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ABSTRACT. This paper deals with parameter estimation in pair-hidden Markov models. We first
provide a rigorous formalism for these models and discuss possible definitions of likelihoods. The
model is biologically motivated and therefore naturally leads to restrictions on the parameter space.
Existence of two different information divergence rates is established and a divergence property is
shown under additional assumptions. This yields consistency for the parameter in parametrization
schemes for which the divergence property holds. Simulations illustrate different cases which are
not covered by our results.
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1. Introduction

1.1. Background

Sequence alignment has become one of the most powerful tools in bioinformatics. Biological
sequences are aligned for instance (and among many other examples) to infer gene func-
tions, to construct or use protein databases or to construct phylogenetic trees. Concerning
this last topic, current methods first align the sequences and then infer the phylogeny given
this fixed alignment. This approach contains a major flaw as the two problems are largely
intertwined. Indeed, the alignment problem consists in retrieving the places, in the observed
sequences, where substitution/deletion/insertion events have occurred, due to the evolution
process. In the pair alignment problem, the observations consist in a couple of sequences
X1:n =X1, . . ., Xn and Y1:m =Y1, . . ., Ym with values on a finite state alphabet A (A={A, C, G, T}
for DNA sequences). It is assumed that the sequences share a common ancestor. According to
biological evolution, the sequence of the ancestor evolves and letters in each site may change
(substitution event), or be deleted (deletion event), or new letters may be inserted in the
sequence (insertion event). This process finally leads to the two different observed sequences.
A most convenient way of displaying alignments is a graphical representation as a path
through a rectangular grid (see Fig. 1). A diagonal move corresponds to a match between
the two sequences, whereas horizontal and vertical moves correspond to insertion–deletion
events. This path consists of steps �t, t =1, . . ., l, where �t represents either a match (�t = (1, 1))
or an insertion–deletion event (�t = (1, 0) or (0, 1)). The length of the alignment is l, and
satisfies

n∨m≤ l ≤n+m. (1)

Here n∨m denotes the maximum value between n and m. The multiple alignment problem is
the same, except that one has to retrieve the places where substitution/deletion/insertion events
have occurred on the basis of a set of (more than two) sequences.
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Fig. 1. Graphical representation of an alignment between two sequences X =AATG and Y =CTGG.
The displayed alignment is

AATG−
C−TGG

Aligning two sequences relies on the choice of a score optimization scheme (for instance, the
Needleman–Wunsch algorithm, Needleman & Wunsch, 1970) and therefore the obtained align-
ments depend on the score parameters. Choosing these score parameters in the most objective
way appears as a crucial issue. Because evolution is the force that promotes divergence between
biological sequences, it is desirable to consider biological alignment in the context of evolution.
Now, given an evolution model, optimal choices of the score parameters depend on the under-
lying unknown mutation rates and thus on the phylogeny to be inferred after the alignment.
The existence of such a vicious circle explains the emergence of probabilistic models where
optimal alignment and evolution parameters estimation are achieved at the same time.

Relying on a pioneering work by Bishop & Thompson (1986), Thorne et al. (1991) were
the first to provide a maximum likelihood approach to the alignment of a pair of DNA
sequences based on a rigorous model of sequence evolution [referred to as the Thorne,
Kishino and Felsenstein (TKF) model]. This model has become quite classical nowadays. In
this set-up, each site is independently hit by a substitution or deleted, and insertions occur
between two sites or at both ends of the sequence. Each one of those events occurs at a specific
rate. When a substitution or an insertion occurs, a new nucleotide is drawn randomly accord-
ing to some probability distribution on the state space {A, C, G, T}. One of the advantages
of the TKF model lies in its exact correspondence with a model containing a hidden Markov
structure, ensuring the existence of powerful algorithmic tools based on dynamic programming
methods. More precisely, the TKF evolution model falls within the concept of a pair-hidden
Markov model (pair-HMM), as first formally described in Durbin et al. (1998).

Observations in a pair-HMM are formed by a couple of sequences (the ones to be aligned)
and the model assumes that the hidden (i.e. non-observed) alignment sequence {�t}t is a
Markov chain that determines the probability distribution of the observations. Since the semi-
nal paper (Thorne et al., 1991), an abundant literature aroused in which parameter estimation
occurs in a pair-HMM. Thorne et al. (1992) slightly improved their original model to take
into account insertion and deletion of entire fragments (and not only single nucleotides). The
TKF model approaches have been further developed, for instance in Hein et al. (2000), Metzler
(2003), Knudsen & Miyamoto (2003) and Miklos et al. (2004). Let us also mention that pair-
HMMs were recently combined with classical HMMs for ab initio prediction of genes (Meyer
& Durbin, 2002; Pachter et al., 2002; Hobolth & Jensen, 2005).
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The main difference between pair-HMMs and classical HMMs lies in the observation of
a pair of sequences instead of a single one. From a practical point of view, the two above
models are not very different and classical algorithms such as forward or Viterbi algorithms
are still valid and efficient in the pair-HMM context (we refer to Durbin et al., 1998 for a com-
plete description of those techniques). Forward algorithm allows to compute the likelihood
of the two observed sequences and thus, by means of a maximization technique, to approxi-
mate the maximum likelihood estimator (MLE) of the parameters. Numerical maximization
approaches are commonly used (Thorne et al., 1991) but statistical approaches using the expec-
tation maximization (EM) algorithm and its variants (stochastic EM and stochastic approxi-
mation EM) have recently been explored (Holmes, 2005; Arribas-Gil et al., 2005). Viterbi
algorithm is designed to reconstruct the most probable hidden path, thus giving the align-
ment. From a Bayesian point of view, it is also interesting to provide a posterior distribu-
tion for parameters and alignments. This can be carried out with Monte Carlo Markov chain
(MCMC) procedures needing again the use of forward algorithm (Metzler, 2003; Arribas-
Gil et al., 2005).

Nonetheless, from a theoretical point of view, pair-HMMs and classical HMMs are
completely different. In particular, to our knowledge, there is no theoretical proofs that the
maximum likelihood procedure or the Bayesian estimation give consistent estimators of the
pair-HMM parameters (although it is the case, e.g. for regular HMMs with finite state space,
see Baum & Petrie, 1966, concerning MLE consistency; see also Caliebe & Rösler, 2002, for
the convergence of the maximum a posteriori hidden path).

This paper is thus concerned with statistical properties of parameter estimation procedures
in pair-HMMs.

1.2. Roadmap

In section 2, the pair-HMM is described, together with some properties of the distribution
of observed sequences. Then we state possible likelihood functions, to be compared with the
criterion that is optimized in pair-HMM algorithms. We then interpret this last one as a like-
lihood function.

To investigate consistency of estimators obtained by maximization, one has to understand
the asymptotic behaviour of the criteria. We adopt the Information Theory terminology and
call ‘Information divergence rates’ the difference between the limiting values of the log-
likelihoods at the (unknown) true parameter value and at another parameter value. Indeed,
the general model described below may be interpreted as a channel transmitting the input
X1:n with possible errors, insertions or deletions, leading to the output Y1:m (see, e.g. Davey
& MacKay, 2001; Levenshtein, 2001, on the topic of error correcting codes and also Csiszár
& Körner, 1981, and Cover & Thomas, 1991, for a general introduction to Information
Theory). In this setting, Information divergence rates have a precise meaning (in terms of coding
or transmission qualities). In a statistical setting such as ours, they are interpreted as divergences
that should have a unique minimum at the true parameter value (divergence property). Section
3 is devoted to the existence and properties of such limit functions (see theorems 1 and 2).

Section 4, then, gives the statistical consequences in terms of consistent estimation of the
parameters obtained via MLE or Bayesian estimation using pair-HMM algorithms (see
theorems 3 and 4). According to these results, consistency holds for the parameter in para-
metrization schemes for which the divergence property holds for the associated information
divergence rate.

In section 5, we present several simulation results to investigate situations in which the diver-
gence property is not established. We illustrate the consistency results in cases where
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theorem 3 applies, as may be seen on numerical computations of information divergence rates.
We also compare the limiting values of different criteria and give some interpretations. The
paper ends with a discussion on this work.

2. The pair-HMM

2.1. Model description

We now describe in detail the pair-HMM. Consider a stationary ergodic Markov chain {�t}t≥1

on the state space E ={(1, 0); (0, 1); (1, 1)}, with transition matrix � and stationary distribu-
tion �= (p, q, r). This chain generates a random walk {Zt}t≥0 with values in the two-
dimensional integer lattice N × N, by letting Z0 = (0, 0) and Zt =

∑
1≤s≤t �s. The coordinate

random variables corresponding to Zt at time t are denoted by (Nt, Mt) (i.e. Zt = (Nt, Mt)).
We shall either use the notation �(�s, �s +1) to denote the transitions probabilities of the matrix
� or explicit symbols like �HV indicating a transition from state H = (1, 0) to state V = (0, 1)
(H stands for horizontal move, V for vertical move and D= (1, 1) for diagonal move).

Conditional on the hidden random walk, the observations are drawn according to the
following scheme. At time t, if �t = (1, 0) then a random variable X is drawn (emitted) accord-
ing to some probability distribution f on A, if �t = (0, 1) then a random variable Y is drawn
(emitted) according to some probability distribution g on A and finally, if �t = (1, 1) then a
couple of random variables (X , Y) is drawn (emitted) according to some probability distri-
bution h on A × A. Conditional to the hidden Markov chain {�t}t≥1, all emitted random
variables are independent. This model is described by the parameter �= (�, f , g, h)∈�. The
conditional distribution of the observations is thus:

P�(X1:Nt , Y1:Mt | �1:t, {�s}s > t, {Xi , Yj}i �=Ns , j �=Ms , 0≤s≤t)=P�(X1:Nt , Y1:Mt | �1:t)

=
t∏

s =1

f (XNs )
1{�s =(1, 0)}g(YMs )

1{�s =(0, 1)}h(XNs , YMs )
1{�s =(1, 1)}, (2)

where 1{·} stands for the indicator function. Moreover, the complete distribution P� is given
by

P�(�1:t, X1:Nt , Y1:Mt )=�(�1)

{
t∏

s=2

�(�s−1, �s)

}
P�(X1:Nt , Y1:Mt | �1:t).

Here, we denote by P� (and E�) the induced probability distribution (and corresponding
expectation) on EN ×AN ×AN and �0 the true parameter corresponding to the distribution of
the observations (we shall abbreviate to P0 and E0 the probability distribution and expecta-
tion under parameter �0). Note that a necessary condition for identifiability of the parameter
� is that the occurrence probability of two aligned letters differs from the product proba-
bilities of these letters, i.e.:

Assumption 1

∃x, y ∈A, such that h(x, y) /= f (x)g(y).

Indeed, if h= f g, then (2) gives

P�(X1:Nt , Y1:Mt | �1:t)=
{

Nt∏
i=1

f (Xi)

}
Mt∏
j=1

g(Yj)

=P�(X1:Nt , Y1:Mt ).
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Thus, in this case, the distribution of the observations is independent of the hidden pro-
cess and the parameter � cannot be identified. In the following, we shall always work under
assumption 1.

2.2. Observations and likelihoods

Statisticians define log-likelihoods to be functions of the parameter that are equal to the
logarithm of the probability of the observations. Here, to state what log-likelihoods are, one
has to decide what do the observed sequences (X1:n, Y1:m) represent. Indeed, one may interpret
it in at least two different ways:

(a) It is the observation of emitted sequences until some time t, so that the log-likelihood
should be log P�(X1:Nt , Y1:Mt ). Here, the probability is that one of the observed sequences
and a point of the hidden process Zt = (Nt, Mt);

(b) Each observed sequence is one of the emitted sequences X1:Nt for some t and Y1:Ms for
some s, knowing nothing on the hidden process (i.e. whether t = s or t > s or t < s), so
that the log-likelihood should be log P�(X1:n, Y1:m). Here, the probability is the marginal
distribution of the sequences.

It should be now noted that none of those quantities is the one computed by pair-HMM algo-
rithms. We will come back to this fact later [see (4) below]. Note also that we imposed the true
underlying alignment to pass through the fixed point (0, 0) (namely, we assumed Z0 = (0, 0))
which is not the more general set-up (and may introduce a bias in practical applications).
However, we restrict our attention to this particular set-up.

First, we introduce some notations to make the previous quantities more precise. Let us
consider the set E∞ of all the possible trajectories of the hidden path and the set En, m of
trajectories passing through the point (n, m):

E∞ ={(0, 1); (1, 0); (1, 1)}N ={e = (e1, e2, . . .)}=EN,

En, m ={e ∈{(0, 1); (1, 0); (1, 1)}l ; n∨m≤ l ≤n+m;
l∑

i =1

ei = (n, m)}.

The length of any trajectory e∈En,m is denoted by |e|. Then, we have the following equations

P�(X1:n, Y1:m)=
∑

e ∈E∞

P�(�1:∞ = e1:∞, X1:n, Y1:m), (3)

P�(X1:Nt , Y1:Mt )=P�(X1:Nt , Y1:Mt , Zt)=
∑

e ∈ENt ,Mt ;|e|= t

P�(�1:t = e1:t, X1:Nt , Y1:Mt ).

As (3) shows, if one uses the marginal distributions as likelihood, it means that when observ-
ing two sequences X1:n and Y1:m, it is not assumed that the hidden process passes through the
observed point (n, m). This results in an alignment with not necessarily bounded length (see
Fig. 2). We shall now detail (3) according to possible alignments. Among all the trajectories
in E∞, we shall distinguish the ones in En, m and the ones belonging to some set En, p (with
p > m) or Ep, m (with p > n). Those last ones need to be constrained in order to avoid multiple
counting. Let us denote by E−H

n, m (resp. E−V
n,m ) the restriction of the set En,m to trajectories not

ending with an horizontal (resp. vertical) part. More precisely,

E−H
n,m ={e = (e1, . . ., e|e|)∈En,m; e|e| /= (1, 0)}, E−V

n,m ={e ∈En,m; e|e| /= (0, 1)}.

 Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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X1 Xn Xl
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Ym

(n, m) (l, m)

Fig. 2. Graphical representation of an alignment of sequences X1:n and Y1:m not passing through the
point (n, m).

These notations allow to express the marginal distribution P�(X1:n, Y1:m) as a sum over three
different path types.

P�(X1:n, Y1:m)=
∑

e ∈En,m

P�(�1:|e| = e, X1:n, Y1:m)

+
∑
l > n

∑
e ∈E−H

l,m

∑
xn+1:l

P�(�1:|e| = e, X1:n, Xn+1:l =xn+1:l , Y1:m)

+
∑
l > m

∑
e ∈E−V

n,l

∑
ym+1:l

P�(�1:|e| = e, X1:n, Y1:m, Ym+1:l =ym+1:l ).

This form may not be used for the computation of the marginal distribution P�(X1:n, Y1:m).
We now give some recursion formulas that could lead to practical implementations of this

last quantity. For any state e ∈E , define Pe
� as the distribution induced by P� conditional on

�1 = e. Let us also denote by hX (resp. hY ) the marginal with respect to the first (resp. second)
coordinate of the distribution h.

Lemma 1
For any n≥1, m≥1,

P�(X1:n, Y1:m)=pPH
� (X1:n, Y1:m)+qPV

� (X1:n, Y1:m)+ rPD
� (X1:n, Y1:m),

with the following recursions

PH
� (X1:n, Y1:m)= f (X1){�HH PH

� (X2:n, Y1:m)+�HV PV
� (X2:n, Y1:m)+�HDPD

� (X2:n, Y1:m)}

PV
� (X1:n, Y1:m)=g(Y1){�VH PH

� (X1:n, Y2:m)+�VV PV
� (X1:n, Y2:m)+�VDPD

� (X1:n, Y2:m)}

PD
� (X1:n, Y1:m)=h(X1, Y1){�DH PH

� (X2:n, Y2:m)+�DV PV
� (X2:n, Y2:m)+�DDPD

� (X2:n, Y2:m)}
and initializations:
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PH
� (X1)= f (X1), PV

� (Y1)=g(Y1), PD
� (X1, Y1)=h(X1, Y1),

PV
� (X1:n)= (1−�VV )−1{�VH f (X1)PH

� (X2:n)+�VD hX (X1)PD
� (X2:n)},

PH
� (Y1:m)= (1−�HH )−1{�HV g(Y1)PV

� (Y2:m)+�HD hY (Y1)PD
� (Y2:m)}.

Proof of lemma 1 is trivial and therefore omitted.
Interpretation (a) leads to define the log-likelihood `t(�) as

`t(�)= log P�(X1:Nt , Y1:Mt ), t ≥1.

But as the underlying process {Zt}t≥0 is not observed, the quantity `t(�) is not a function
of the observations alone. More precisely, the time t at which observation is made is not
observed itself. Though, if one decides to use interpretation (a), namely that (X1:n, Y1:m) corres-
ponds to the observation of the emitted sequences at a point of the hidden process Zt = (Nt, Mt)
and some unknown time t, one does not use `t(�) as a log-likelihood, but rather

wt(�)= log Q�(X1:Nt , Y1:Mt ), t ≥1

where for any integers n and m

Q�(X1:n, Y1:m)=P�(∃s ≥1, Zs = (n, m); X1:n, Y1:m).

In other words, Q� is the probability of the observed sequences under the assumption that
the underlying process {�t}t≥1 passes through the point (n, m). But the length of the hidden
trajectory remains unknown when computing Q�. This gives the formula:

Q�(X1:n, Y1:m)=
∑

e ∈En,m

P�(�1:|e| = e, X1:n, Y1:m). (4)

Let us stress that we have

wt(�)= log P�(∃s ≥1, Zs = (Nt, Mt); X1:Nt , Y1:Mt ), t ≥1,

meaning that the length of the trajectory is not necessarily t, but is in fact unknown.
Q� is the quantity that is computed by forward algorithm (see Durbin et al., 1998) and

which is used as likelihood in biological applications. It is computed via recursive equations
similar to those of lemma 1. In practice, paths with highest scores according to the Needle-
man–Wunsch scoring scheme exactly correspond to highest probability paths in a pair-HMM,
with a corresponding choice of the parameters (Durbin et al., 1998). Thus, the quantity Q�

is used for finding the best alignment between two sequences. Moreover, as explained in
section 1, the idea of maximizing this quantity with respect to the parameter � has now
widely spread among practitioners (Thorne et al., 1991, 1992; Hein et al., 2000; Knudsen
& Miyamoto, 2003; Metzler, 2003; Miklos et al., 2004). The aim was to obtain an objec-
tive choice of the parameters appearing in the scoring scheme, taking evolution into account.
Thus, asymptotic properties of criterion Q� and consequences on asymptotic properties of the
estimator derived from Q� are of primarily interest. According to the relation (1), asymptotic
results for t →∞ will imply equivalent ones for n, m→∞. In other words, consistency results
obtained when t →∞ can be interpreted as valid for long enough observed sequences, even
if one does not know t.

2.3. Biologically motivated restrictions

Evolution models are commonly chosen time reversible, in the limit of infinitely long
sequences. The reversibility property implies that the joint probability of sequence X and
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an ancestor sequence U is not influenced by the fact that X is a descendant of sequence U :
this joint probability would be the same if X were an ancestor of U or if both were descen-
dants of a third sequence. Note that this assumption does not apply on the level of align-
ments. Indeed, for single alignments, one may have P� (�= e, X , Y ) /=P� (�= e′, Y , X ), where
e and e′ are equal on diagonal steps and have switched insertions and deletions (namely,
corresponding paths are symmetric around the axis x =y). In fact, it is the probability of a
whole given set of evolution events (namely mutations, insertions or deletions occurring in the
evolution process), which is a sum over different alignments e (all representing this same set of
evolution events) of probabilities P� (�= e, X , Y ), which is conserved if we interchange the
two observed sequences. More precisely, we always have∑

e ∈E1

P� (�= e, X , Y )=
∑
e ∈E2

P� (�= e, Y , X ),

where E1 and E2 are alignment subsets representing the same set of evolution events.
Evolution models rely on two separate processes: the insertion–deletion (indel) and the

substitution process and both are supposed to be time reversible. As a consequence of time
reversibility of indel process, the stationary probability of appearance of an insertion or of
a deletion is the same, suggesting that p=q. We thus introduce the following assumption on
the stationary distribution of the hidden Markov chain:

Assumption 2
p=q.

Time reversibility assumption on the substitution process implies equality between the mar-
ginals of h and individual distributions of the letters, namely hX = f and hY =g. We thus
also introduce the following assumption on the emission distributions:

Assumption 3
hX = f and hY =g.

This last assumption has an interesting consequence on the distribution of only one sequence.

Lemma 2
Under assumption 3, for any integers n and m, any x1:n and any y1:m

P�

(
Zt = (n, m), X1:n =x1:n

)=P�

(
Zt = (n, m)

)
f ⊗n(x1:n),

P�

(
Zt = (n, m), Y1:m =y1:m

)=P�

(
Zt = (n, m)

)
g⊗m(y1:m).

Here, f ⊗n(x1:n)� f (x1) . . . f (xn).

Proof. One has

P�

(
Zt = (n, m), X1:n =x1:n

)=∑
y1:m

P�

(
Zt = (n, m), X1:n =x1:n, Y1:m =y1:m

)
=

∑
e ∈En,m , |e|=t

∑
y1:m

P�

(
�1:t = e, X1:n =x1:n, Y1:m =y1:m

)
=

∑
e ∈En,m , |e|=t

P�

(
�1:t = e

)∑
y1:m

P�

(
X1:n =x1:n, Y1:m =y1:m | �1:t = e

)
,

 Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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so that use of (2) and assumption 3 gives the first assertion of the lemma. Proof of the second
assertion is similar.

3. Information divergence rates

3.1. Definition of information divergence rates

In this section, we investigate the asymptotic properties of the log-likelihoods `t(�) and wt(�)
when properly normalized. We first prove that limiting functions exist. We shall need the
following parameter sets ��, �> 0 and �0 =∩�> 0��:

�� ={�∈� |�(i, j)≥�, f (x)≥�, g(y)≥�, h(x, y)≥�, ∀i, j ∈E , ∀x, y ∈A},

�0 ={�∈� |�(i, j) > 0, f (x) > 0, g(y) > 0, h(x, y) > 0, ∀i, j ∈E , ∀x, y ∈A}.

We shall always assume that �0 ∈�0.

Theorem 1
The following holds for any �∈�0:

(i) t−1`t(�) converges P0-almost surely and in L1, as t tends to infinity to

`(�)= lim
t→∞

1
t

E0
(
log P�(X1:Nt , Y1:Mt )

)= sup
t

1
t

E0
(
log P�(X1:Nt , Y1:Mt )

)
.

(ii) t−1wt(�) converges P0-almost surely and in L1, as t tends to infinity to

w(�)= lim
t→∞

1
t

E0
(
log Q�(X1:Nt , Y1:Mt )

)= sup
t

1
t

E0
(
log Q�(X1:Nt , Y1:Mt )

)
.

We then define information divergence rates:

Definition 1
∀�∈�0, D(� |�0)=w(�0)−w(�) and D∗(� |�0)=`(�0)−`(�).

Note that D∗ is what is usually called the information divergence rate in information theory:
it is the limit of the normalized Kullback–Leibler divergence between the distributions of the
observations at the true parameter value and another parameter value. However, we also call
D an information divergence rate as Q� may be interpreted as a likelihood.

Proof of theorem 1
This proof follows the lines of Leroux (1992, theorem 2). We shall use the following version of
the subadditive ergodic theorem due to Kingman (1968) to prove point (i). A similar proof may
be written for (ii) and is left to the reader. Let (Ws,t)0≤s < t be a sequence of random variables
such that

1. For all s < t, W0,t ≥W0,s +Ws,t,
2. For all k > 0, the joint distributions of (Ws +k, t +k)0≤s < t are the same as those of (Ws,t)0≤s < t,
3. E0(W0, 1) >−∞.

Then limt→∞ t−1W0,t exists almost surely. If moreover the sequences (Ws +k, t +k)k > 0 are ergodic,
then the limit is almost surely deterministic and equals supt t−1E0(W0,t). If moreover E0(W0,t)≤
At, for some constant A, then the convergence holds in L1.

We apply this theorem to the auxiliary process

Ws,t =max
e ∈E

log P�(XNs +1:Nt , YMs +1:Mt | �s +1 = e)+ log(��), 0≤ s < t,

where �� =mine,e′∈E �(e, e′) > 0. We are interested in the behaviour of
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Us,t = log P�(XNs +1:Nt , YMs +1:Mt ), 0≤ s < t.

As we have exp (Us, t)=
∑

e∈E P�(�s +1 = e)P�(XNs +1:Nt , YMs +1:Mt | �s +1 = e) leading to exp (Ws,t −
log ��) mine ∈E P�(�1 = e) ≤ exp (Us,t) ≤ exp (Ws,t − log ��), we can conclude that the desired
results on limt→∞ t−1U0,t and limt→∞ t−1E0(U0,t) follow from corresponding ones on the
process W.

Note that as Z0 = (0, 0) is deterministic, we have W0,t =maxe ∈E log P�(X1:Nt , Y1:Mt | �1 = e)+
log ��. Super-additivity (namely point 1) follows since for any 0≤ s < t,

P�(X1:Nt , Y1:Mt | �1 = e1)=
∑

e∈ENt , Mt
|e|= t

P� (�2:t = e2:t, X1:Nt , Y1:Mt | �1 = e1)

≥
∑

e1∈ENs , Ms
|e1 |= s

∑
e2∈ENt−Ns , Mt−Ms

|e2 |= t−s

P� (�2:s = e1
2:s, �s +1:t = e2, X1:Nt , Y1:Mt | �1 = e1)

=
∑

e1∈ENs , Ms
|e1 |= s

∑
e2∈ENt−Ns , Mt−Ms

|e2 |= t−s

P�(�s +2:t = e2
2:t−s, XNs +1:Nt , YMs +1:Mt | �s +1 = e2

1)

×�(es, es +1)P� (�2:s = e1
2:s, X1:Ns , Y1:Ms | �1 = e1)

=
∑

es , es +1∈E
P�(XNs +1:Nt , YMs +1:Mt | �s +1 = es +1)�(es, es +1)P�(�s = es, X1:Ns , Y1:Ms | �1 = e1)

≥{max
e′∈E

P�(XNs +1:Nt , YMs +1:Mt | �s +1 = e′)}{min
e, e′ �(e, e′)}P�(X1:Ns , Y1:Ms | �1 = e1),

so that we get W0, t ≥W0, s +Ws, t, for any 0≤ s < t.
To understand the distribution of (Ws,t)0≤s < t, note that Ws,t only depends on trajectories

of the random walk going from the point (Ns, Ms) to the point (Nt, Mt) with length t − s. As
the process (�t)t∈N is stationary, one gets that the distribution of (Ws,t) is the same as that of
(Ws +k, t +k) for any k, so that point 2 holds.

Point 3 comes from:

E0(W0,1)− log �� =E0 max{log f (X1); log g(Y1); log h(X1, Y1)}>−∞,

P0-almost surely, as �∈�0. Let us fix 0≤ s < t. The proof that W s,t = (Ws +k, t +k)k > 0 is ergodic
is the same as that of Leroux (1992, lemma 1). Let T be the shift operator, so that if u = (uk)k≥0,
the sequence Tu is defined by (Tu)k = (u)k +1 for any k ≥ 0. Let B be an event which is T -
invariant. We need to prove that P0(W s,t ∈ B) equals 0 or 1. For any integer n, there exists a
cylinder set Bn, depending only on the coordinates uk with −mn ≤k ≤mn for some subsequence
mn, such that P0(W s,t ∈B�Bmn )≤1/2n. Here, � denotes the symmetric difference between sets.
As W s,t is stationary and B is T -invariant:

P0
(
W s,t ∈B�Bmn

)=P0
(
T 2mn W s,t ∈B�Bmn

)=P0
(
W s,t ∈B�T−2mn Bmn

)
.

Let B̃ =∩n≥1 ∪j≥n T−2mj Bmj . Borel–Cantelli’s lemma leads to P0(W s,t ∈ B�B̃)=0, so that

P0(W s,t ∈B)=P0(W s,t ∈ B̃)=P0(W s,t ∈B ∩ B̃). Now, conditional on (�t)t∈N, the random vari-
ables (Ws +k, t +k)k > 0 are strongly mixing, so that the 0 − 1 law implies (see Sucheston, 1963)
that for any fixed sequence e with values in E∞, the probability P0(W s,t ∈ B̃ | (�t)t = e) equals 0
or 1, so that

P0

(
W s, t ∈ B̃

)
=P
(
(�t)t ∈C

)
,
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where C is the set of sequences e such that P(W s, t ∈ B̃ | (�t)t = e)=1. But it is easy to see that
C is T -invariant. Indeed, if e ∈C then, as W s,t is stationary and B̃ invariant,

1=P0(W s,t ∈ B̃ | (�t)t = e)=P0(TW s,t ∈ B̃ | (�t)t =Te)=P0(W s,t ∈ B̃ | (�t)t =Te)

so that Te ∈ C. Now, since a stationary irreducible Markov chain is ergodic, P0
(
(�t)t ∈C

)
equals 0 or 1. This concludes the proof of ergodicity of the sequence W s,t. To end with,
note that for any t ≥ 0, the random variable W0,t is non-positive, ensuring the convergence
of {t−1W0,t} in L1.

3.2. Divergence properties of information divergence rates

Information divergence rates should be non-negative: this is proved below. They also should
be positive for parameters that are different than the true one: we only prove it for some sub-
sets of the parameter set. We thus define �exp as the subset of �0 such that the expectations
of �1 under � and under �0 are not aligned with (0, 0):

�exp ={�∈�0 : ∀�> 0, E�(�1) /=�E0(�1)} .

�marg is the subset of �0 such that assumption 3 holds:

�marg ={�∈�0 : hX = f , hY =g}.

Theorem 2
Information divergence rates satisfy:

• For all �∈�0, D(� |�0)≥0 and D∗(� |�0)≥0.
• For any �∈�exp, � /=�0, we have D(� |�0) > 0 and D∗(� |�0) > 0.
• If �0 and � are in �marg, D(� |�0) > 0 and D∗(� |�0) > 0 as soon as f /= f0 or g /=g0.

Notice that in case assumption 2 holds, the expectations of �1 under � and under �0 are
aligned with (0, 0). In this case, we were not able to prove that h /=h0 implies positivity of
information divergence rates.

Proof. As for all t,

E0
(
log P0(X1:Nt , Y1:Mt )

)−E0
(
log P�(X1:Nt , Y1:Mt )

)
is a Kullback–Leibler divergence, it is non-negative, and the limit D∗(� |�0) is also non-
negative.

Let us prove that D(� |�0) is also non-negative. To compute the value of the expectation
E0[wt(�)], introduce the set At of all possible values of Zt:

At =
{

(n, m)∈N2 : n∨m≤ t ≤n+m
}
.

Then,

E0[wt(�)]=
∑

(n,m)∈At

∑
x1:n , y1:m

P0(Zt = (n, m), X1:n =x1:n, Y1:m =y1:m) log Q�(x1:n, y1:m).

Now, by definition,

D
(
� |�0

)= lim
t→+∞

1
t

E0

(
log

Q�o (X1:Nt , Y1:Mt)
Q�(X1:Nt , Y1:Mt)

)
.
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By using Jensen’s inequality,

E0

(
log

Q�(X1:Nt , Y1:Mt )
Q�o (X1:Nt , Y1:Mt )

)
≤ log E0

(
Q�(X1:Nt , Y1:Mt)
Q�o (X1:Nt , Y1:Mt)

)
.

But

E0

(
Q�(X1:Nt , Y1:Mt)
Q�0 (X1:Nt , Y1:Mt)

)
=
∑

(n,m)∈At

∑
x1:n , y1:m

P0(Zt = (n, m), X1:n =x1:n, Y1:m =y1:m)

× Q�(x1:n, y1:m)
Q�0 (x1:n, y1:m)

(a)
≤
∑

(n,m)∈At

∑
x1:n , y1:m

P�(∃s ≥1, Zs =(n, m), X1:n =x1:n, Y1:m =y1:m)

=
∑

(n,m)∈At

P�(∃s ≥1, Zs =(n, m)),

where (a) comes from expression (34). Finally,

lim
t→+∞

1
t

(
wt(�)−wt(�0)

)≤ lim inf
t→+∞

1
t

log

 ∑
(n,m)∈At

P�

(∃s ≥1, Zs = (n, m)
).

But the cardinality of At is at most t2, so that

lim
t→+∞

1
t

(
wt(�)−wt(�0)

)≤ lim inf
t→+∞

1
t

log t2 =0,

and

∀�∈�0, D(� |�0)≥0.

As �∈�0, there exists �� such that �∈���
. By using (3), one gets the lower bound

Q�(x1:n, y1:m)≥�n+m
� inf

e ∈En,m

[
P�

(
�1:|e| = e

)]
.

As trajectories e in En,m have length at most n+m,

inf
e ∈En,m

[
P�

(
�1:|e| = e

)]≥�n+m
� .

Note also that if (n, m) belongs to At then we have n+m≤2t and n∨m≥ t/2. Thus, uniformly
with respect to (n, m)∈At and to x1:n and y1:m,

4t log �� ≤ log Q�(x1:n, y1:m)≤0. (5)

Moreover, with

�� =‖f ‖∞ ∨‖g‖∞ ∨‖h‖∞ ≤1−�� < 1

one has for any integers n, m, any x1:n and y1:m

Q�(x1:n, y1:m)≤�n∨m
� .

In this case, for all t, and uniformly with respect to (n, m)∈At and to x1:n and y1:m,

log Q�(x1:n, y1:m)≤ t
2

log(1−��). (6)

Inequalities (5) and (6) allow to conclude that for some positive numbers c� and C�,

−C�0 ≤w(�0)≤−c�0 and −C� ≤w(�)≤−c�.
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Then, as soon as Bt is a set such that

lim
t→+∞

P0
(
Zt |∈Bt

)=0, (7)

we have

D
(
� |�0

)= lim
t→+∞

1
t

E0

[(
log

Q�o (X1:Nt , Y1:Mt )
Q�(X1:Nt , Y1:Mt )

)
1{Zt ∈Bt}

]
.

Now, using Jensen’s inequality,

E0

[(
log

Q�(X1:Nt , Y1:Mt )
Q�0 (X1:Nt , Y1:Mt )

)
1{Zt ∈Bt}

]
≤P0

(
Zt ∈Bt

)
log E0

(
Q�(X1:Nt , Y1:Mt )
Q�0 (X1:Nt , Y1:Mt )

∣∣∣∣Zt ∈Bt

)
.

But as previously seen,

E0

(
Q�(X1:Nt , Y1:Mt )
Q�0 (X1:Nt , Y1:Mt )

|Zt ∈Bt

)
=
∑

(n,m)∈Bt

∑
x1:n , y1:m

P0(Zt = (n, m), X1:n =x1:n, Y1:m =y1:m)
P0(Zt ∈Bt)

× Q�(x1:n, y1:m)
Q�0 (x1:n, y1:m)

≤
∑

(n,m)∈Bt

P�(∃s ≥1, Zs = (n, m))
P0(Zt ∈Bt)

.

Finally,

−D
(
� |�0

)≤ lim
t→+∞

1
t

log P�(∃s ≥1, Zs ∈Bt). (8)

Let us now consider the case where the expectations of �1 under parameters � and �0 are
not aligned with (0, 0), i.e. �∈�exp. We have

�= inf
�∈R

‖E�(�1)−�E0(�1)‖> 0,

where ‖ · ‖ denotes the Euclidean norm. Define

Bt =
{

(n, m)∈At :

∥∥∥∥ (n, m)
t

−E0(�1)

∥∥∥∥≤ �
4

}
.

Then, (7) holds. Any trajectory e ending at point (n, m) has length at least n∨m which is at
least t/2 when (n, m)∈Bt. Thus for such (n, m):

P�

(∃s ≥1, Zs = (n, m)
)≤P�

(
∃s ≥ t

2
, inf

�∈R

∥∥∥∥Zs

s
−�E0(�1)

∥∥∥∥≤ t
s

∥∥∥∥Zs

t
−E0(�1)

∥∥∥∥)
≤P�

(
∃s ≥ t

2
, inf

�∈R

∥∥∥∥Zs

s
−�E0(�1)

∥∥∥∥≤ �
2

)
≤P�

(
∃s ≥ t

2
,

∥∥∥∥Zs

s
−E�(�1)

∥∥∥∥≥ �
2

)
.

Now, using easy Cramer–Chernoff bounds, since � is irreducible, one has that there exists a
positive c(�) and some s0 > 0 such that as soon as s ≥ s0,

P�

(∥∥∥∥Zs

s
−E�(�1)

∥∥∥∥≥ �
2

)
≤ exp (−sc(�)),

and by summing over s, there also exists a positive C such that for large enough t,

P�

(
∃s ≥ t

2
:

∥∥∥∥Zs

s
−E�(�1)

∥∥∥∥≥ �
2

)
≤C exp (−tc(�)/2).

Thus, using (8), one obtains that for �∈�exp:

D(� |�0)≥ c(�)
2

> 0.
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14 A. Arribas-Gil et al. Scand J Statist

Let us now consider the case where �0 and � are in �marg. Then, using Jensen’s inequality
and definition (4),

E0

(
log

Q�(X1:Nt , Y1:Mt )
Q�0 (X1:Nt , Y1:Mt )

)
=
∑

(n,m)∈At

∑
x1:n

∑
y1:m

P0(Zt = (n, m), X1:n =x1:n, Y1:m =y1:m) log
Q�(x1:n, y1:m)
Q�0 (x1:n, y1:m)

≤
∑

(n,m)∈At

∑
x1:n

P0(Zt = (n, m), X1:n =x1:n)

× log

∑
y1:m

P0(Zt = (n, m), X1:n =x1:n, Y1:m =y1:m)Q�(x1:n, y1:m)
P0(Zt = (n, m), X1:n =x1:n)Q�0 (x1:n, y1:m)


≤
∑

(n,m)∈At

∑
x1:n

P0(Zt = (n, m))f ⊗n
0 (x1:n) log

(
P�(∃s ≥1, Zs = (n, m))f ⊗n(x1:n)

P0(Zt = (n, m))f ⊗n
0 (x1:n)

)
,

where the last inequality comes from lemma 2 and the fact that P0(Zt = (n, m), X1:n =x1:n,
Y1:m =y1:m)≤Q�o (x1:n, y1:m).

Thus, as t−1Nt tends to (1 − p), P0-a.s. as t tends to infinity, and (1 − p) > 0 since �∈�0,
we have

−D(� |�0)≤ lim sup
t→+∞

1
t

∑
(n,m)∈At ,n≥ (1−p)

2 t

P0(Zt = (n, m))
{

log
P�(∃s ≥1, Zs = (n, m))

P0(Zt = (n, m))

+ (1−p)
2

t
∑

x

f0(x) log
f (x)
f0(x)

}
≤ (1−p)

2

∑
x

f0(x) log
f (x)
f0(x)

< 0,

as soon as f /= f0. A similar proof applies if g /=g0.
Proofs of divergence properties for D∗ follow the same lines.

3.3. Continuity properties

On ��, the log-likelihoods are uniformly equicontinuous, with a modulus of continuity that
does not depend on trajectories, as appears in the proof of the following lemma.

Lemma 3
The families of functions {t−1wt(�)}t≥1 and {t−1`t(�)}t≥1 are uniformly equicontinuous on ��.

A consequence of this lemma and the compactness of �� is:

Corollary 1
The following holds:

(i) {t−1wt(�)}t(resp. {t−1`t(�)}t)converges P0-almost surely to w(�)(resp. to `(�))uniformly on
��;

(ii) `(�) and w(�) are uniformly continuous on ��.

Proof of lemma 3
Let 	> 0, and �1, �2 ∈�� such that ‖�1 −�2‖∞ ≤	. Let us denote ��i

, ��i , f�i , g�i and h�i the
parameters of the hidden Markov chain and of the emission distributions under �i , i =1, 2.
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For any e ∈ENt , Mt :

1
t

∣∣log P�1 (�1:|e| = e, X1:Nt , Y1:Mt )− log P�2 (�1:|e| = e, X1:Nt , Y1:Mt )
∣∣

≤ 1
t

∣∣log ��1
(e1)− log ��2

(e1)
∣∣+ 1

t

∑
k, l∈E

 |e|∑
i =2

1{ei−1 =k, ei = l}
∣∣log ��1 (k, l)− log ��2 (k, l)

∣∣
+ 1

t

∑
a ∈A


 |e|∑

i =1

1{ei = (1, 0), XNi
=a}

 | log f�1 (a)− log f�2 (a)|

+
 |e|∑

i =1

1{ei = (0, 1), YMi
=a}

 | log g�1 (a)− log g�2 (a)|


+ 1
t

∑
a, a′∈A

 |e|∑
i =1

1{ei = (1, 1), XNi
=a, YMi

=a′}
 | log h�1 (a, a′)− log h�2 (a, a′)|.

In this sum, at most 2|e| terms are non-null. As all the components of �i , i =1, 2 are bounded
below by � and ‖�1 −�2‖∞ ≤	, we have:

1
t

| log P�1 (�1:|e| = e, X1:Nt , Y1:Mt )− log P�2 (�1:|e| = e, X1:Nt , Y1:Mt )|≤
2|e|

t
	
�
.

But for any e ∈ENt , Mt , we have |e|≤2t, so that

1
t

| log P�1 (�1:|e| = e, X1:Nt , Y1:Mt )− log P�2 (�1:|e| = e, X1:Nt , Y1:Mt )≤
4	
�

,

as soon as ‖�1 −�2‖∞ ≤	.
Now we get

Q�1 (X1:Nt , Y1:Mt )=
∑

e ∈ENt , Mt

P�1 (�1:|e| = e, X1:Nt , Y1:Mt )

≤ exp
{

4	
�

t
} ∑

e∈ENt , Mt

P�2 (�1:|e| = e, X1:Nt , Y1:Mt )

≤ exp
{

4	
�

t
}

Q�2 (X1:Nt , Y1:Mt ),

and t−1 log Q�1 (X1:Nt , Y1:Mt ) ≤ 4	/�+ t−1 log Q�2 (X1:Nt , Y1:Mt ). As this is symmetric in �1 and
�2, one obtains that for any �1, �2 ∈�� such that ‖�1 −�2‖∞ ≤	,∥∥∥1

t
wt(�1)− 1

t
wt(�2)

∥∥∥≤ 4	
�

.

The same proof applies to t−1`t.

4. Statistical properties of estimators

We now focus on a particular form of the pair-HMM, relying on a re-parametrization of
the model. Indeed, the pair-HMM has been introduced to take into account evolutionary
events. The corresponding evolutionary parameters are the ones of interest and practitioners
aim at estimating those parameters rather than the full pair-HMM. Examples of such re-
parametrization may be found for instance in Thorne et al. (1991, 1992) (see also section 5
of this paper). Let 
 �→�(
) be a continuous parametrization from some set B to �. For any
�> 0, let B� =�−1(��). We assume that 
0 =�−1(�0) in B� for some �> 0. Use of pair-HMM
algorithms to estimate evolutionary parameters corresponds to the estimator
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16 A. Arribas-Gil et al. Scand J Statist

Definition 2


̂t =Argmax
∈B�
wt(�(
)).

Then,

Theorem 3
If the set of maximizers of w(�(
)) over B� reduces to {
0}, 
̂t converges P0-almost surely to

0.

The proof of this theorem follows from corollary 1 and usual arguments for M-estimators.
The condition that the set of maximizers of w(�(
)) over B� reduces to {
0} corresponds to
some identifiability condition and thus may not be avoided.

Another interesting approach to sequence alignment by pair-HMMs is to consider a non-
informative prior distribution on the parameters to produce, via an MCMC procedure, the
posterior distribution of the alignments and parameters given the observed sequences.
Using Q� as the likelihood of the observed sequences produces a posterior distribution as
follows. Let � be a prior probability measure on B�. MCMC algorithms approximate the
random distribution � |X1:Nt , Y1:Mt

interpreted as the posterior measure given observations X1:Nt

and Y1:Mt :

� |X1:Nt , Y1:Mt
(d
)= Q�(
)(X1:Nt , Y1:Mt )�(d
)∫

B�
Q�(
′)(X1:Nt , Y1:Mt )�(d
′)

.

This leads to Bayesian consistent estimation of 
0 as in classical statistical models (see, e.g.
Ibragimov & Has’minskii, 1981). Notice that as wt is not the logarithm of a probability dis-
tribution on the observation space, these results are not direct consequences of classical ones.
Although, the proof follows classical ideas of Bayesian theory.

Theorem 4
If the set of maximizers of w(�(
)) over B� reduces to {
0}, and if � weights 
0, then the
sequence of posterior measures � |X1:Nt , Y1:Mt

converges in distribution P0-almost surely to the
Dirac mass at 
0.

Proof. Let m : B� →R be any continuous, bounded function. For any ε> 0, let 	 such that
|m(
)−m(
′)|≤ ε as soon as ‖
−
′‖≤	. We have∣∣∣∣∫

B�

m(
)� |X1:Nt , Y1:Mt
(d
)−m(
0)

∣∣∣∣≤∫
B�

|m(
)−m(
0) | � |X1:Nt , Y1:Mt
(d
)

≤ ε+2‖m‖∞

∫
‖
−
0‖>	

� |X1:Nt , Y1:Mt
(d
)

= ε+2‖m‖∞

∫
‖
−
0‖>	 exp

{
t
(

1
t wt(�(
))

)}
�(d
)∫

B�
exp
{

t
(

1
t wt(�(
))

)}
�(d
)

.

Use of corollary 1 and the fact that the set of maximizers of w(�(
)) over B� reduces to {
0}
gives �> 0 and T such that for t > T and ‖
−
0‖>	,

t−1wt(�(
))− t−1wt(�(
0))≤−�,
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and then there exists �> 0 such that for t > T and ‖
−
0‖≤ �,

t−1wt(�(
))− t−1wt(�(
0))≥−�
2
.

Then∫
‖
−
0‖>	 exp

{
t
(

1
t wt(�(
))

)}
�(d
)∫

B�
exp
{

t
(

1
t wt(�(
))

)}
�(d
)

≤
∫

‖
−
0‖>	 exp
{

t
(

1
t wt(�(
))− 1

t wt(�(
0))
)}

�(d
)∫
‖
−
0‖≤� exp

{
t
(

1
t wt(�(
))− 1

t wt(�(
0))
)}

�(d
)
≤
(

exp
{

−t
�
2

}) ∫‖
−
0‖>	 �(d
)∫
‖
−
0‖≤� �(d
)

.

Using that � weights 
0 we finally obtain

lim
t→∞

∣∣∣∣∫
B�

m(
) � |X1:Nt , Y1:Mt
(d
)−m(
0)

∣∣∣∣=0 P0 −a.s. (9)

But there exists a countable collection of continuous and bounded functions that are deter-
mining for convergence in distribution and the union of the corresponding null sets in which
(9) does not hold is still a null set. Then

� |X1:Nt , Y1:Mt
��
0 P0 −a.s.

5. Simulations

5.1. A simple model

For the whole simulation procedure we consider the following substitution model:

h(x, y)=
{

f (x)(1− e−	)f (y) if x /=y
f (x){(1− e−	)f (x)+ e−	} otherwise,

where 	> 0 is called the substitution rate and for every letter x, f (x) equals the equilibrium
probability of x. This equilibrium probability distribution is assumed to be known and will
not be part of the parameter. Here, the emission distribution g equals f , and assumption 3
holds. The unknown parameter is thus 
= (�, 	). This is a classical substitution model (used
for instance in Thorne et al., 1991) where the substitution rate is independent of the type of
nucleotide being replaced and 1 − e−	 represents the probability that a substitution occurs.
We shall consider hidden Markov chains that satisfy assumption 2, and will present:

• Simulations with independent and identically distributed (i.i.d.) (�s)s where probabilities
of horizontal or vertical moves equal p0 and probability of diagonal moves equals r0 =
1−2p0. Here, the parameter reduces to 
= (p, 	).

• Simulations with stationary Markov chains such that p0 =q0. The parameter dimension
then reduces to 6 (including 	).

Notice that none of these situations is covered by theorem 2: we do not know in those cases
whether the information divergence rates are positive at a parameter value different from the
true one.

In both cases, we get estimations of the parameters via MLE (taking Q� as the likelihood
as it is performed in practice), and in the i.i.d. case we compute and compare the functions
w and `.

5.2. Simulations with i.i.d. (�s)s

We have simulated 200 alignments of length 15,000 with substitution rate 	0 =0.05 and p0 =
q0 =0.25. We have set the equilibrium probability of every nucleotide to 0.25. We show in
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Fig. 3. Histograms of maximum likelihood estimations of parameters obtained with 200 simulations
from the independent and identically distributed model. On the left: estimation of p given 	=	0 and
estimation of 	 given p=p0. On the right: joint estimation of p and 	.

Fig. 3 histograms for the maximum likelihood estimations of both parameters. In first part
we keep 	 fixed at 	0 and estimate p and then we keep p fixed at p0 and estimate 	; that pro-
duces good estimations of the parameters even if 	 is a bit underestimated. However, when
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Fig. 4. On top: ` and w for the independent and identically distributed model (p0 =0.25, 	0 =0.05). On
bottom: cuts of ` and w for 	=	0 fixed and for p=p0 fixed.
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Fig. 5. Histograms of maximum likelihood estimations of parameters obtained with 200 simulations
from the Markov chain model. On top: estimation of the transition probabilities given 	=	0 and esti-
mation of 	 given the true value of the transition probabilities. On bottom: joint estimation of the
transition probabilities and 	.

estimating p and 	 simultaneously (second part) we obtain no satisfying results especially on
	 (see Fig. 3).

This can be explained by looking at the graph of w(
) and comparing it with `(
)
(Fig. 4). We see that both w and ` are very flat with respect to 	 and as we deal with
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numerical precision errors, finding out the true maximum value becomes impossible. How-
ever, for p=p0 if we look closely at the cuts of ` and w we appreciate that ` takes its maxi-
mum on 	0 and w near this point. As the maximization problem complexity is reduced in
this case we find a quite good estimation for 	. Concerning p, we see that both ` and w have
a clear maximum near p0, but again ` is less flat than w at this point. This is not surprising
as ` really is the information divergence rate of the model.

5.3. Simulations with Markov chains satisfying assumption 2

We have simulated 200 alignments of length 15,000 with substitution rate 	0 =0.05 and the
following transition matrix for (�s)s


D H V

D 0.7 0.2 0.1
H 0.3 0.5 0.2
V 0.3 0.1 0.6


with initial distribution p0 =q0 =0.25. We have set as free parameters �HH , �HV , �DV , �VV and
�DH . The equilibrium probability of every nucleotide is again fixed to 0.25. We can observe
in Fig. 5 that the MLE for these parameters and for 	 are close to their true values even
when the estimation was carried out jointly.

6. Discussion

Our first contribution is to provide a rigorous probabilistic and statistical background to the
study of pair-HMMs. This background is at the core of theoretical studies on these
models and it is also a first step towards other biological models, such as those used in the
context of multiple alignments. Our main results are given in theorems 1 and 2, where we
first prove convergence of normalized log-likelihoods and identify cases where a divergence
property holds. Unfortunately, despite the positive results that we obtain, it is not yet pos-
sible to validate pair-HMM algorithms in every situation. From a theoretical point of view,
we were not able to prove that, under assumption 2 (namely, p=q and thus the parameter
does not belong to �exp), divergence property holds in case h /=h0. Consequences in terms of
evolutionary parameters (in some particular re-parametrization schemes) remains a challeng-
ing issue. Simulation studies investigate situations in which theorem 2 does not hold. Despite
the fact that the i.i.d. framework works poorly, the Markov one seems to give satisfying
results. These results are rather encouraging since the Markov case is the interesting one in
biological applications.
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