such that for all j 6= k in {0; . . . ; m− 1}, we have

‖ϕ(`)
m,j,` − ϕ

(`)
m,k,`‖∞ ≥ Cm`θm.

Step 4: The last step of the proof consists in showing that there exists a constant
C1 ≤ α such that

n
∑m−1

j=1 K(ϕm,j,`;h0,`)
m log(m + 1)

≤ C1,

where m log(m + 1) stands for the quantity |A1| log(|A1|+ 1), by applying inequal-
ity (43) which gives the bound on the Kullback–Leibler distance between two points
in this family. Then Fano’s lemma tells us that there exists a positive constant C
such that

inf
Tn

sup
h∈H

‖h(`) − Tn‖∞ ≥ Cm`θ?
m(n),

where θ?
m(n) is the supremum over all the parameters θm satisfying the conditions

‖h0,`‖∞‖V ‖22
nθ2

m

m log(m + 1)
≤ α and mθme2m2+4(`+1)m −→

m→∞
0.

Choose

θm = e−3m2
and m =

√
1
6 log n− 1

12 log log n− 1
6 log log log n.

We finally have θm = e−3m2
= (log n)1/4(log log n)1/2/

√
n, which concludes the

proof.

Let us now prove Lemma 7.6. The following identity holds for all 0 ≤ j ≤ m−1:

ϕ
(`)
m,j,`(x) = h0,`(x)V (`)

m,j(x)+h
(`)
0,`(x)(1+Vm,j(x)−V m,j)+

`−1∑
r=1

(
`

r

)
h

(r)
0,`(x)V (`−r)

m,j (x).

Therefore, by applying the triangle inequality, we get

‖ϕ(`)
m,j,` − ϕ

(`)
m,k,`‖∞ ≥ ‖h0,`(V

(`)
m,j − V

(`)
m,k)‖∞(46)

−
`−1∑
r=1

(
`

r

)
‖h(r)

0,`‖∞‖V (`−r)
m,j − V

(`−r)
m,k ‖∞

− ‖h(`)
0,`(Vm,j − Vm,k + V m,k − V m,j)‖∞.
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The first term in (46) is bounded from below in the following way:

‖h0,`(V
(`)
m,j − V

(`)
m,k)‖∞ ≥ m`θm inf

u∈[0;1]
h0,`

(
u + j

m

)
sup

u∈[0;1]

|V (`)(u)− V (`)(u + j − k)|.

Since for any u in [0; 1] and any 0 ≤ j ≤ m− 1, the real number (u + j)/m belongs
to [0; 1], we conclude that

(47) ‖h0,`(V
(`)
m,j − V

(`)
m,k)‖∞ ≥ m`θm( inf

[0;1]
h0,`) inf

|n|≥1
sup

u∈[0;1]

|V (`)(u)− V (`)(u + n)|.

By using the definition of Vm,j and inequality (42) the remainder terms appearing
in (46) are bounded and then

‖ϕ(`)
m,j,` − ϕ

(`)
m,k,`‖∞ ≥ m`θm( inf

[0;1]
h0,`) inf

|n|≥1
sup

u∈[0;1]

|V (`)(u)− V (`)(u + n)|

− 2`m`−1θm max
1≤r≤`−1

(‖V (`−r)‖∞‖h(r)
0,`‖∞)

− ‖h(`)
0,`‖∞

(
2θm‖V ‖∞ + 2

θm

m
‖h0,`‖∞‖V ‖1

)
.

For m large enough and ` ≥ 1, we have

‖ϕ(`)
m,j,` − ϕ

(`)
m,k,`‖∞ ≥ 1

2
m`θm( inf

[0;1]
h0,`) inf

|n|≥1
sup

u∈[0;1]

|V (`)(u)− V (`)(u + n)|.

Finally, the uniform distance between two points of this family is bounded from
below in the following way:

‖ϕ(`)
m,j,` − ϕ

(`)
m,k,`‖∞ ≥ Cm`θm,

where C is a positive constant. When ` equals zero, by using the triangle inequality
combined with (42) and the lower bound (47), we obtain

‖ϕm,j,` − ϕm,k,`‖∞ ≥ ‖h0,`(Vm,j − Vm,k)‖∞ − ‖h0,`‖∞|V m,j − V m,k|
≥ C1θm − 2

m
θm‖h0,`‖∞‖V ‖1.

This concludes the proof of Lemma 7.6 and hence the proof of Theorem 5.1. ¤
7.3.2. Proof of Corollary 5.1 (lower bound of L∞(R)-risk for polynomial func-

tions). Using Lemma 2.1, the family {ϕm,j,`}0≤j≤m−1 of densities induces a family
of functionals {Γf,m,j}0≤j≤m−1 defined by

Γf,m,j(y) = β`ϕ
(`)
m,j,`(y) +

`−1∑

k=0

Qβ,`−k(y)ϕ(k)
m,j,`(y), for 0 ≤ j ≤ m− 1,

where β` 6= 0 and Qβ,j is a polynomial function of degree j related to f .
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The main purpose of this proof consists again in checking steps 3 and 4.
Step 3: We have to show that the minimum distance between two functionals

‖Γf,m,s − Γf,m,t‖∞ in the family is still bounded from below by a constant times
m`θm, for m large enough. Then the step 4 and Corollary 5.1 follow by arguing as
in the proof of Theorem 5.1.

When s 6= t belong to {0, . . . , m−1}, using the triangle inequality and Lemma 7.6
we have

‖Γf,m,s − Γf,m,t‖∞ ≥ Cm`θm −
`−1∑

k=0

‖Qβ,`−k(ϕ(k)
m,s,` − ϕ

(k)
m,t,`)‖∞.

When k = 0, we immediately deduce the bound

‖Qβ,`(ϕm,s,` − ϕm,t,`)‖∞ ≤ 2‖Qβ,`h0,`‖∞
(

θm‖V ‖∞ +
θm

m
‖h0,`‖∞‖V ‖1

)
.

When 1 ≤ k ≤ `− 1, we have

‖Qβ,`−k(ϕ(k)
m,s,` − ϕ

(k)
m,t,`)‖∞ =

∥∥∥∥Qβ,`−kh
(k)
0,` (Vm,s − Vm,t − V m,s + V m,t)

+
k−1∑

j=0

(
k

j

)
Qβ,`−kh

(j)
0,`(V

(k−j)
m,s − V

(k−j)
m,t )

∥∥∥∥
∞

,

which is, by (40), bounded for m large enough by

‖Qβ,`−k(ϕ(k)
m,s,` − ϕ

(k)
m,t,`)‖∞ ≤ 2‖Qβ,`−kh

(k)
0,`‖∞

(
θm‖V ‖∞ +

θm

m
‖h0,`‖∞‖V ‖1

)

+ 2k+1 max
0≤j≤k−1

‖Qβ,`−kh
(j)
0,`‖∞θmmk max

1≤j≤k
‖V (j)‖∞ ≤ Cm`−1θm.

It follows that the minimum distance infs 6=t ‖Γf,m,s − Γf,m,t‖∞ is also bounded
from below by a constant times m`θm for m large enough. ¤

7.3.3. Proof of Theorem 5.2 (lower bound for L∞(R)-risk for trigonometric func-
tions). We only give the proof for the function f : x 7→ cos(`x). Arguing as before,
the main point of the proof lies in checking steps 3 and 4.

Step 3: We need a lower bound for the distance between the parameters in
the family. Using Lemma 2.2 and the fact that the functions {ϕm,j,`}0≤j≤m−1

admit the analytic continuation on the whole complex plane, we have the following
identities for the functionals induced by the family of densities {ϕm,j,`}0≤j≤m−1:

Γf,m,j(y) ,
∫

cos(`x)gm,j,`(x)fε(x− y) dx

=
e−`2/2

2
(
ei`yϕm,j,`(y + i`) + e−i`yϕm,j,`(y − i`)

)
.

Now, the following result gives the minimum distance between two parameters to be
estimated in our family. Its proof is postponed to the end of the current argument.



34 C. Matias and M.-L. Taupin

Lemma 7.7. For all m large enough, there exists a positive constant C such
that for all j 6= k ∈ {0; . . . ; m− 1}, we have

‖Γf,m,j − Γf,m,k‖∞ ≥ C
θme2m`

m2
.

Step 4: We conclude by using Fano’s lemma in the same way as in the proof of
Theorem 5.1. More precisely, there exists a positive constant C such that

inf
Tn

sup
g∈Gf

‖Γf − Tn‖∞ ≥ C
e2m`θ?

m(n)
m2

,

where θ?
m(n) is the supremum over all the parameters θ satisfying the conditions

‖h0,`‖∞‖V ‖22
nθ2

m

m log(m + 1)
≤ α and mθme2m2+4(`+1)m −→

m→∞
0.

Choose the parameters

θm =
(log n)1/4

√
log log n√

n
and m =

1
2

√
log n− C, where C > ` + 1,

in order to obtain that

mθme2m2+4(`+1)m = O(1)(log n)3/4
√

log log n e−2(C−(`+1))
√

log n −→
n→∞

0

and that there exists a positive constant C ′ such that nθ2
m/(m log(m + 1)) ≤ C ′,

which completes the proof of Theorem 5.2.
Let us now prove Lemma 7.7. By definition of Γf,m,j and by using the triangle

inequality, we get

‖Γf,m,j − Γf,m,k‖∞ ≥ e−`2/2

2
sup
y∈R

(∣∣ei`yh0,`(y + i`)
(
Vm,j(y + i`)− Vm,k(y + i`)

)

+ e−i`yh0,`(y − i`)
(
Vm,j(y − i`)− Vm,k(y − i`)

)∣∣

− |V m,j − V m,k||ei`yh0,`(y + i`) + e−i`yh0,`(y − i`)|
)
.

Now, using (42) we have the bound

|V m,j − V m,k||ei`yh0,`(y + i`) + e−i`yh0,`(y − i`)|

≤ 2θm

m
‖h0,`‖∞‖V ‖1 sup

y∈R

∣∣ei`yh0,`(y + i`) + e−i`yh0,`(y − i`)
∣∣,

which implies that

‖Γf,m,j − Γf,m,k‖∞ ≥ e−`2/2

2
sup
y∈R

∣∣∣ei`yh0,`(y + i`)
(
Vm,j(y + i`)− Vm,k(y + i`)

)

+ e−i`yh0,`(y − i`)
(
Vm,j(y − i`)− Vm,k(y − i`)

)∣∣∣− C
θm

m
.
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We now come to the study of the main term. Straightforward calculations pro-
vide that, for δ ∈ {−1, 1},

(48) Vm,j(y + δi`) =
−θme2m`e−2δimy(e2δij + rm,j,δ(y))

2π(my + miδ`− j)2

with |rm,j,δ(y)| ≤ 3e−m`. It follows that

‖Γf,m,j − Γf,m,k‖∞ ≥ e−`2/2e2m`θm

4πm2

× sup
y∈R

∣∣∣∣ei(`−2m)yh0,`(y + i`)
(

e2ij + rm,j,1(y)
(y + i`− j/m)2

− e2ik + rm,k,1(y)
(y + i`− k/m)2

)

+ e−i(`−2m)yh0,`(y − i`)
(

e−2ij + rm,j,−1(y)
(y − i`− j/m)2

− e−2ik + rm,k,−1(y)
(y − i`− k/m)2

)∣∣∣∣− C
θm

m
.

Now consider the particular point y = j/m and bound this quantity from below in
the following way:

‖Γf,m,j − Γf,m,k‖∞ ≥ e−`2/2e2m`θm

4πm2

× inf
j 6=k

∣∣∣∣ei(`/m−2)jh0,`(j/m + i`)
(

e2ij

`2
+

e2ik

(i` + (j − k)/m)2

)

+ e−i(`/m−2)jh0,`(j/m− i`)
(

e−2ij

`2
+

e−2ik

(−i` + (j − k)/m)2

)
+O(e−m`)

∣∣∣∣− C
θm

m
.

We finally obtain

‖Γm,j − Γm,k‖∞ ≥ e−`2/2|h0,`(i`)|e2m`θm

2πm2

[
inf
j 6=k

∣∣∣∣
1− cos(2(k − j))

`2

∣∣∣∣ + o(1)
]
,

which ends up the proof of Lemma 7.7 and hence the proof of Theorem 5.2. ¤
7.4. Proofs of lower bounds for Lp(R)-risk, 2 ≤ p < ∞. We use

the function K equal to Vλ = V (λ · ) for some fixed well-chosen λ ≥ 1, where V is
the analogue of the de La Vallée-Poussin kernel defined by (3).

7.4.1. Proof of Theorem 5.3 (lower bound of Lp(R)-risk, 2 ≤ p < ∞, for the
derivatives of h).

Step 3: We compute the minimum distance of Lp(R)-norm between two points
in our family of parameters {ϕ(`)

m,a,`}a∈A2 .

Lemma 7.8. For any pair (`, p) in N×]1;+∞[ or in N? × [1; +∞[ and m large
enough, there exists a positive constant C such that for all a 6= a′ in A2

‖ϕ(`)
m,a,` − ϕ

(`)
m,a′,`‖p ≥ Cm`θm.
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This lemma, proved in Section 8, is obtained by a careful generalization of the
methods used to prove Lemma 7.6.

Step 4: We apply Fano’s lemma and claim that for any pair (`, p) in N×]1;+∞[
or in N? × [1;+∞[, there exists a positive constant C such that

inf
ĥn

sup
h∈H

‖h(`) − ĥn‖p ≥ C ′m`θ?
m(n),

where θ?
m(n) is the supremum over all the parameters θm satisfying the conditions

n
∑

a∈A2
K(ϕm,a,`; h0,`)

|A2| log(|A2|+ 1)
≤ α and mθme2λ2m2+4λ(`+1)m −→

m→∞
0.

Now, remember that the cardinality of A2 satisfies log(|A2|) ≥ (m − 1)/8, and
inequality (45) gives a bound on the Kullback–Leibler distance of the family. We
will look for the supremum of the parameters θm satisfying the conditions

16(C2
λ + ‖h0,`‖2∞‖Vλ‖21)

θ2
m

m− 1
≤ α

n
and mθme2λ2m2+4λ(`+1)m −→

m→∞
0.

Choose

m =

√
log n

2(2λ2 + 1)
− log log n

4(2λ2 + 1)
and

θm = e−(2λ2+1)m2
= (log n)1/4/

√
n

to obtain that there exists a positive constant C such that

inf
ĥn

sup
h∈Σ

‖h(`) − ĥn‖p ≥ Cm`θm = C
(log n)(2`+1)/4

√
n

for any pair (`, p) in N×]1;+∞[ or in N? × [1; +∞[, which entails the result of
Theorem 5.3. ¤

7.4.2. Proof of Corollary 5.2 (lower bound for Lp(R)-risk, 2 ≤ p < ∞, for poly-
nomial functions). Using Lemma 2.1, the family of densities (ϕm,a,`)a∈A2 induces
a family of functionals {Γf,m,a}a∈A,

Γf,m,a(y) = β`ϕ
(`)
m,a,`(y) +

`−1∑

k=0

Qβ,`−k(y)ϕ(k)
m,a,`(y),

where β` 6= 0 and Qj is a polynomial function of degree j related to f .
We calculate the minimum distance between two functionals ‖Γf,m,a−Γf,m,a′‖p

in the family which is still bounded from below by a constant times m`θm. Then
step 4 and the conclusion follow arguing as in the proof of Theorem 5.3.
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Step 3: Fix a 6= a′ in A2. We use the same kernel as in the previous proof, so
that the lower bound for ‖ϕ(`)

m,a,` −ϕ
(`)
m,a′,`‖p obtained in Lemma 7.8 remains valid.

Using the triangle inequality yields

‖Γf,m,a − Γf,m,a′‖p ≥ Cm`θm −
`−1∑

k=0

‖Qβ,`−k(ϕ(k)
m,a,` − ϕ

(k)
m,a′,`)‖p.

When k = 0, we have the bound

‖Qβ,`(ϕm,a,` − ϕm,a′,`)‖p ≤
m−1∑

j=1

‖Qβ,`h0,`‖∞‖Km,j −Km,j‖p ≤ Cm1−1/pθm,

which is negligible with respect to m`θm.
When 1 ≤ k ≤ `− 1, and for m large enough,

‖Qβ,`−k(ϕ(k)
m,a,` − ϕ

(k)
m,a′,`)‖p ≤

m−1∑

j=1

[
‖Qβ,`−kh

(k)
0,` (Km,j −Km,j)‖p

+
k−1∑
r=0

(
k

r

)
‖Qβ,`−kh

(r)
0,`K

(k−r)
m,j ‖p

]
≤ Cm1+k−1/pθm,

which is still negligible with respect to m`θm, and the proof is complete. ¤

8. Proofs of Technical Lemmas
Proof of Lemma 7.5. Combine (39) and Lemma 7.4 to get that for m large

enough ϕm,a,` is a positive function which integrates to one and hence ϕm,a,` is
a probability density. The main point of the proof is checking that there exists a
family of probability densities {αm,a,`}a∈A on R such that for all integer m,

for all a ∈ A, αm,a,` ∗ fε = ϕm,a,`.

We start with the proof of the existence of a family of real-valued functions
{βm,j,`}1≤j≤m−1 such that

h0,`Km,j = βm,j,` ∗ fε, 1 ≤ j ≤ m− 1.

We follow the lines of Theorem 2.2.1 in Taupin [20]. Consider the function am,j,`

defined for all t in R by

am,j,`(t) = et2/2(h0,`Km,j)∗(t).

The Fourier transform of the product h0,`Km,j is the convolution product of h∗0,` =
α∗0,`f

∗
ε and

K∗
m,j : u 7→ θm

m
e−iuj/mK∗

(
u

m

)
,
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which are all compactly supported. This implies in particular that the function
am,j,` is compactly supported, with support contained in the algebraic sum of the
preceding ones, that is, contained in [−2λm−2(`+1); 2λm+2(`+1)]. In particular,
the function am,j,` belongs to L1(R)∩L2(R), and we can define βm,j,` as its inverse
Fourier transform (denoted by ∗̄) defined by

βm,j,`(x) = a∗̄m,j,`(x) =
1
2π

∫
e−itxet2/2(h0,`Km,j)∗(t) dt.

This leads to the identity βm,j,` ∗ fε = h0,`Km,j . By construction h0,`Km,j is a
real-valued function. Consequently, the imaginary part of βm,j,` ∗ fε, also denoted
by Im(βm,j,` ∗ fε), equals zero and therefore fε ∗ Im(βm,j,`) ≡ 0. This implies that
f∗ε (Im(βm,j,`))∗ ≡ 0 and hence Im(βm,j,`) ≡ 0. We finally obtain that βm,j,` is a
real-valued function.

Now, the real-valued function αm,a,` defined as

αm,a,` =
(

1−
m−1∑

j=1

a(j)Km,j

)
α0,` +

m−1∑

j=1

a(j)βm,j,`

satisfies αm,a,` ∗ fε = ϕm,a,`. The last thing to prove is that αm,a,` is a probability
density on R. The main point lies in proving that αm,a,` is positive. This, combined
with the fact that ϕm,a,` is a probability density, ϕm,a,` = αm,a,` ∗ fε, and Fubini’s
Theorem, will give us that it integrates to one. It remains thus to prove that, for
m large enough, αm,a,` is a nonnegative function.

The first step is to note that

(49) ‖αm,a,` − α0,`‖∞ =
∥∥∥∥

m−1∑

j=1

a(j)Km,jα0,` −
m−1∑

j=1

a(j)βm,j,`

∥∥∥∥
∞
−→

m→∞
0,

and therefore, since α0,` is a nonnegative function, for each compact set C in R, we
can find an integer m0 large enough such that, for all m ≥ m0 and for all x ∈ C,
we have αm,a,`(x) ≥ 0. Let us establish this convergence. Using the definition of
βm,j,` and the fact that am,j,` is compactly supported we may write

∥∥∥∥
m−1∑

j=1

a(j)βm,j,`

∥∥∥∥
∞
≤ 1

2π

∫
et2/2

∣∣∣∣
(

h0,`

m−1∑

j=1

Km,j

)∗
(t)

∣∣∣∣1|t|≤2(`+1)+2λm dt

≤ 1
2π

e2λ2m2+4λ(`+1)m+2(`+1)2
∫ ∣∣∣∣

(
h0,`

m−1∑

j=1

Km,j

)∗
(t)

∣∣∣∣1|t|≤2(`+1)+2λm dt.

Now, using Lemma 7.4 we see that

∣∣∣∣
(

h0,`

m−1∑

j=1

Km,j

)∗
(t)

∣∣∣∣ ≤ Cλθm
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and hence
∥∥∥∥

m−1∑

j=1

a(j)βm,j,`

∥∥∥∥
∞
≤ e2(`+1)2 Cλ

2π
4(λm + ` + 1)θme2λ2m2+4(`+1)λm.

Apply inequality (41) to get that
∥∥∥∥

m−1∑

j=1

a(j)Km,jα0,`

∥∥∥∥
∞
≤ ‖α0,`‖∞Cλθm,

and the uniform convergence of αm,a,` to α0,` in (49) follows under Condition 2.
The second step deals with the case of large |x|. For this write βm,j,` in the form

βm,j,`(x) =
1
2π

∫∫
e−itxet2/2h?

0,`(u− t)K?
m,j(u) du dt

=
θm

2πm

∫∫
e−itxet2/2eiuj/me−(u−t)2/2α∗0,`(u− t)K∗

( u

m

)
du dt

=
θm

2πm

∫
e−ixu+iuj/m

( ∫
ev(ix−u)α∗0,`(v) dv

)
eu2/2K∗

(
u

m

)
du.

The function α∗0,` is equal C2
` times the square of the convolution product of 2`+2

times the function S∗ = 1[−1;1]. More precisely, α∗0,` = C2
` (S∗ ∗ · · · ∗ S∗)2, where

the convolution product appears 2`+2 times. This is an even piecewise polynomial
function with support [−2`−2; 2`+2] and 2` times continuously differentiable. The
behavior of βm,j,`(x) is related to the quantity

∫
ev(ix−u)α∗0,`(v) dv = I(ix− u) + I(−ix + u),

where

I(c) =
∫ 2`+2

0

ecvα∗0,`(v) dv.

Integrating by parts, we get

I(c) =
[
ecv

c
α∗0,`(v)

]2`+2

0

−
[
ecv

c2
(α∗0,`)

′(v)
]2`+2

0

+ · · · −
[
ecv

c2`
(α∗0,`)

(2`−1)(v)
]2`+2

0

+
[

ecv

c2`+1
(α∗0,`)

(2`)(v)
]2`+2

0

−
∫ 2`+2

0

ecv

c2`+1
(α∗0,`)

(2`+1)(v) dv.

Since α∗0,` is 2` times continuously differentiable and equals zero outside [−2` −
2; 2` + 2], its derivatives up to the order 2` are equal to zero at the point 2` + 2.
Moreover, α0,` is an even function, so that (α∗0,`)

(2k−1)(0) = 0 for all 1 ≤ k ≤ `.
Now adding I(c) with I(−c), all but the final terms vanish and integrating once
more by parts we get

I(c) + I(−c) = −
[
ecv − e−cv

c2`+2
(α∗0,`)

(2`+1)(v)
]2`+2

0

+
∫ 2`+2

0

ecv − e−cv

c2`+2
(α∗0,`)

(2`+2)(v) dv.
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Consequently,

∫
ev(ix−u)α∗0,`(v) dv = −

[
e(ix−u)v − e−(ix−u)v

(ix− u)2`+2
(α∗0,`)

(2`+1)(v)
]2`+2

0

+
∫ 2`+2

0

e(ix−u)v − e−(ix−u)v

(ix− u)2`+2
(α∗0,`)

(2`+2)(v) dv,

and hence is bounded as follows:
∣∣∣∣
∫

ev(ix−u)α∗0,`(v) dv

∣∣∣∣ ≤ γ`
e2(`+1)|u|

(u2 + x2)`+1
.

We use this expression and the fact that the support of K?( · /m) is contained in
[−2λm; 2λm] to conclude that

(50)
∣∣∣∣

m−1∑

j=1

a(j)βm,j,`(x)
∣∣∣∣ ≤

Cmθme2λ2m2+4λ(`+1)m

x2`+2
,

with the numerator converging to zero under Condition 2. Arguing as in Taupin [20],
we obtain that for |x| large enough,

(51)
(

1−
m−1∑

j=1

a(j)Km,j

)
α0,`(x) ≥ δ

x2`+2
,

where δ is a positive constant. This lower bound is based on the following in-
equalities: for any x > 0 setting x = kπ + t, where k > 0 and 0 < t < π, we
get

α0,`(x) ≥ C2
`

∫

|u|≤π/2

sin2`+2(t− u) sin2`+2(u) [u(kπ + t− u)]−2`−2 du.

Since (k − 1
2 )π < kπ + t− u < (k + 1)π − π/2, we have

α0,`(x) ≥ C2
`

[(
k +

3
2

)
π

]−2`−2 ∫

|u|≤π/2

sin2`+2(t− u) sin2`+2(u)u−2`−2 du,

and consequently α0,`(x) ≥ C ′[(k + 3/2)π]−2`−2. We finally use that x2`+2 =
(kπ + t)2`+2 > (kπ)2`+2 and that there exists a constant C ′′ such that for k large
enough, [(k + 3

2 )π]2`+2 ≤ C1(kπ)2`+2 ≤ C ′′x2`+2. Combining (50) and (51), we get
that for |x| large enough the function αm,a,`(x) is positive. ¤

Proof of Lemma 7.8. We will consider separately the cases ` = 0 (estimation
of the density of the observations) and ` ≥ 1 (estimation of the derivatives of this
density). We fix the kernel K equal to Vλ = V (λ·), where V is the de la Vallée
Poussin kernel (see (3)) and λ ≥ 1 will be chosen in the proof.
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First case: ` = 0. Fix two functions a and a′ in A2. By definition, the distance
‖ϕm,a,` − ϕm,a′,`‖p is given by

‖ϕm,a,` − ϕm,a′,`‖p =
∥∥∥∥

m−1∑

j=1

(a(j)− a′(j))h0,`(Km,j −Km,j)
∥∥∥∥

p

.

Now, we restrict our attention to the interval [1/(2m); (2m− 1)/(2m)] and bound
the integral ‖ϕm,a,`−ϕm,a′,`‖p

p from below by the integral over this subset. Writing
[

1
2m

;
2m− 1

2m

]
=

⋃

1≤k≤m−1

[
2k − 1

2m
;
2k + 1

2m

]
,

we get

‖ϕm,a,` − ϕm,a′,`‖p
p ≥

m−1∑

k=1

∫ 2k+1
2m

2k−1
2m

∣∣∣∣
m−1∑

j=1

(a(j)− a′(j))h0,`(x)(Km,j(x)−Km,j)
∣∣∣∣
p

dx.

We use the following inequality for real numbers, valid for all p ≥ 1,

(52) |a|p ≥ 2−p|a− b|p − |b|p,
to obtain that

‖ϕm,a,` − ϕm,a′,`‖p
p ≥

m−1∑

k=1

∫ 2k+1
2m

2k−1
2m

[
2−p|a(k)− a′(k)|php

0,`(x)|Km,k(x)−Km,k|p

−
∣∣∣∣

∑

1≤j≤m−1
j 6=k

(
a(j)− a′(j)

)
h0,`(x)

(
Km,j(x)−Km,j

)∣∣∣∣
p]

dx.

Since the functions a and a′ take values in {0; 1}, the quantity |a(k)−a′(k)|p equals
|a(k) − a′(k)| and is bounded by 1, for all 1 ≤ k ≤ m − 1. Use also the triangle
inequality to obtain

‖ϕm,a,` − ϕm,a′,`‖p
p ≥

m−1∑

k=1

∫ 2k+1
2m

2k−1
2m

[
2−p|a(k)− a′(k)|hp

0,`(x)|Km,k(x)−Km,k|p

−
( ∑

1≤j≤m−1
j 6=k

h0,`(x)|Km,j(x)−Km,j |
)p]

dx.

The interval [1/(2m); (2m − 1)/(2m)] is contained in [0; 1] and the density h0,` is
positive on the compact interval [0; 1], so that we have

‖ϕm,a,` − ϕm,a′,`‖p
p(53)

≥ 2−p
m−1∑

k=1

|a(k)− a′(k)|( inf
[0;1]

hp
0,`

) ∫ 2k+1
2m

2k−1
2m

|Km,k(x)−Km,k|p dx

−
m−1∑

k=1

∫ 2k+1
2m

2k−1
2m

( ∑

1≤j≤m−1
j 6=k

h0,`(x)|Km,j(x)−Km,j |
)p

dx.
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Consider the first term and use inequality (52) to get that

∫ 2k+1
2m

2k−1
2m

|Km,k(x)−Km,k|p dx ≥ 2−p

∫ 2k+1
2m

2k−1
2m

|Km,k(x)|p dx− |Km,k|p
m

.

Therefore by using (42) and the definition of Km,k

∫ 2k+1
2m

2k−1
2m

|Km,k(x)−Km,k|p dx ≥ 2−p θp
m

m

∫ 1/2

−1/2

|K|p − θp
m

mp+1
‖h0,`‖p

∞‖K‖p
1.

Coming back to (53), we get

‖ϕm,a,` − ϕm,a′,`‖p
p

≥ 2−p θp
m

m

(
inf
[0;1]

hp
0,`

) m−1∑

k=1

|a(k)− a′(k)|
(

2−p

∫ 1/2

−1/2

|K|p − ‖h0,`‖p
∞‖K‖p

1

mp

)

−
m−1∑

k=1

∫ 2k+1
2m

2k−1
2m

h0,`(x)p

( ∑

1≤j≤m−1
j 6=k

|Km,j(x)−Km,j |
)p

dx.

By using (44) we deduce that

‖ϕm,a,` − ϕm,a′,`‖p
p(54)

≥ 2−p

8
θp

m

(
inf
[0;1]

hp
0,`

)(
2−p

∫ 1/2

−1/2

|K|p − ‖h0,`‖p
∞‖K‖p

1

mp

)

−
m−1∑

k=1

∫ 2k+1
2m

2k−1
2m

h0,`(x)p

( ∑

1≤j≤m−1
j 6=k

|Km,j(x)−Km,j |
)p

dx.

Consider the second term in (54). Apply the triangle inequality, bound (42), and
the definition of the kernel K = Vλ to get that

∑

1≤j≤m−1
j 6=k

|Km,j(x)−Km,j | ≤ θm

λ

( ∑

1≤j≤m−1
j 6=k

2
λπ(mx− j)2

+ ‖h0,`‖∞‖V ‖1
)

.

Arguing as in the proof of Lemma 7.4, when x ∈ [(2k− 1)/(2m); (2k + 1)(2m)], we
obtain

∑

1≤j≤m−1
j 6=k

2
λπ(mx− j)2

≤
∑

1≤j≤k−1

2
λπ(k − j − 1

2 )2
+

∑

k+1≤j≤m−1

2
λπ(k − j + 1

2 )2

≤ 4
λπ

∑

n≥1

1
(n− 1

2 )2
.



Estimation of Functionals in the Convolution Model 43

The last quantity is a finite constant to be denoted by C1/λ. It follows that, when x
belongs to the interval [(2k − 1)/(2m); (2k + 1)/(2m)], we have

∑

1≤j≤m−1
j 6=k

|Km,j(x)−Km,j | ≤ θm

λ

(
C1/λ + ‖h0,`‖∞‖V ‖1

)
.

Now, coming back to (54), we obtain

‖ϕm,a,` − ϕm,a′,`‖p
p ≥ θp

m

[
4−p

8
(

inf
[0;1]

hp
0,`

) ∫ 1/2

−1/2

|K|p

− λ−p
(
C1/λ + ‖h0,`‖∞‖V ‖1

)p‖h0,`‖p
p −

2−p

8
(

inf
[0;1]

hp
0,`

)‖h0,`‖p
∞‖V ‖p

1

λpmp

]
.

Let us study the right-hand side of this inequality. The third term is negligible with
respect to the two others as m →∞. The last thing to check is that the quantity

(55)
4−p

8
(

inf
[0;1]

hp
0,`

) ∫ 1/2

−1/2

|K|p − λ−p
(
C1/λ + ‖h0,`‖∞‖V ‖1

)p‖h0,`‖p
p

is positive. By using that K = Vλ, we infer that

∫ 1/2

−1/2

|K|p =
1
λ

∫ λ/2

−λ/2

|V |p,

and therefore the quantity (55) becomes

1
λ

[
4−p

8
(

inf
[0;1]

hp
0,`

) ∫ λ/2

−λ/2

|V |p − 1
λp−1

(
C1

λ
+ ‖h0,`‖∞‖V ‖1

)p

‖h0,`‖p
p

]
,

which is positive for some λ0 large enough, since p > 1. Hence we conclude that
there exists a positive constant C such that ‖ϕm,a,` − ϕm,a′,`‖p

p ≥ Cθp
m.

Second case: ` ≥ 1. By definition ‖ϕ(`)
m,a,` − ϕ

(`)
m,a′,`‖p satisfies

(56) ‖ϕ(`)
m,a,` − ϕ

(`)
m,a′,`‖p ≥ A1 −A2 −A3

with

A1 =
∥∥∥∥

m−1∑

j=1

(
a(j)−a′(j)

)
h0,`K

(`)
m,j

∥∥∥∥
p

, A2 =
∥∥∥∥

m−1∑

j=1

(
a(j)−a′(j)

)
h

(`)
0,`(Km,j−Km,j)

∥∥∥∥
p

,

and A3 =
∥∥∥∥

m−1∑

j=1

(
a(j)− a′(j)

) `−1∑
s=1

(
`

s

)
h

(s)
0,`K

(`−s)
m,j

∥∥∥∥
p

.

The purpose is to bound A1 from below, and then to bound A2 and A3 from
above by quantities negligible with respect to A1. We begin with the first term
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A1, which will be treated in the same way as the case ` = 0. We restrict our
attention to the interval [1/(2m); (2m−1)/(2m)], which is the disjoint union of the
intervals [(2k− 1)/(2m); (2k + 1)/2m], when 1 ≤ k ≤ m− 1, and use the convexity
inequality (52) to write

Ap
1 ≥ m`pθp

m

m−1∑

k=1

∫ 2k+1
2m

2k−1
2m

[
2−p|a(k)− a′(k)|hp

0,`(x)|K(`)(mx− k)|p

−
∣∣∣∣

∑

1≤j≤m−1
j 6=k

(
a(j)− a′(j)

)
h0,`(x)K(`)(mx− j)

∣∣∣∣
p]

dx.

The same calculations as in the case ` = 0 give

Ap
1 ≥ m`pθp

m

[
4−p

8
(

inf
[0;1]

hp
0,`

) ∫ 1/2

−1/2

|K(`)|p(57)

−
m−1∑

k=1

∫ 2k+1
2m

2k−1
2m

hp
0,`(x)

( ∑

1≤j≤m−1;j 6=k

|K(`)(mx− j)|
)p

dx

]
,

and the point is to bound the quantity

∑

1≤j≤m−1;j 6=k

|K(`)(mx− j)|

from above by a finite constant. Recall the definition of the function K = V (λ · ),
where

V (u) =
cos(u)− cos(2u)

πu2
=

1
π

P (cos(u))
Q(u)

with P a polynomial function and Q(u) = u2. Now, compute the derivative with
respect to u,

K(`)(u) = λ`V (`)(λu) =
λ`

π

∑̀

k=0

(
`

k

)
(P ◦ cos)(`−k)(λu)

(
1
Q

)(k)

(λu).

Easy calculations give

(
1
Q

)(k)

(λu) =
(−1)k(k + 1)!

λ2+ku2+k
,

and by obvious upper bounds on trigonometric functions, there exists a constant
M` such that, for all integer 0 ≤ k ≤ `, |(P ◦ cos)(`−k)(λu)| ≤ M`. Therefore the
derivative K(`) satisfies

|K(`)(u)| ≤ λ`−2M`

π

∑̀

k=0

(
`

k

)
(k + 1)!
|u|2+k

≤
{

λ`−2v`/|u|2 if |u| ≥ 1,

λ`−2v`/|u|2+` if |u| ≤ 1,
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where v` is a positive constant. For x ∈ [(2k−1)/(2m); (2k+1)/(2m)], the variable
mx− j ranges over the interval [k − j − 1/2; k − j + 1/2], hence we have

∑

1≤j≤m−1;j 6=k

|K(`)(mx− j)| ≤ |K(`)(mx− k + 1)|+ |K(`)(mx− k − 1)|

+ 2λ`−2v`

∑

n≥2

1
(n− 1/2)2

.

Finally,

(58)
∑

1≤j≤m−1;j 6=k

|K(`)(mx− j)| ≤ 2λ`−2v`(1 + 22+`) + 2λ`−2v`

∑

n≥2

1
(n− 1/2)2

.

The last quantity is a finite constant to be denoted by λ`−2C`. Combining (57)
with (58), we get

Ap
1 ≥ m`pθp

m

[
4−p

8
(

inf
[0;1]

hp
0,`

) ∫ 1/2

−1/2

|K(`)|p − λp(`−2)Cp
` ‖h0,`‖p

p

]
.

The next thing to check is that the following quantity is positive:

(59)
2−p

8
(

inf
[0;1]

hp
0,`

) ∫ 1/2

−1/2

|K(`)|p − λp(`−2)Cp
` ‖h0,`‖p

p > 0.

Since
∫ 1/2

−1/2
|K(`)|p = λ`p−1

∫ λ/2

−λ/2
|V (`)|p, the quantity in (59) becomes

λ`p−1

(
2−p

8
(

inf
[0;1]

hp
0,`

) ∫ λ/2

−λ/2

|V (`)|p − (C ′`)
p

λ2p−1
‖h0,`‖p

p

)
.

For p > 1
2 , the second term converges to zero as λ → ∞, while the first one

converges to (2−p/8)(inf [0;1] h
p
0,`)‖V (`)‖p

p. Consequently we obtain that there exists
a λ0 ≥ 1 large enough for which (59) holds. Using this remark, we conclude that
there exists a positive constant C1 such that for m large enough,

(60) A1 =
∥∥∥∥

m−1∑

j=1

(
a(j)− a′(j)

)
h0,`K

(`)
m,j

∥∥∥∥
p

≥ C1m
`θm.

Now we estimate the second term A2 from above. Apply the triangle inequality to
infer that

A2 ≤
m−1∑

j=1

(
‖h(`)

0,`‖∞‖Km,j‖p + |Km,j | ‖h(`)
0,`‖p

)
.

Again using the definition of Km,j , we get ‖Km,j‖p = θmm−1/p‖K‖p, which com-
bined with inequality (42) provides that for p ≥ 1,

(61) A2 ≤ (m− 1)
(

θm

m1/p
‖K‖p‖h(`)

0,`‖∞ +
θm

m
‖h0,`‖∞‖K‖1‖h(`)

0,`‖p

)
,
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and this quantity is negligible with respect to m`θm when ` ≥ 1. Finally, the third
term A3 satisfies

A3 ≤
m−1∑

j=1

`−1∑

k=1

(
`

k

)
‖h(k)

0,`‖∞‖K(`−k)
m,j ‖p

with
‖K(`−k)

m,j ‖p ≤ m`−1−1/pθm max
1≤r≤`−1

‖K(r)‖p.

Therefore

(62) A3 ≤ 2`m`−1/pθm max
1≤r≤`−1

‖h(r)
0,`‖∞ max

1≤r≤`−1
‖K(r)‖p,

which is also negligible with respect to m`θm. Combining (56), (60), (61), and (62),
we conclude that for any ` ≥ 1 there exists a positive constant C such that for m

large enough, ‖ϕ(`)
m,a,` − ϕ

(`)
m,a′,`‖p ≥ Cm`θm, and the proof is complete. ¤
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