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ABSTRACT. We consider the problem of estimating the proportion � of true null hypotheses
in a multiple testing context. The setup is classically modelled through a semiparametric mixture
with two components: a uniform distribution on interval Œ0; 1� with prior probability � and a non-
parametric density f . We discuss asymptotic efficiency results and establish that two different
cases occur whether f vanishes on a non-empty interval or not. In the first case, we exhibit estima-
tors converging at a parametric rate, compute the optimal asymptotic variance and conjecture that
no estimator is asymptotically efficient (i.e. attains the optimal asymptotic variance). In the second
case, we prove that the quadratic risk of any estimator does not converge at a parametric rate. We
illustrate those results on simulated data.
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1. Introduction

The problem of estimating the proportion � of true null hypotheses is of interest in situation
where several thousands of (independent) hypotheses can be tested simultaneously. One of the
typical applications in which multiple testing problems occur is estimating the proportion of
genes that are not differentially expressed in deoxyribonucleic acid (DNA) microarray experi-
ments (see, for instance, Dudoit & van der Laan, 2008). Among other application domains, we
mention astrophysics (Meinshausen & Rice, 2006) or neuroimaging (Turkheimer et al., 2001).
A reliable estimate of � is important when one wants to control multiple error rates, such as
the false discovery rate (FDR) introduced by Benjamini & Hochberg (1995). In this work, we
discuss asymptotic efficiency of estimators of the true proportion of null hypotheses. We stress
that the asymptotic framework is particularly relevant in the aforementioned contexts where
the number of tested hypotheses is huge.

In many recent articles (such as Broberg, 2005; Celisse & Robin, 2010; Genovese & Wasser-
man, 2004; and Langaas et al., 2005), a two-component mixture density is used to model
the behaviour of p-values X1; X2; : : : ; Xn associated with n independent tested hypotheses.
More precisely, assume that the test statistics are independent and identically distributed (i.i.d.)
with a continuous distribution under the corresponding null hypotheses, then the p-values
X1; X2; : : : ; Xn are i.i.d. and follow the uniform distribution U.Œ0; 1�/ on interval Œ0; 1� under
the null hypotheses. The density g of p-values is modelled by a two-component mixture with
the following expression:

8x 2 Œ0; 1�; g.x/ D � C .1 � �/f .x/; (1)
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where � 2 Œ0; 1� is the unknown proportion of true null hypotheses and f denotes the density
of p-values generated under the alternative (false null hypotheses).

1.1. Identifiability

Many different identifiability conditions on the parameter .�; f / in model (1) have been dis-
cussed in the literature. For example, Genovese & Wasserman (2004) introduced the concept
of purity that corresponds to the case where the essential infimum of f on Œ0; 1� is zero. They
proved that purity implies identifiability but not vice versa. Langaas et al. (2005) supposed that
f is decreasing with f .1/ D 0, while Neuvial (2013) assumed that f is regular near x D 1 with
f .1/ D 0, and Celisse & Robin (2010) considered that f vanishes on a whole interval included
in Œ0; 1�. These are sufficient but not necessary conditions on f that ensure identifiability. Now,
if we assume more generally that f belongs to some set F of densities on Œ0; 1�, then a nec-
essary and sufficient condition for parameters identifiability is stated in the next result, whose
proof is given in Section 5.1.

Proposition 1. The parameter .�; f / is identifiable on a set .0; 1/�F if and only if for all f 2 F
and for all c 2 .0; 1/, we have c C .1 � c/f … F .

This very general result is the starting point in considering explicit sets F of densities that
ensure the parameter’s identifiability on .0; 1/ � F . In particular, if F is a set of densities con-
strained to have essential infimum equal to zero, one recovers the purity result of Genovese
& Wasserman (2004). However, from an estimation perspective, the purity assumption is very
weak, and it is hopeless to obtain a reliable estimate of � based on the value of f at a unique
value (or at a finite number of values). Because the p-values that are associated with the false
null hypotheses are likely to be small and a large majority of the p-values in the interval Œ1�ı; 1�,
for ı not too large, should correspond to the true null hypotheses, the assumption that f is
non-increasing with f .1/ D 0 is reasonable. Recall that this assumption is used in Langaas
et al. (2005) and partially in Celisse & Robin (2010). In the following, we explore asymptotic
efficiency results for the estimation of � by assuming that the function f belongs to a set of
densities (with respect to the Lebesgue measure �) defined as

Fı D
°
f W Œ0; 1� 7! RC; continuously non-increasing density, positive on Œ0; 1 � ı/
and such thatfjŒ1�ı;1� D 0

±
:

(2)

1.2. Existing estimators of �

Let us now discuss the different estimators of � proposed in the literature, starting with those
assuming (implicitly or not) that f attains its minimum value on a whole interval. First,
Schweder & Spjøtvoll (1982) suggested a procedure to estimate � , which has been later used
by Storey (2002). This estimator depends on an unspecified parameter � 2 Œ0; 1/ and is equal
to the proportion of p-values larger than this threshold � divided by 1 � �. Storey established
that it is a conservative estimator, and one can note that it is consistent only if f attains its
minimum value on the interval Œ�; 1� (an assumption not made in the article by Schweder &
Spjøtvoll (1982) nor the one by Storey (2002)). Note that even if such an assumption was
made, it would not solve the problem of choosing � such that f attains its infimum on Œ�; 1�.
Adapting this procedure in order to end up with an estimate of the positive FDR, Storey
(2002) proposed a bootstrap strategy to pick �. More precisely, his procedure minimizes the
mean squared error (MSE) for estimating the positive FDR. Note that Genovese & Wasserman
(2004) established that, for fixed value � such that the cumulative distribution function F of f

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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satisfies F.�/ < 1, Storey’s estimator converges at a parametric rate and is asymptotically nor-
mal, but is also asymptotically biased: thus, it does not converge to � at a parametric rate.
Some other choices of � are, for instance, based on break point estimation (Turkheimer et al.,
2001) or spline smoothing (Storey & Tibshirani, 2003). Another natural class of procedures in
this context is obtained by relying on a histogram estimator of g (Mosig et al., 2001; Nettleton
et al., 2006). Among this kind of procedures, we mention the one proposed recently by Celisse
& Robin (2010) who proved convergence in probability of their estimator (to the true param-
eter value) under the assumption that f vanishes on an interval. Note that both Storey’s and
histogram-based estimators of � are constructed using non-parametric estimates Og of the den-
sity g and then estimate � relying on the value of Og on a specific interval. The main issue with
those procedures is to automatically select an interval where the true density g is identically
equal to � . As a conclusion on the existing results for this setup (f vanishing on a non-empty
interval), we stress the fact that none of these estimators was proven to be convergent to � at a
parametric rate.

Other estimators of � are based on regularity or monotonicity assumptions made on f or
equivalently on g, combined with the assumption that the infimum of g is attained at x D 1.
These estimators rely on non-parametric estimates of g and appear to inherit non-parametric
rates of convergence. Langaas et al. (2005) derived estimators based on non-parametric max-
imum likelihood estimation of the p-value density, in two setups: decreasing and convex
decreasing densities f . We mention that no theoretical properties of these estimators are given.
Hengartner & Stark (1995) proposed a very general finite sample confidence envelope for a
monotone density. Relying on this result and assuming moreover that the cumulative distribu-
tion function G of g is concave and that g is Lipschitz in a neighbourhood of x D 1, Genovese
& Wasserman (2004) constructed an estimator converging to g.1/ D � at rate .log n/1=3n�1=3.
Under some regularity assumptions on f near x D 1, Neuvial (2013) established that by letting
� ! 1, Storey’s estimator may be turned into a consistent estimator of � , with a non-parametric
rate of convergence equal to n�k=.2kC1/�n, where �n ! C1 and k controls the regularity of
f near x D 1. Our results are in accordance to the literature: no

p
n-consistent estimator has

been constructed yet (that is to say, estimators O�n such that
p
n
� O�n � �

�
is bounded in prob-

ability, denoted by
p
n
� O�n � �

�
D OP.1/), as is expected from the fact that the quadratic risk

of any estimator of � cannot converge at a parametric rate in this case (theorem 1).
To finish this tour on the literature about the estimation of � , we mention that Mein-

shausen & Bühlmann (2005) discussed probabilistic lower bounds for the proportion of true
null hypotheses, which are valid under general and unknown dependence structures between
the test statistics.

1.3. Our results

We consider the model (2) and distinguish two different cases: ı is positive, and ı is equal to
zero. In the first case, we exhibit

p
n-consistent estimators and also compute the asymptotic

optimal variance for this problem. In proposition 2, we prove that a very simple histogram-
based estimator is

p
n-consistent, while in proposition 3, we establish that this is also true for

the more elaborate procedure proposed by Celisse & Robin (2010), which has the advantage
of automatically selecting the ‘best’ partition among a fixed collection. However, we are not
aware of a procedure for estimating � that asymptotically attains the optimal variance in this
context. Besides, one might conjecture that such a procedure does not exist for regular models
(Section 3.3). In the second case, while the existence of an estimator O�n of � converging at a
parametric rate has not been established yet, we prove that if such a

p
n-consistent estimator of

� exists, then the variance Var
�p

n O�n

�
cannot have a finite limit. In other words, the quadratic
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risk of O�n cannot converge to zero at a parametric rate. Note that these results are also true
when we consider the more general case where the function f either vanishes on a non-empty
interval included in Œ0; 1� (thus not necessarily of the form Œ1 � ı; 1�) or not.

The article is organized as follows. Section 2 establishes lower bounds on the quadratic risk
for the estimation of � , while Section 3 explores corresponding upper bounds, that is, the
existence of

p
n-consistent estimators of � and the existence of asymptotically efficient estima-

tors. Section 4 illustrates our results relying on simulations. The proofs of the main results are
postponed to Section 5, while some technical lemmas are proved in Appendix A.

2. Lower bounds for the quadratic risk and efficiency

In this section, we give lower bounds for the quadratic risk of any estimator of � . For any fixed
unknown parameter ı 2 Œ0; 1/, we introduce an induced set of semiparametric distributions Pı

defined as

Pı D
²
P�;f I dP�;f

d�
D � C .1 � �/f I .�; f / 2 .0; 1/ � Fı

³
;

where Fı has been defined in (2). Note that for any fixed value ı 2 Œ0; 1/, the condition stated
in proposition 1 is satisfied on the set Fı ; namely, for all f 2 Fı and for all c 2 .0; 1/, we have
c C .1 � c/f … Fı . Thus, the parameter .�; f / is identifiable on .0; 1/ � Fı .

We follow notation form Chapter 25 and more particularly Section 25.4 in van der Vaart
(1998) and refer to this book. More precise definitions of the objects involved will also be given
in Section 5.2 together with the proof of the main result. We let PPı denote a tangent set of
the model Pı at P�;f with respect to the parameter .�; f /. For every score function g in the
tangent set PPı, we write Pt;g for a path with score function g. Namely, Pt;g equals P�Cta;ft

for some path t 7! ft and some a 2 R.
Now, an estimator sequence O�n is called regular at P�;f for estimating � (relative to the

tangent set PPı) if there exists a probability measure L such that for any score function g 2 PPı

corresponding to a path of the form t 7! .� C ta; ft /, we have

p
n
� O�n �  

�
P1=

p
n;g

��
D p

n

�
O�n �

�
� C ap

n

��
d�! L; under P1=

p
n;g ;

where
d�! denotes convergence in distribution. According to a convolution theorem (see

theorem 25.20 in van der Vaart, 1998), this limit distribution can be written as the
convolution between some unknown distribution and the centred Gaussian distribution
N
�
0;P�;f

� Q 2
�;f

��
with variance

P�;f

� Q 2
�;f

�
D
Z

Q 2
�;f dP�;f ;

where Q �;f is the efficient influence function. Thus, we say that an estimator sequence is asymp-
totically efficient at P�;f (relative to the tangent set PPı) if it is regular at P�;f with limit

distribution L D N
�
0;P�;f

� Q 2
�;f

��
; in other words, it is the best regular estimator.

We define the quadratic risk of an estimator sequence O�n (relative to the tangent set PPı) as

sup
Eı

lim inf
n!1 sup

g2Eı

P1=
p

n;g

hp
n
� O�n �  

�
P1=

p
n;g

��i2

;

where the first supremum is taken over all finite subsets Eı of the tangent set PPı . According to
the local asymptotic minimax theorem (see theorem 25.21 in van der Vaart, 1998), this quantity

is lower bounded by the minimal variance P�;f

� Q 2
�;f

�
.
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Moreover, according to lemma 25.23 in van der Vaart (1998), an estimator O�n of � is
asymptotically efficient if and only if

p
n
� O�n � �

�
D 1p

n

nX
iD1

Q �;f .Xi /C oP�;f
.1/:

Hence, an asymptotically efficient estimator is asymptotically normal with asymptotic variance
equal to the optimal variance.

Theorem 1.
(1) When ı D 0, there is no regular estimator for � relative to the tangent set PP0, and any

estimator sequence O�n has an infinite quadratic risk, namely

sup
E0

lim inf
n!1 sup

g2E0

EP1=
p

n;g

hp
n
� O�n �  

�
P1=

p
n;g

��i2 D C1;

where the first supremum is taken over all finite subsets E0 of the tangent set PP0.
(2) When ı > 0, we obtain that

(i) For any estimator sequence O�n,

sup
Eı

lim inf
n!1 sup

g2Eı

EP1=
p

n;g

hp
n
� O�n �  

�
P1=

p
n;g

��i2 � �

�
1

ı
� �

�
;

where the first supremum is taken over all finite subsets Eı of the tangent set PPı.
(ii) A sequence of estimators O�n is asymptotically efficient if and only if it satisfies

O�n D 1

n

nX
iD1

1

ı
1Xi 2Œ1�ı;1� C oP�;f

�
n�1=2

�
: (3)

Let us now comment on this theorem. The case where f vanishes on a non-empty interval
.ı > 0/ appears to be easier from an estimation perspective. Otherwise (f vanishing at most on
isolated points), it is usual to add assumptions on f . Here, we choose to consider the case where
f is assumed to be non-increasing (see definition (2) of Fı). Similar results may be obtained
by replacing this assumption with a regularity constraint on f . Note also that when ı > 0, the
assumption that f is non-increasing could be removed without any change in our results.

When ı D 0, we obtain that if there exists a
p
n-consistent estimator in model P0, it can

not have finite asymptotic variance. In other words, we could have
p
n
� O�n � �

�
D OP.1/ for

some estimator O�n but then Var
�p

n O�n

�
! C1. However, we note that the only rates of

convergence obtained until now in this case are non-parametric ones.
When ı > 0, for fixed parameter value � such that G.�/ < 1, Storey’s estimator

O�Storey.�/ satisfies

p
n

�
O�Storey.�/ � 1 �G.�/

1 � �
�

d����!
n!1 N

�
0;
G.�/.1 �G.�//

.1 � �/2
�

(see, for instance, Genovese & Wasserman, 2004). In particular, if we assume that f vanishes on
Œ�; 1�, then we obtain thatG.�/ D 1��.1��/ and O�Storey.�/ becomes a

p
n-consistent estimator

of � , which is moreover asymptotically normal, with asymptotic variance �
�
.1 � �/�1 � �	.

In this sense, the oracle version of Storey’s estimator that picks � D 1 � ı (namely choosing �
as the smallest value such that f vanishes on Œ�; 1�) is asymptotically efficient. Note also that
O�Storey.�/ automatically satisfies (3).

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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3. Upper bounds for the quadratic risk and efficiency (when ı > 0)

In this section, we investigate the existence of asymptotically efficient estimators for � , in the
case where ı > 0. We consider histogram-based estimators of � where a non-parametric his-
togram estimator Og of g is combined with an interval selection that aims at picking an interval
where g is equal to � . We start by establishing the existence of

p
n-consistent estimators: a sim-

ple histogram-based procedure is studied in Section 3.1, while a more elaborate one is the object
of Section 3.2. Finally, in Section 3.3, we explain the general one-step method to construct an
asymptotically efficient estimator relying on a

p
n-consistent procedure and discuss conditions

under which an asymptotically efficient estimator could be obtained in model Pı.
Note that we will assume that the density f belongs to Fı with ı > 0 throughout the current

section. However, the results are easily generalized to the case where f vanishes on a non-empty
interval included in Œ0; 1� and is monotone outside this interval.

3.1. A histogram-based estimator

Let OgI be a histogram estimator corresponding to a partition I D .Ik/1;:::;D of Œ0; 1�,
defined by

OgI .x/ D
DX

kD1

nk

njIk j1Ik
.x/;

where nk D card ¹i W Xi 2 Ikº is the number of observations in Ik and jIk j is the width of
interval Ik . We estimate � by the minimal value of OgI ; that is,

O�I;n D min
1�k�D

nk

njIk j D n Okn

n
ˇ̌̌
I Okn

ˇ̌̌ ; (4)

where we let

Okn 2 Argmin
1�k�D

´
nk

njIk j D 1

njIk j
nX

iD1

1Xi 2Ik

μ
:

Note that histogram estimators are natural non-parametric estimators for g when assuming
that f 2 Fı with ı > 0; that is, g is constant on an interval. It is easy to see that O�I;n is
almost surely consistent as soon as the partition I is fine enough. We moreover establish that
this estimator has the MSE of the order 1=n. The proof of this result appears in Section 5.3.

Theorem 2. Fix ı > 0 and suppose that f 2 Fı . Assume moreover that the partition I is such
that maxk jIk j is small enough, then the estimator O�I;n has the following properties

(i) O�I;n converges almost surely to � ,

(ii) lim sup
n!1

nE
�� O�I;n � �

�2
�
< C1.

Note that because O�I;n has the MSE of the order 1=n, we can deduce that O�I;n is
p
n-

consistent and has a variance of the order 1=n. However, asymptotic normality of O�I;n or the
value of its asymptotic variance are difficult to obtain. Indeed, for any deterministic interval Ik ,
the central limit theorem (CLT) applies on the estimator nk=.njIk j/. But, a histogram-based
estimator such as O�I;n is based on the selection of a random interval OI , and the CLT fails to

apply directly on n OI =
�
nj OI j

�
. Note also that the choice of the partition I is not solved here.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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From a practical point of view, decreasing the parameter maxk jIk j will in fact increase the
variance of the estimator. In the next section, we study a procedure that automatically selects
the best partition among a given collection.

3.2. Celisse and Robin’s procedure

We recall here the procedure for estimating � that is presented in Celisse & Robin (2010). It
relies on an elaborate histogram approach that selects the best partition among a given collec-
tion. As it will be seen from the simulations experiments (Section 4), its asymptotic variance is
likely to be smaller than for the previous estimator, justifying our interest into this procedure.
Unfortunately, from a theoretical point of view, we only establish that this estimator should be
as good as the previous one. Note that because not many estimators of � have been proved to
be

p
n-convergent, this is already a non-trivial result.

For a given integer M , define IM as the set of partitions of Œ0; 1� such that for some integer
k with 1 � k � M � 2, the first k intervals are regular of width 1=M , and the last one is of
width .M � k/=M , namely,

IM D
²
I .k/ D .Ii /iD1;:::;kC1 W 8i � k; jIi j D 1

M
; jIkC1j D M � k

M
; 1 � k � M � 2

³
:

These partitions are motivated by the assumption that f vanishes on a set Œ1 � ı; 1� � Œ0; 1�.
Then for two given integers mmin < mmax, denote by I the following collection of partitions

I D
[

mmin�m�mmax

I2m : (5)

Every partition I in I is characterized by a doublet .M D 2m; � D k=M/, and the quality
of the histogram estimator OgI is measured by its quadratic risk. So, in this sense, the oracle
estimator OgI ? is obtained through

I? Dargmin
I2I

E
h
jjg � OgI jj22

i
Dargmin

I2I
R.I/; where R.I/DE

"
jj OgI jj22 �2

Z 1

0

OgI .x/g.x/dx

#
:

However, for every partition I , the quantity R.I/ depends on g, which is unknown. Thus, I?

is an oracle and not an estimator. It is then natural to replace R.I/ by an estimator. In Celisse
& Robin (2008, 2010), the authors use leave-p-out estimator of R.I/ with p 2 ¹1; : : : ; n � 1º,
whose expression is given by (see Celisse & Robin, 2008, theorem 2.1)

ORp.I / D 2n � p
.n � 1/.n � p/

X
k

nk

njIk j � n.n� p C 1/

.n � 1/.n � p/
X

k

1

jIk j
�nk

n

�2

: (6)

The best theoretical value of p is the one that minimizes the MSE of ORp.I /, namely

p?.I / D argmin
p2¹1;:::;n�1º

MSE.p; I / D argmin
p2¹1;:::;n�1º

E
�� ORp.I / �R.I/

�2
�
:

It clearly appears that MSE.p; I / has the form of a function ˆ.p; I; ˛/ (see Celisse &
Robin, 2008, proposition 2.1) depending on the unknown vector ˛ D .˛1; ˛2; : : : ; ˛D/ with
˛k D P.X1 2 Ik/. A natural idea is then to replace the ˛ks in ˆ.p; I; ˛/ by their empirical
counterparts Ǫk D nk=n, and an estimator of p?.I / is therefore given by

Op.I / D argmin
p2¹1;:::;n�1º

M̂SE.p; I / D argmin
p2¹1;:::;n�1º

ˆ.p; I; Ǫ / :

The exact calculation of Op.I /may be found in theorem 3.1 from Celisse & Robin (2008). Hence,
the procedure for estimating � is the following one:

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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(1) For each partition I 2 I, define Op.I / D argmin
p2¹1;:::;n�1º

M̂SE.p; I /,

(2) Choose OI D
� OM; O�

�
2 argmin

I2I
OR Op.I/.I / such that the width of the interval Œ O�; 1� is

maximum,
(3) Estimate � by O�CR

n D card
°
i W Xi 2

h O�; 1
i±
=
h
n
�
1 � O�

�i
.

Remark 3.1. In our procedure, we consider the set of natural partitions defined by (5), while
Celisse & Robin (2010) used the one defined by

I D
[

Mmin�M�Mmax

IM ;

where IM is the set of partitions of Œ0; 1� such that the first k intervals and the last M � l ones
are regular of width 1=M , for some integers k; l with 2 � k C 2 � l � M ,

IM D
²
I D .Ii /i W 8i ¤ k C 1; jIi j D 1

M
; jIkC1j D l � k

M
; 2 � k C 2 � l � M

³
:

This change is natural for lowering the complexity of the algorithm and has no consequences
on the theoretical properties of the estimator.

In Celisse & Robin (2010), the authors only established convergence in probability of this
estimator. Here, we prove its almost sure convergence,

p
n-consistency and establish that its

variance is of the order 1=n. We now introduce a technical condition that comes from Celisse
& Robin (2010). We let

8.i; j / 2 N2; sij D
DX

kD1

˛i
k

jIk jj ;

and further assume that the collection of partitions I and density f are such that

8I 2 I; 8s11s21 � 2s2
11 C 8s32 � 10s2

21 � 4s22 ¤ 0; s21 � s22 � s32 C 3s11 ¤ 0: (7)

This technical condition is used in Celisse & Robin (2010) to control the behaviour of the
minimizer Op.I /. We are now ready to state our result, whose proof can be found in Section 5.4.

Theorem 3. Suppose that f satisfies the technical condition (7) and f belongs to Fı . Assume
moreover that mmax is large enough, then the estimator O�CR

n has the following properties:

(i) O�CR
n converges almost surely to �;

(ii) O�CR
n is

p
n-consistent, that is,

p
n
� O�CR

n � �
�

D OP.1/;

(iii) If p is fixed, then lim sup
n!1

nE
�� O�CR

n � �
�2
�
< C1.

Here again, asymptotic normality of O�CR
n or the exact value of its asymptotic variance is

difficult to obtain. Heuristically, one can explain that this procedure outperforms the simpler
histogram based with fixed partition approach described in the previous section. Indeed, when
considering a fixed partition, the latter should be fine enough to obtain convergence but refin-
ing the partition increases the variance of O�I;n. Here, Celisse and Robin’s approach realizes a
compromise on the size of the partition that is used.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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3.3. Existence of asymptotically efficient estimators

In this section, we introduce the one-step method, a general procedure that aims at construct-
ing an asymptotically efficient estimator relying on a

p
n-consistent one (see van der Vaart,

1998, Section 25.8). Note that if an asymptotically efficient estimator exists, then it can always
be constructed by the one-step method, but the method works under conditions that are not
always satisfied. Here again, we use terminology from semiparametric theory. Let O�n be ap
n-consistent estimator of � , then O�n can be discretized on grids of mesh width n�1=2. Sup-

pose that we are given a sequence of estimators Oln;� .�/ D Oln;� .�IX1; : : : ; Xn/ of the efficient
score function Ql�;f (an expression of the efficient score function in our context is given in
Section 5.2). Define with m D bn=2c,

Oln;�;i .�/ D
´ Olm;� .�IX1; : : : ; Xm/ if i > m;

Oln�m;� .�IXmC1; : : : ; Xn/ if i � m:

Thus, for Xi ranging through each of the two halves of the sample, we use an estimator Oln;�;i

on the basis of the other half of the sample. We assume that, for every deterministic sequence
�n D � CO

�
n�1=2

	
, we have

p
nP�n;f

Oln;�n

P�;f����!
n!1 0; (8)

P�n;f kOln;�n
� Ql�n;f k2

P�;f����!
n!1 0; (9)Z

kQl�n;f dP
1=2

�n;f
� Ql�;f dP

1=2

�;f
k2 0����!

n!1 : (10)

Note that in the aforementioned notation, the term P�n;f
Ol for some random function Ol is an

abbreviation for the integral
R Ol.x/dP�n;f .x/. Thus, the expectation is taken with respect to

x only and not the random variables in Ol . Now under the aforementioned assumptions, the
one-step estimator defined as

Q�n D O�n �
 

nX
iD1

Ol2
n; O�n;i

.Xi/

!�1 nX
iD1

Ol
n; O�n;i

.Xi/;

is asymptotically efficient at .�; f / (see van der Vaart, 1998, Section 25.8). This estimator
Q�n can be considered a one-step iteration of the Newton–Raphson algorithm for solving an
approximation of the equation

P
i

Ql�;f .Xi/ D 0 with respect to � , starting at the initial
guess O�n.

Now, we discuss a converse result on necessary conditions for existence of an asymptotically
efficient estimator of � and its implications in model Pı .

Under condition (10), it is shown in theorem 7.4 from van der Vaart (2002) that the existence
of an asymptotically efficient sequence of estimators of � implies the existence of a sequence
of estimators Oln;� of Ql�;f satisfying (8) and (9). Thus, in this case, if an asymptotically effi-
cient estimator sequence exists, then it can always be constructed by the one-step method. In
our case, it is not difficult to prove that condition (10) holds. Then, the estimator Oln;� of the
efficient score function Ql�;f must satisfy both a ‘no-bias’ (8) and a consistency (9) condition.
The consistency is usually easy to arrange, but the ‘no-bias’ condition requires a convergence
to zero of the bias at a rate faster than 1=

p
n. We thus obtain the following proposition, whose

proof can be found in Section 5.3.
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Proposition 2. The existence of an asymptotically efficient sequence of estimators of � in model
Pı is equivalent to the existence of a sequence of estimators Oln;� of the efficient score function
Ql�;f satisfying (8) and (9). Moreover, if the efficient score function Ql�;f is estimated through a
plug-in method that relies on an estimate Oın of the parameter ı, then this condition is equivalent

to
p
n
� Oın � ı

�
D oP.1/.

Let us now explain the consequences of this result. The proposition states that efficient esti-
mators of � exist if and only if estimators of Ql�;f that satisfy (8) and (9) can be constructed.
As there is no general method to estimate an efficient score function, such an estimator should
rely on the specific expression (15). Although we cannot claim that all estimators of Ql�;f are
plug-in estimates based on an estimator of the parameter Oı plugged into expression (15), it is
likely to be the case. Then, existence of efficient estimators of � is equivalent to existence of
estimators of ı that converge faster than the parametric rate. Note that this is possible for irreg-
ular models (see Chapter 6 in Ibragimov & Has’minski1̆, 1981, for more details). However, for
regular models, such estimators cannot be constructed, and one might conjecture that efficient
estimators of � do not exist in regular models.

4. Simulations

In this section, we give some illustrations of the previous results on some simulated experiments
and explore the non-asymptotic performances of the estimators of � previously discussed. We
choose to compare three different estimators: the histogram-based estimator O�I;n defined in
Section 3.1 through (4), the more elaborate histogram-based estimator O�CR

n proposed in Celisse
& Robin (2010) and finally Langaas et al. (2005)’s estimator, denoted by O�L

n and defined as the
value Og.X.n// where X.n/ is the largest p-value and Og is Grenander’s estimator of a decreasing
density. We investigate the behaviour of these three different estimators of � under two different
setups: ı D 0 and ı 2 .0; 1/. More precisely, we consider the alternative density f given by

f .x/ D s

1 � ı
�
1 � x

1 � ı
�s�1

1Œ0;1�ı�.x/;

where ı 2 Œ0; 1/ and s > 1. This form of density is introduced in Celisse & Robin (2010)
and covers various situations when varying its parameters. Note that f is always decreasing,
convex when s � 2 and concave when s 2 .1; 2�. In the experiments, we consider a total of
8 different models corresponding to different parameter values. These models are labelled as
described in Table 1, distinguishing the cases ı D 0 and ı > 0. As an illustration, we repre-
sent some of the densities obtained for the p-values corresponding to 4 out of the 8 models in

Figure 1. For each estimator O�n of � , we compare the quantity nE
�� O�n � �

�2
�

with the opti-

mal variance �
�
ı�1 � �	 when this bound exists. Equivalently, we compare the logarithm of

MSE, log.MSE/ D logE
�� O�n � �

�2
�

for each estimator O�n with � log.n/C log


�
�
ı�1 � �	�.

Table 1. Labels of the 8 models
with different parameter values

.s; �/ ı D 0:3 ı D 0

(3,0.6) .a1/ .a2/

(3,0.8) .b1/ .b2/

(1.4,0.7) .c1/ .c2/

(1.4,0.9) .d1/ .d2/
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Fig. 1. Density function of the p-values. Top left: model .b1/; top right: model .d1/; bottom left: model
.a2/; bottom right: model .c2/.

When ı D 0, we only compare the slope of the line induced by log.MSE/ with the para-
metric rate corresponding to a slope �1. In each case, we simulated data with sample size
n 2 ¹5000; 7000; 9000; 10000; 12000; 14000; 15000º and perform R D 100 repetitions.

When computing the estimator O�I;n, the choice of the partition I surely affects the results.
Here, we have chosen a regular partition I such that it is fine enough (we fixed jIk j < ı) but not
too fine (choosing a too small value of jIk j increases the variance). The choice of the partition
in the simple procedure O�I;n is an issue for real data problems. Our goal here is to show that
on simulated experiments, the ‘best’ of these estimators still has a larger variance than O�CR

n .
Note that the partition I is always included in the collection I of partitions from which O�CR

n

is computed.
The results are presented in Figure 2 for the case ı > 0 and Figure 3 for the case ı D 0.

First, we note that in both cases .ı > 0 and ı D 0/, the estimator of Langaas et al. O�L
n has

non-parametric rate of convergence (null slope) and performs badly compared with O�I;n and
O�CR
n . In particular, when ı D 0, the two histogram-based procedures O�I;n and O�CR

n have better
performances than the estimator O�L

n despite the fact that the latter is dedicated to the convex
decreasing setup. Now, when ı > 0, both estimators O�I;n and O�CR

n exhibit a parametric rate
of convergence (slope equal to �1). Moreover, O�CR

n has a smaller variance than O�I;n (smaller
intercept), and this variance is very close to the optimal one �.ı�1 � �/. Now, when ı D 0, we
observe two different behaviours depending on whether f is convex or not. Indeed, for models
.a2/ and .b2/ corresponding to the convex case, we observe that both estimators O�I;n and O�CR

n

still exhibit a parametric rate of convergence, with a smaller variance for O�CR
n . These estimators
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Fig. 2. Logarithm of the mean squared error as a function of log.n/ and corresponding linear regression
for O�L

n (ı and black line, respectively), O�CR
n (� and blue line, respectively) and O�I;n (� and green line,

respectively) in the case ı D 0:3, for different parameter values: .a1/ top left; .b1/ top right; .c1/ bottom
left; .d1/ bottom right. Red line represents the line y D � log.n/ C log



�.ı�1 � �/

�
.

are thus robust to the assumption that f vanishes on an interval in the convex setup. The results
are slightly different when considering models .c2/ and .d2/ where f is now concave. These
estimators have a more erratic behaviour, exhibiting either parametric rate of convergence . O�CR

n

in model .c2/ and O�I;n in model .d2// or non-parametric rates. Their respective performances
in terms of variance are also less clear. Nonetheless, we conclude that O�CR

n seems to exhibit
the overall best performances, with the parametric rate of convergence and almost optimal
asymptotic variance.

5. Proofs

5.1. Proof of proposition 1

Sufficiency: Let us suppose that for all f 2 F and for all c 2 .0; 1/, we have c C .1 � c/f … F .
We prove that the parameters � and f are identifiable on the set .0; 1/ � F by contradiction.
Suppose that there exist .�1; f1/ and .�2; f2/ 2 F ; .�1; f1/ ¤ .�2; f2/ such that

�1 C .1 � �1/f1.x/ D �2 C .1 � �2/f2.x/; for all x 2 Œ0; 1�: (11)

We can always consider �1 > �2. Let us denote by c D .�1 � �2/=.1 � �2/, then c 2 .0; 1/. We
obtain that

�1 C .1 � �1/f1.x/ D �2 C .1 � �2/.c C .1 � c/f1.x//; for all x 2 Œ0; 1�: (12)

From (11) and (12), we have f2 D cC .1� c/f1, it means that there exist f1 2 F and c 2 .0; 1/
such that c C .1 � c/f1 2 F . So we have a contradiction.
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Fig. 3. Logarithm of the mean squared error as a function of log.n/ and corresponding linear regression
for O�L

n (ı and black line, respectively), O�CR
n (� and blue line, respectively) and O�I;n (� and green line,

respectively) in the case ı D 0, for different parameter values: .a2/ top left; .b2/ top right; .c2/ bottom
left; .d2/ bottom right. Red line represents the line y D � log.n/ C c for some well-chosen constant c.

Necessity: Suppose that the parameters � and f are identifiable on the set .0; 1/ � F . We
prove by contradiction that for all f 2 F and for all c 2 .0; 1/, we have c C .1 � c/f … F .
Indeed, suppose that there exist f 2 F and c 2 .0; 1/ such that c C .1 � c/f 2 F . For all
�1 2 .0; 1/, we denote �2 D c C .1 � c/�1, then we obtain

�1 C .1 � �1/.c C .1 � c/f .x// D �2 C .1 � �2/f .x/; for all x 2 Œ0; 1�:

This implies that � and f are not identifiable on the set .0; 1/ � F .

5.2. Proof of theorem 1

Let us first describe more precisely the objects arising from semiparametric theory in our set-
ting. Fix a parameter value .�; f / and consider first a parametric submodel of Fı induced by
the following path:

t 7! ft .x/ D c.t/k.th0.x//f .x/; (13)

where h0 is a continuous and non-increasing function on Œ0; 1�, the function k is defined
by k.u/ D 2.1 C e�2u/�1 and the normalizing constant c.t/ satisfies c.t/�1 DR
k.th0.u//f .u/du. A tangent set f

PPı for the parameter f is composed of the score func-
tions associated to such parametric submodels (as h0 varies). It is easy to see that the path (13)
is differentiable and that its corresponding score function is obtained by differentiating t 7!
logŒ� C .1 � �/ft .x/� at t D 0. We thus obtain a tangent set for f given by
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f
PPı D

²
hD .1��/f h0

�C.1��/f Ih0 is continuous and non-increasing on Œ0; 1�ı/with;
Z
f h0 D0

³
:

We consider parametric submodels of Pı induced by paths of the form t 7! P�Cta;ft
where

the paths t 7! ft in Fı are given by (13). We remark that if Pl�;f is the ordinary score function
for � in the model in which f is fixed, then for every a 2 R and for every h 2 f

PPı, we have
that a Pl�;f C h is a score function for .�; f / corresponding to the path t 7! P�Cta;ft

. Hence,
a tangent set PPı of the model Pı at P�;f with respect to the parameter .�; f / is given by the
linear span

PPı D lin
� Pl�;f C f

PPı

�
D
°
˛ Pl�;f C ˇhI .˛; ˇ/ 2 R2; h 2 f

PPı

±
:

Moreover, the ordinary score function Pl�;f for � in the model in which f is fixed is given by

Pl�;f .x/ D @

@�
logŒ� C .1 � �/f .x/� D 1 � f .x/

� C .1 � �/f .x/ : (14)

Now we let Ql�;f be the efficient score function and QI�;f be the efficient information for
estimating  .P�;f / D � . These quantities are defined respectively as

Ql�;f D Pl�;f �…�;f
Pl�;f and QI�;f D P�;f

� Ql2�;f

�
;

where …�;f is the orthogonal projection onto the closure of the linear span of f
PPı in

L2.P�;f /. The functional  W P�;f 7! � is said to be differentiable at P�;f relative to the tan-
gent set PPı if there exists a continuous linear map Q �;f W L2.P�;f / 7! R, called the efficient
influence function, such that for every path t 7! ft with score function h 2 f

PPı , we have

8a 2 R; a D
Z

Q �;f .x/
h
aᵀ Pl�;f .x/C h.x/

i
dP�;f .x/:

Setting a D 0, we see that this efficient influence function must be orthogonal to the tan-
gent set f

PPı. Finally, note that under some assumptions, the efficient influence function Q �;f

equals QI�1
�;f

Ql�;f (see lemma 25.25 in van der Vaart, 1998). The following proposition provides
expressions for these quantities in our setup.

Proposition 3. The efficient score function Ql�;f and the efficient information QI�;f for estimating
� in model Pı are given by

Ql�;f .x/ D 1

�
� 1

�.1 � �ı/1Œ0;1�ı/.x/ and QI�;f D ı

�.1 � �ı/ ; (15)

where 1A.�/ is the indicator function of set A. When ı > 0, the efficient influence function Q �;f

relative to the tangent set PPı is given by

Q �;f .x/ D 1

ı
1Œ1�ı;1�.x/ � �:

Proof of proposition 3. The ordinary score function Pl�;f can be written as
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Pl�;f .x/ D @

@�
logŒ� C .1 � �/f .x/�

D
�

1 � f .x/
� C .1 � �/f .x/ C ı

1 � �ı
�

1Œ0;1�ı/.x/C 1

�
1Œ1�ı;1�.x/� ı

1 � �ı 1Œ0;1�ı/.x/:

(16)

Let us recall that …�;f is the orthogonal projection onto the closure of the linear span of f
PPı

in L2.P�;f /. We prove that the orthogonal projection of Pl�;f onto this space is equal to the
first term appearing in the right-hand side of (16), namely,

…�;f
Pl�;f .x/ D

�
1 � f .x/

� C .1 � �/f .x/ C ı

1 � �ı
�

1Œ0;1�ı/.x/; (17)

and then the efficient score function for � is

Ql�;f .x/ D Pl�;f .x/�…�;f
Pl�;f .x/ D 1

�
1Œ1�ı;1�.x/� ı

1 � �ı 1Œ0;1�ı/.x/:

In fact, we can write

�
�

1 � f
� C .1 � �/f C ı

1 � �ı
�

1Œ0;1�ı/ D .1 � �/f h0

� C .1 � �/f ;

where

h0.x/ D 1

.1 � �/.1 � �ı/
�
1 � ı � 1

f .x/

�
1Œ0;1�ı/.x/:

The function h0 is continuous and decreasing on Œ0; 1 � ı/. It is not difficult to examine the
condition

R
f h0 D 0. Hence,�
1 � f

� C .1 � �/f C ı

1 � �ı
�

1Œ0;1�ı/ belongs to lin
�

f
PPı

	
:

Now, to conclude the proof of (17), it is necessary to establish that the second term in the
right-hand side of (16) is orthogonal to the closure of the linear span of f

PPı , namely

1

�
1Œ1�ı;1� � ı

1 � �ı 1Œ0;1�ı/ D 1

�.1 � �ı/1Œ0;1�ı/ � ı

1 � �ı ? lin
�

f
PPı

	
;

where ? means orthogonality in L2.P�;f /. In fact, for every score function

h D .1 � �/f h0

� C .1 � �/f 2 f
PPı ;

the scalar product between h and the remaining term in (16) is given byZ 1

0

�
1

�.1 � �ı/1Œ0;1�ı/.x/ � ı

1 � �ı
�
h.x/dP�;f .x/

D 1 � �
�.1 � �ı/

Z 1

0

f .x/h0.x/1Œ0;1�ı/.x/dx � .1 � �/ı
1 � �ı

Z 1

0

f .x/h0.x/dx D 0:

This establishes (17). Let us now calculate the efficient information

QI�;f D P�;f

� Ql2�;f

�

D
Z 1

0

 
1

�2
1Œ1�ı;1�.x/C ı2

.1 � �ı/2 1Œ0;1�ı/.x/

!
Œ� C .1 � �/f .x/�dx

D ı

�.1 � �ı/ :
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We now turn to the particular case where ı D 0. In this case, the previous computations
show that Pl�;f belongs to the closure of the linear span of f

PPı and that the Fisher information
is zero. When ı > 0, the Fisher information is positive and the efficient influence function is
given by

Q �;f .x/ D QI�1
�;f

Ql�;f .x/ D 1

ı
1Œ1�ı;1�.x/� �;

which concludes the proof.

We are now ready to conclude the proof of theorem 1.

Proof of theorem 1. We start by dealing with the case ı D 0. Let us recall that in this case, the
ordinary score Pl�;f belongs to f

PP0 and the Fisher information is zero. Then, using theorem 2
in Chamberlain (1986), we conclude that there is no regular estimator for � relative to the
tangent set PP0. We remark that the tangent set f

PP0 is a linear subspace of L2.P�;f / with
infinite dimension. So we can choose an orthonormal basis ¹hi º1

iD1
of f

PP0 such that for every
m, we have Pl�;f … f

PP0;m WD lin.h1; h2; : : : ; hm/. We thus have

sup
E0

lim inf
n!1 sup

g2E0

EP1=
p

n;g

hp
n
� O�n �  

�
P1=

p
n;g

��i2

� sup
F0

lim inf
n!1 sup

g2F0

EP1=
p

n;g

hp
n
� O�n �  

�
P1=

p
n;g

��i2

;

where E0 and F0 range through all finite subsets of the tangent sets PP0 D lin
�Pl�;f C f

PP0

�
D

f
PP0 and lin

�Pl�;f C f
PP0;m

�
D f

PP0;m, respectively. The efficient score function for �

corresponding to the tangent set f
PP0;m is

Ql�;f;m D Pl�;f �
mX

iD1

hPl�;f ; hi ihi ¤ 0:

Moreover, the efficient information QI�;f;m D P�;f

�Ql2
�;f;m

�
is non-zero. Using lemma

25.25 from van der Vaart (1998), the efficient influence function relative to the tangent set

lin
�Pl�;f C f

PP0;m

�
is Q �;f;m D QI�1

�;f;m
Ql�;f;m. So we can apply theorem 25.21 from van der

Vaart (1998) to obtain that

sup
F0

lim inf
n!1 sup

g2F0

EP1=
p

n;g

hp
n
� O�n �  

�
P1=

p
n;g

��i2 � QI�1
�;f;m:

Because QI�;f;m �����!
m!1

QI�;f D 0, we obtain the result. The second part of the proof con-

cerning ı > 0 is an immediate consequence of proposition 3 together with theorem 25.21 and
lemma 25.23 in van der Vaart (1998).

5.3. Proofs from Sections 3.1 and 3.3

Proof of theorem 2. Let us denote by D D ¹1; 2; � � � ;Dº D0 D ¹k 2 D such that Ik � Œ1�ı; 1�º
and D1 D D n D0 D ¹k 2 D such that Ik � Œ1 � ı; 1�º. We fix an integer k0 2 D0. We start by
proving that the estimator O�I;n converges almost surely to � . Indeed, we can write that

O�I;n D � C
X

k2D0

�
nk

njIk j � �
�

1
° Okn D k

±
C
� O�I;n � �

�
1
°
I Okn

� Œ1 � ı; 1�
±
; (18)
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where 1¹Aº or 1A is used to denote the indicator function of set A. By using the strong law of
large numbers, we have the almost sure convergence

8k 2 D0;
nk

njIk j
a:s:������!

n!C1
�;

8k 2 D1;
nk

njIk j
a:s:������!

n!C1
˛k

jIk j D 1

jIk j
Z

Ik

g.u/du > �:

As a consequence, we obtain that the second term in the right-hand side of (18) converges
almost surely to zero, namely,

ˇ̌̌
ˇ̌̌ X
k2D0

�
nk

njIk j � �
�

1
° Okn D k

±ˇ̌̌ˇ̌̌ �
X

k2D0

ˇ̌̌
ˇ nk

njIk j � �
ˇ̌̌
ˇ a:s:������!

n!C1
0:

The third term in the right-hand side of (18) also converges almost surely to zero. Indeed,
we have

ˇ̌̌ O�I;n � �
ˇ̌̌
1
°
I Okn

� Œ1 � ı; 1�
±

�
�

max
1�k�D

1

jIk j � �
� X

k2D1

1
° Okn D k

±
:

For all k 2 D1,

1
° Okn D k

±
D 1

²
nk

njIk j � nj

njIj j ; 8j 2 D
³

� 1
²
nk0

njIk0
j � � C ˛k

jIk j � nk

njIk j � ˛k

jIk j � �
³
:

Because �k D ˛k=jIk j � � > 0 and

nk0

njIk0
j � � C ˛k

jIk j � nk

njIk j
a:s:������!

n!C1
0;

we obtain that

1
²
nk0

njIk0
j � � C ˛k

jIk j � nk

njIk j � �k

³
a:s:������!

n!C1
0;

which concludes the proof of the almost sure convergence of O�I;n. We now prove the second
statement of the proposition. We have

E
��p

n
� O�I;n � �

��2
�

D
X

k2D0

E

"�p
n

�
nk

njIk j � �
��2

1 OknDk

#

C
X

k2D1

E

"�p
n

�
nk

njIk j � �
��2

1 OknDk

#
:

(19)

The second term in the right-hand side of (19) is bounded by
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X
k2D1

E

"�p
n

�
nk

njIk j�
��2

1 OknDk

#
�
�

max
1�k�D

1

jIk j � �
�2 X

k2D1

nP
� Okn D k

�
;

where for all k 2 D1, according to Hoeffding’s inequality,

P
� Okn D k

�
� P

�
nk

njIk j � nk0

njIk0
j
�

� P

"
nX

iD1

�
1

jIk0
j1
®
Xi 2 Ik0

¯ � � C ˛k

jIk j � 1

jIk j 1 ¹Xi 2 Ikº
�

� n�k

#

� exp

"
�2n�2

k

�
1

jIk j C 1

jIk0
j
��2

#
:

For the first term in the right-hand side of (19), we apply Cauchy–Schwarz’s inequality

X
k2D0

E

"�p
n

�
nk

njIk j ��
��2

1 OknDk

#
�
vuut X

k2D0

E

"�p
n

�
nk

njIk j � �
��4

#s X
k2D0

P
� Okn D k

�

�
vuut X

k2D0

E

"�p
n

�
nk

njIk j � �
��4

#
;

(20)

where for all k 2 D0,

E

"�p
n

�
nk

njIk j � �
��4

#
D E

2
4 1

n2

 
nX

iD1

�
1

jIk j1¹Xi 2 Ikº � �
�!4

3
5

D 1

n
E

"�
1

jIk j1¹X1 2 Ikº � �
�4
#

C n � 1
n

E2

"�
1

jIk j1¹X1 2 Ikº � �
�2
#

D �

n

 
1

jIk j3 � 4�

jIk j2 C 6�2

jIk j � 3�3

!
C n� 1

n
�4

k :

(21)

Thus, we finally obtain that

nE
�� O�I;n � �

�2
�

�
vuut X

k2D0

�
�

n

�
1

jIk j3 � 4�

jIk j2 C 6�2

jIk j � 3�3

�
C n� 1

n
�4

k

�
C

�
max

1�k�D

1

jIk j � �
�2 X

k2D1

n exp

"
�2n�2

k

�
1

jIk j C 1

jIk0
j
��2

#
������!
n!C1

s X
k2D0

�4
k
:

Proof of proposition 2. Let us first establish that condition (10) holds. In fact, with the notation
p�;f D � C .1 � �/f , we have

Z
kQl�n;f dP

1=2

�n;f
� Ql�;f dP

1=2

�;f
k2 D

Z 1

0

� Ql�n;f .x/
p
p�n;f .x/� Ql�;f .x/

p
p�;f .x/

�2

dx

� 2

Z 1

0

�Ql�n;f .x/� Ql�;f .x/
�2

p�n;f .x/dxC2
Z 1

0

Ql2�;f .x/
�p

p�n;f .x/ �p
p�;f .x/

�2

dx
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� 2

Z 1

0

�
1

�n

� 1

�
C
�

1

�.1 � �ı/ � 1

�n.1 � �nı/

�
1¹f .x/>0º

�2

p�n;f .x/dx

C 2

Z 1

0

�
1

�
� 1

�.1 � �ı/1¹f .x/>0º
�2

.�n � �/2.1 � f .x//2�p
p�n;f .x/Cp

p�;f .x/
�2
dx

� 2

Z 1

0

.�n � �/2
�
1

��n

C ı.� C �n/C 1

��n.1 � �ı/.1 � �nı/
1¹f .x/>0º

�2

p�n;f .x/dx

C 2

Z 1

0

.�n � �/22
�
1

�2
C 1

�2.1 � �/2
�

.1 � f .x//2�p
�n C p

�
�2
dx

� .�n � �/2
�
C

�2
C C.1C 2C�

�2.1 � �/2
�2

C C.�n � �/2
�
1

�3
C 1

�3.1 � �/2
�

D O

�
1

n

�
;

where C is some positive constant. Thus, according to theorem 7.4 from van der Vaart (2002),
the existence of an asymptotically efficient sequence of estimators of � is equivalent to the
existence of a sequence of estimators Oln;� satisfying (8) and (9).

Now in model Pı , the efficient score function Ql�;f is given by

Ql�;f .x/ D 1

�
� 1

�.1 � �ı/1Œ0;1�ı/.x/;

so that it is natural to estimate the parameter ı in order to estimate Ql�;f . Let Oın be any given
consistent (in probability) estimator of ı. Let us examine condition (8) more closely. We have

p
nP�n;f

Oln;�n
D p

nP�n;f

� Oln;�n
� Ql�n;f

�

D p
n

Z 1

0

1

�n

�
1

1 � �n
Oın

1
Œ0;1�Oın/

.x/� 1

1 � �nı
1Œ0;1�ı/.x/

�
g�n;f .x/dx

D
Z 1

0

p
n

�n

��
1

1 � �n
Oın

� 1

1 � �nı

�
1

Œ0;1�Oın/
.x/

C 1

1 � �nı

�
1

Œ0;1�Oın /
.x/� 1Œ0;1�ı/.x/

��
g�n;f .x/dx

D p
n
� Oın�ı

�Z 1�Oın

0

g�n;f .x/

.1 � �nı/
�
1 � �n

Oın

�dxCp
n

Z 1�Oın

1�ı

g�n;f .x/

1 � �nı
dx

D p
n
� Oın � ı

� "Z 1�ı

0

g�;f .x/

.1 � �ı/2 dx � g�;f .1 � ı/
1 � �ı C oP.1/

#
:

Hence, the ‘no-bias’ condition (8) is equivalent to the existence of an estimator Oın of ı that

converges at a rate faster than 1=
p
n, namely such that

p
n
� Oın � ı

�
D oP.1/. With the same

argument as in the previous calculation, the consistency condition (9) is satisfied as soon as the
estimator Oın converges in probability to ı.

5.4. Proof of theorem 3

For each partition I , let us denote by FI the vector space of piecewise constant functions built
from the partition I and gI the orthogonal projection of g 2 L2.Œ0; 1�/ onto FI . The MSE of
a histogram estimator OgI can be written as the sum of a bias term and a variance term

E
h
jjg � OgI jj22

i
D jjg � gI jj22 C E

h
jjgI � OgI jj22

i
:
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We introduce three lemmas that are needed to prove theorem 3. The proofs of these technical
lemmas are further postponed to Appendix A.

Lemma 1. Let I D .Ik/
D
kD1

be an arbitrary partition of Œ0; 1�. Then the variance term of
the MSE of a histogram estimator OgI is bounded by C=n, where C is a positive constant. In
other words,

E
h
jjgI � OgI jj22

i
D O

�
1

n

�
:

For any partition I D .Ik/1;:::;D of Œ0; 1�, we let

L.I/ D jjgI � gjj22 and OLp.I / D ORp.I /C jjgjj22;

respectively, the bias term of the MSE of a histogram estimator OgI and its estimator.

Lemma 2. Let I D .Ik/1;:::;D be an arbitrary partition of Œ0; 1�. Let p 2 ¹1; 2; : : : ; n � 1º such
that lim

n
1�!
p=n < 1. Then we have the following results:

(i) OLp.I /
a:s:����!

n!1 L.I/

(i i)
p
n
�OLp.I /�L.I/

�
Dp

n
� ORp.I /�R.I/

�
C 1p

n
.s11 �s21/

d����!
n!1 N �0; 4 �s32�s2

21

		
.

Let I; J be two partitions in I, then I is called a subdivision of J and we denote I � J , if
FJ � FI and I � J otherwise.

Lemma 3. Suppose that function f belongs to Fı . Let us consider mmax large enough such that
ı > 21�mmax . Define N D 2mmax and I .N / D .N; �N / 2 I with �N D dN.1 � ıe=N . Then for
every partition I 2 I, we have

(i) If I is a subdivision of I .N /, then L.I/ D L.I .N //.
(i i) If I is not a subdivision of I .N /, then L.I/ > L.I .N //.

We are now ready to prove theorem 3, starting by establishing point i/. First, we remark that
under condition (7), Celisse and Robin proved in their proposition 2.1 that

Op.I /
n

a:s:����!
n!1 l1.I / 2 Œ0; 1/:

Denoting by ƒ? D Œ1 � ı; 1� and Oƒ D Œ O�; 1�, we may write

O�CR
n D � C

X
ID.N;�/�I .N /

"
1

n.1 � �/
nX

iD1

1¹Xi 2 Œ�; 1�º � �
#

1
° O� D �

±

C
� O�CR

n � �
�

1 OI�I .N / ;

(22)

where N D 2mmax as in lemma 3. For each partition I D .N; �/ � I .N /, we have Œ�; 1� � ƒ?.
By applying the strong law of large numbers, we obtain that
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1

n.1 � �/
nX

iD1

1¹Xi 2 Œ�; 1�º a:s:����!
n!1

P.Xi 2 Œ�; 1�/
1 � � D �:

Because the cardinality card.I/ of I is finite and does not depend on n, in order to finish the
proof, it is sufficient to establish that

� O�CR
n � �

�
1 OI�I .N /

a:s:����!
n!1 0:

Using lemma 3, we have L
� OI
�
> L.I .N //. Let

	 D min
I�I .N /

L.I/� L.I .N // > 0; (23)

we obtain thatˇ̌̌ O�CR
n � �

ˇ̌̌
1 OI�I .N / � .N � �/1

°
L
� OI
�

� L.I .N // � 	
±

� .N � �/1
°ˇ̌̌ OL Op. OI/

� OI
�

� L
� OI
�ˇ̌̌

C
ˇ̌̌
OL Op.I N /.I

N /� L.IN /
ˇ̌̌

C OL Op. OI/
� OI
�

� OL Op.I .N //.I
.N // � 	

±

� .N � �/1
²
2sup

I2I

ˇ̌̌
OL Op.I/.I / � L.I/

ˇ̌̌
C OL Op. OI/

� OI
�

� OL Op.I .N //.I
.N // � 	

±
:

By definition of OI , we have OL Op. OI/
� OI
�

� OL Op.I .N //.I
.N // � 0, so that

ˇ̌̌ O�CR
n � �

ˇ̌̌
1 OI�I .N / � .N � �/1

²
sup
I2I

ˇ̌̌
OL Op.I/.I / � L.I/

ˇ̌̌
� 	

2

³

� .N � �/
X
I2I

1
°ˇ̌̌ OL Op.I/.I / � L.I/

ˇ̌̌
� 	

2

±
:

(24)

Because 8I 2 I, we both have OLp.I /
a:s:����!

n!1 L.I/ and Op.I /=n a:s:����!
n!1 l1.I / 2 Œ0; 1/ as well as

the fact that ORp.I / (given by (6)) is a continuous function of p=n, we obtain OL Op.I/.I /
a:s:����!

n!1
L.I/. Therefore,

1
°ˇ̌̌ OL Op.I/.I / � L.I/

ˇ̌̌
� 	

2

±
a:s:����!

n!1 0:

Indeed, if Xn

a:s:��! X , then 8� > 0, we have 1¹jXn � X j � �º a:s:��! 0. It thus follows that� O�CR
n � �

�
1 OI�I .N /

a:s:��! 0. We finally obtain that O�CR
n

a:s:��! � .

We now turn to point i i/. We may write as previously

p
n
� O�CR

n � �
�

D
X

ID.N;�/�I .N /

p
n

"
1

n.1 � �/
nX

iD1

1¹Xi 2 Œ�; 1�º � �
#

1¹ O�D�º

C p
n
� O�CR

n � �
�

1¹ OI�I .N /º:
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For each partition I D .N; �/ � I .N /, by applying the CLT, we obtain that

p
n

"
1

n.1 � �/
nX

iD1

1Xi 2Œ�;1� � �
#

d����!
n!1 N

�
0; �

�
1

1 � � � �
��

:

Hence, using again that card.I/ is finite,

X
ID.N;�/�I .N /

p
n

"
1

n.1 � �/
nX

iD1

1Xi 2Œ�;1� � �
#

1 O�D�
D OP.1/: (25)

We shall now prove that
p
n
� O�CR

n � �
�

1 OI�I .N /

P����!
n!1 0. In fact, according to (24), for all

� > 0, we have

P
�p

n
ˇ̌̌ O�CR

n � �
ˇ̌̌
1 OI�I .N / > �

�
� P

� OI � I .N /
�

� P
�

sup
I2I

ˇ̌̌
OL Op.I/.I /� L.I/

ˇ̌̌
� 	

2

�

�
X
I2I

P
�ˇ̌̌ OL Op.I/.I / � L.I/

ˇ̌̌
� 	

2

�
����!
n!1 0;

where 	 is defined by (23). Therefore,
p
n
� O�CR

n � �
�

1 OI�I .N / D oP.1/. We finally conclude

that
p
n
� O�CR

n � �
�

D OP.1/.

We now prove the last statement i i i/ of the proposition. We have

E
��p

n
� O�CR

n � �
��2

�
D

X
ID.N;�/�I .N /

E

2
4 1
n

 
nX

iD1

�
1

1 � �1¹Xi 2 Œ�; 1�º � �
�!2

1¹ O�D�º

3
5

C E
��p

n
� O�CR

n � �
��2

1
° OI � I .N /

±�
:

The first term of the aforementioned equation is bounded as in the proof of proposition 2 (see
inequalities (20) and (21))

X
ID.N;�/�I .N /

E

2
4 1
n

 
nX

iD1

�
1

1 � �1¹Xi 2 Œ�; 1�º � �
�!2

1¹ O�D�º

3
5

�
vuut X

ID.N;�/�I .N /

"
�

n

�
1

.1��/3 � 4�

.1��/2 C 6�2

1���3�3

�
C n�1

n
�2

�
1

.1��/��
�2
#
:

The second term is bounded by

E
��p

n
� O�CR

n � �
��2

1
° OI � I .N /

±�
� .N � �/2nP

� OI � I .N /
�

� .N � �/2nP
�

sup
I2I

ˇ̌̌
OLp.I / � L.I/

ˇ̌̌
� 	

2

�

� .N � �/2n
X
I2I

P
�ˇ̌̌ OLp.I / � L.I/

ˇ̌̌
� 	

2

�
:
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For each partition I 2 I, according to the calculations in the proof of lemma 1, we have

OLp.I / � L.I/ D 2n � p
.n � 1/.n � p/

´X
k

1

jIk j
�nk

n
� ˛k

�
C s11 � s21

μ

� n.n � p C 1/

.n � 1/.n � p/
X

k

1

jIk j
�nk

n
� ˛k

�2

� 2n.n � p C 1/

.n � 1/.n � p/
X

k

˛k

jIk j
�nk

n
� ˛k

�
:

This leads to

P
�ˇ̌̌ OLp.I /�L.I/

ˇ̌̌
� 	

2

�
� P

 ˇ̌̌
ˇ̌X

k

1

jIk j
�nk

n
� ˛k

�ˇ̌̌ˇ̌ � .n � 1/.n � p/	
6.2n � p/ � js21 � s11j

!

C P

 X
k

1

jIk j
�nk

n
� ˛k

�2 � .n � 1/.n � p/	
6n.n � p C 1/

!

C P

 ˇ̌̌
ˇ̌X

k

˛k

jIk j
�nk

n
� ˛k

�ˇ̌̌ˇ̌ � .n� 1/.n � p/	
12n.n � p C 1/

!
:

According to Hoeffding’s inequality, we have

P

 ˇ̌̌
ˇ̌X

k

1

jIk j
�nk

n
� ˛k

�ˇ̌̌ˇ̌ � .n� 1/.n � p/	
6.2n � p/ � js21 � s11j

!

D P

 ˇ̌̌
ˇ̌ nX
iD1

X
k

1

jIk j .1¹Xi 2 Ikº � ˛k/

ˇ̌̌
ˇ̌ � n.n � 1/.n � p/	

6.2n � p/ � njs21 � s11j
!

� 2 exp

2
4�2n

 X
k

1

jIk j

!�2 �
.n � 1/.n � p/	
6.2n � p/ � js21 � s11j

�2

3
5 ;

as well as

P

 ˇ̌̌
ˇ̌X

k

˛k

jIk j
�nk

n
� ˛k

�ˇ̌̌ˇ̌ � .n� 1/.n � p/	
12n.n � p C 1/

!
� 2 exp

"
�2ns�2

11

�
.n � 1/.n � p/	
12n.n � p C 1/

�2
#
;

and

P

 ˇ̌̌
ˇ̌X

k

1

jIk j
�nk

n
� ˛k

�2

ˇ̌̌
ˇ̌ � .n � 1/.n � p/	

6n.n � p C 1/

!

�
X

k

P

0
@
ˇ̌̌
ˇ̌ nX
iD1

.1¹Xi 2 Ikº � ˛k/

ˇ̌̌
ˇ̌
2

� jIk jn.n � 1/.n � p/	
6D.n � p C 1/

1
A

� 2 exp
�
�2
� jIk j.n � 1/.n � p/	

6D.n � p C 1/

��
:

Hence, we obtain that nP
�ˇ̌̌ OLp.I / � L.I/

ˇ̌̌
� �

2

�
������!
n!C1

0. Finally, we conclude that

lim sup
n!1

nE
�� O�CR

n � �
�2
�
< C1.
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Appendix A: Proofs of technical lemmas

A1. Proof of lemma 1

Note that Celisse & Robin (2010) proved that E

jjg � OgI jj2

2

� ����!
n!1 0, while we further

establish that it is O.1=n/. By a simple bias-variance decomposition, we may write

E
h
jjgI � OgI jj22

i
D E

h
jjg � OgI jj22

i
� jjgI � gjj22:

As for the bias term, it is easy to show that

jjg � gI jj22 D inf
.ak/k2R

2
4jjgjj22 �2

Z 1

0

 X
k

ak1Ik
.x/

!
g.x/dxC

Z 1

0

 X
k

ak1Ik
.x/

!2

dx

3
5

D inf
.ak/k2R

"
jjgjj22 � 2

X
k

ak˛k C
X

k

a2
k jIk j

#

D jjgjj22 �
X

k

˛2
k

jIk j D jjgjj22 � s21:

(26)

Let us now calculate the MSE of OgI

E
h
jjg � OgI jj22

i
D jjgjj22 C E

"
jj OgI jj22 � 2

Z 1

0

OgI .x/g.x/dx

#

D jjgjj22 CE

2
4Z 1

0

 X
k

nk

njIk j 1Ik
.x/

!2

dx�2
Z 1

0

X
k

nk

njIk j1Ik
.x/g.x/dx

3
5

D jjgjj22 C E

"X
k

n2
k

n2jIk j � 2
X

k

nk˛k

njIk j

#
:

Because nk follows a binomial distribution B.n; ˛k/, we have

EŒnk � D n˛k andE
h
n2

k

i
D n2˛2

k C n˛k.1 � ˛k/:

Therefore,

E
h
jjg � OgI jj22

i
D jjgjj22 � s21 C 1

n
.s11 � s21/: (27)

Using (26) and (27), we obtain the desired result, namely

E
h
jjgI � OgI jj22

i
D E

h
jjg � OgI jj22

i
� jjgI � gjj22 D 1

n
.s11 � s21/ D O

�
1

n

�
:

A2. Proof of lemma 2

(i) Because lim
n!1

p
n
< 1 and nk

n

a:s:����!
n!1 ˛k ; for all k; we obtain that
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OLp.I / D jjgjj22 C 2n � p
.n� 1/.n � p/

X
k

nk

njIk j � n.n � p C 1/

.n � 1/.n � p/
X

k

1

jIk j
�nk

n

�2

a:s:����!
n!1 jjgjj22 �

X
k

˛2
k

jIk j D jjgjj22 � s21 D jjgI � gjj22 D L.I/:

(ii) By definition of R.I/ and using (27), we have

R.I/ D E
h
jjg � OgI jj22

i
� jjgjj22 D �s21 C 1

n
.s11 � s21/:

This gives that

p
n
h ORp.I / �R.I/

i
D 2n � p
.n � 1/.n � p/

X
k

1

jIk j
hp
n
�nk

n
� ˛k

�i
C .2n � p/pn
.n � 1/.n � p/s11

� n.n�pC1/p
n.n � 1/.n � p/

X
k

1

jIk j
hp
n
�nk

n
�˛k

�i2� .2n�p/pn
.n�1/.n�p/ s21

� 2n.n�pC1/
.n�1/.n�p/

X
k

˛k

jIk j
hp
n
�nk

n
�˛k

�i
� 1p

n
.s11 � s21/

D T1 � 2n.n � p C 1/

.n � 1/.n � p/
X

k

˛k

jIk j
hp
n
�nk

n
� ˛k

�i
:

(28)

Then, using the CLT and the continuity of the function x 7! x2, we have

p
n
�nk

n
� ˛k

�
d����!

n!1 N .0; ˛k.1 � ˛k//;hp
n
�nk

n
� ˛k

�i2 d����!
n!1 Z2

k withZk 	 N .0; ˛k.1 � ˛k//:

It thus follows that T1 D oP.1/. We now consider the remaining term in (28). We have

X
k

˛k

jIk j
hp
n
�nk

n
� ˛k

�i
D 1p

n

nX
iD1

 X
k

˛k

jIk j 1Xi 2Ik
� s21

!
:

Let us denote

Yi D
X

k

˛k

jIk j1Xi 2Ik
� s21:

Then the random variables Y1; Y2; : : : ; Yn are i.i.d. centred with variance

�2
I D E

�
Y 2

1

�
D E

 X
k

˛2
k

jIk j2 1X12Ik
� 2s21

X
k

˛k

jIk j1X12Ik
C s2

21

!
D s32 � s2

21:

By the CLT, we obtain

X
k

˛k

jIk j
hp
n
�nk

n
� ˛k

�i
d����!

n!1 N
�
0; �2

I

�
:

Combining this with (28) implies that

p
n
h ORp.I / �R.I/

i
d����!

n!1 N
�
0; 4�2

I

�
:
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It is easy to calculate that

p
n
� OLp.I / � L.I/

�
D p

n
� ORp.I / �R.I/

�
C 1p

n
.s11 � s21/:

Hence, we have

p
n
h OLp.I / � L.I/

i
d����!

n!1 N
�
0; 4�2

I

�
;

which completes the proof.

A3. Proof of lemma 3

(i) Let us denote by �? D 1 � ı. If I is a subdivision of I .N /, then I D .N; �/ with
Œ�; 1� � Œ�?; 1�. For example, we may have the following situation:

Because g is constant on the interval Œ�?; 1� 
 Œ�N ; 1� 
 Œ�; 1�, we have gI D gI .N / D
g on the interval Œ�N ; 1�. This implies that jjgI � gjj2

2
D jjgI .N / � gjj2

2
.

(ii) If I D .2m; �/ is not a subdivision of I .N /, then there are two cases to consider:
If m D mmax then Œ�; 1� � Œ�N ; 1�. For example, we may have

Because gI .N / D g on the interval Œ�N ; 1� and the two partitions I and I .N /

restricted to the interval Œ0; �� are the same, we thus have

jjgI � gjj22;Œ0;�� D jjgI .N / � gjj22;Œ0;��;

and

jjgI � gjj22 � jjgI .N / � gjj22 D jjgI � gjj22;Œ�;1� � jjgI .N / � gjj22;Œ�;�N �

D .�N � �/.a � b/2 C .1 � �N /.a � �/2;

where

a D 1

1 � �
Z 1

�

g.x/dx; b D 1

�N � �
Z �N

�

g.x/dx:

Using the assumption that f 2 Fı , we obtain that L.I/ > L.I .N //.
If m < mmax, we may have, for example,
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As before, we may show that

jjgI � gjj22 � jjgI .N / � gjj22 � jjgI � gjj22;Œ0;�� � jjgI .N / � gjj22;Œ0;�� > 0;

which completes the proof.
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