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Abstract

We consider a one dimensional ballistic random walk evolving in an i.i.d. parametric random environ-
ment. We provide a maximum likelihood estimation procedure of the parameters based on a single obser-
vation of the path till the time it reaches a distant site, and prove that the estimator is consistent as the
distant site tends to infinity. Our main tool consists in using the link between random walks and branching
processes in random environments and explicitly characterising the limiting distribution of the process that
arises. We also explore the numerical performance of our estimation procedure.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Random walks in random environments (RWRE) have attracted much attention lately, mostly
in the physics and probability theory literature. These processes were introduced originally by
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Chernov [8] to model the replication of a DNA sequence. The idea underlying Chernov’s model
is that the protein that moves along the DNA strand during replication performs a random walk
whose transition probabilities depend on the sequence letters, thus modelled as a random envi-
ronment. Since then, RWRE have been developed far beyond this original motivation, resulting
into a wealth of fine probabilistic results. Some recent surveys on the subject include [11,23].

Recently, these models have regained interest from biophysics, as they fit the description
of some physical experiments that unzip the double strand of a DNA molecule. More precisely,
some fifteen years ago, the first experiments on unzipping a DNA sequence have been conducted,
relying on several different techniques (see [4,5], and the references therein). By that time, these
experiments primarily took place in the quest for alternative (cheaper and/or faster) sequencing
methods. When conducted in the presence of bounding proteins, such experiments also enabled
the identification of specific locations at which proteins and enzymes bind to the DNA [15].
Nowadays, similar experiments are conducted in order to investigate molecular free energy
landscapes with unprecedented accuracy [2,12]. Among other biophysical applications, one can
mention the study of the formation of DNA or RNA hairpins [6].

Despite the emergence of data that is naturally modelled by RWRE, it appears that very few
statistical issues on those processes have been studied so far. Very recently, Andreoletti and
Diel [3] considered a problem inspired by an experiment on DNA unzipping [4,5,9], where the
aim is to predict the sequence of bases relying on the observation of several unzipping of one
finite length DNA sequence. Up to some approximations, the problem boils down to considering
independent and identically distributed (i.i.d.) replicates of a one dimensional nearest neighbour
path (i.e. the walk has ±1 increments) in the same finite and two-sites dependent environment,
up to the time each path reaches some value M (the sequence length). In this setup, the authors
consider both a discrete time and a continuous time model. They provide estimates of the values
of the environment at each site, which corresponds to estimating the sequence letters of the DNA
molecule. Moreover, they obtain explicit formula for the probability to be wrong for a given
estimator, thus evaluating the quality of the prediction.

In the present work, we study a different problem, also motivated by some DNA unzipping
experiments: relying on an arbitrary long trajectory of a transient one-dimensional nearest neigh-
bour path, we would like to estimate the parameters of the environment’s distribution. Our mo-
tivation comes more precisely from the most recent experiments, that aim at characterising free
binding energies between base pairs relying on the unzipping of a synthetic DNA sequence [17].
In this setup, the environment is still considered as random as those free energies are unknown
and need to be estimated. While our asymptotic setup is still far from corresponding to the reality
of those experiments, our work might give some insights on statistical properties of estimates of
those binding free energies.

The parametric estimation of the environment distribution has already been studied in [1].
In their work, Adelman and Enriquez consider a very general RWRE and provide equations
relating the distribution of some statistics of the trajectory to some moments of the environment
distribution. In the specific case of a one-dimensional nearest neighbour path, those equations
give moment estimators for the environment distribution parameters. It is worth mentioning that
due to its great generality, the method is hard to understand at first, but it takes a simpler form
when one considers the specific case of a one-dimensional nearest-neighbour path. Now, the
method has two main drawbacks: first, it is not generic in the sense that it has to be designed
differently for each parametric setup that is considered. Namely, the method relies on the
choice of a one-to-one mapping between the parameters and some moments. In particular, when
choosing a set of moment equations, injectivity of the induced mapping might even not be simple
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to establish (see for instance the case of Example II below, further developed in Section 5.1).
Second, from a statistical point of view, it is clear that some mappings will give better results
than others. Thus the specific choice of a mapping has an impact on the estimator’s performance.

As an alternative, we propose here to consider maximum likelihood estimation of the param-
eters of the environment distribution. We consider a transient nearest neighbour path in a random
environment, for which we are able to define some criterion—that we call a log-likelihood of the
observed process, see (8) below. Our estimator is then defined as the maximiser of this criterion,
thus a maximum likelihood estimator. When properly normalised, we prove that this criterion is
convergent as the size of the path increases to infinity. This part of our work relies on using the
link between RWRE and branching processes in random environments (BPRE). While this link
is already well-known in the literature, we provide an explicit characterisation of the limiting
distribution of the BPRE that corresponds to our RWRE (see Theorem 4.5 below). Relying on
this precise characterisation, we then further prove that the limit of our normalised criterion is
finite in what is called the ballistic region, namely the set of parameters such that the path has
a linear increase (see Section 2.1 below for more details). Then, following standard statistical
results, we are able to establish the consistency of our estimator. We also provide synthetic ex-
periments to compare the effective performance of our estimator and Adelman and Enriquez’s
procedure. In the cases where Adelman and Enriquez’s estimator is easily settled, while the two
methods exhibit the same performance with respect to their bias, our estimator exhibits a much
smaller variance. We mention that establishing asymptotic normality of this estimator requires
much more technicalities and is out of the scope of the present work. This point is studied in a
companion article, together with variance estimates and confidence intervals [10].

The article is organised as follows. Section 2.1 introduces our setup: the one dimensional
nearest neighbour path, and recalls some well-known results about the behaviour of those
processes. Then in Section 2.2, we present the construction of our M-estimator (i.e. an estimator
maximising some criterion function), and state the assumptions required on the model as well
as our consistency result (Section 2.3). Section 3 presents some examples of environment
distributions for which the model assumptions are satisfied so that our estimator is consistent.
Now, the proof of our consistency result is presented in Section 4. The section starts by
recalling the link between RWRE and BPRE (Section 4.1). Then, we state our core result:
the explicit characterisation of the limiting distribution of the branching process that is linked
with our path; and its corollary: the existence of a (possibly infinite) limit for the normalised
criterion (Section 4.2). In Section 4.3 we first provide a technical result on the uniformity of
this convergence, then establish that in the ballistic case, the limit of the normalised criterion
is finite. An almost converse statement is also given (Lemma 4.9). To conclude this part, we
prove in Section 4.4 that the limiting criterion identifies the true parameter value (under a natural
identifiability assumption on the model parameter). Finally, numerical experiments are presented
in Section 5.2, focusing on the three examples that were developed in Section 3. Note that we also
provide an explicit description of the form of Adelman and Enriquez’s estimator in the particular
case of the one-dimensional nearest neighbour path in Section 5.1.

2. Definitions, assumptions and results

2.1. Random walk in a random environment

Let ω = {ωx }x∈Z be an independent and identically distributed (i.i.d.) collection of (0, 1)-
valued random variables with distribution ν. The process ω represents a random environment in
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which the random walk will evolve. We suppose that the law ν = νθ depends on some unknown
parameter θ ∈ Θ , where Θ ⊂ Rd is assumed to be a compact set. Denote by Pθ

= ν⊗Z
θ the law

on (0, 1)Z of the environment {ωx }x∈Z and by Eθ the expectation under this law.
For fixed environment ω, let X = {X t }t∈N be the Markov chain on Z starting at X0 = 0 and

with transition probabilities

Pω(X t+1 = y|X t = x) =

ωx if y = x + 1,

1 − ωx if y = x − 1,

0 otherwise.

The symbol Pω denotes the measure on the path space of X given ω, usually called quenched
law. The (unconditional) law of X is given by

Pθ (·) =


Pω(·)dPθ (ω),

this is the so-called annealed law. We write Eω and Eθ for the corresponding quenched and
annealed expectations, respectively. We start to recall some well-known asymptotic results.
Introduce a family of i.i.d. random variables,

ρx =
1 − ωx

ωx
, x ∈ Z, (1)

and assume that log ρ0 is integrable. Solomon [20] proved the following classification.

(a) If Eθ (log ρ0) < 0, then

lim
t→∞

X t = +∞, Pθ -almost surely.

(b) If Eθ (log ρ0) = 0, then

−∞ = lim inf
t→∞

X t < lim sup
t→∞

X t = +∞, Pθ -almost surely.

The case of Eθ (log ρ0) > 0 follows from (a) by changing the sign of X . Note that the walk X is
Pθ -almost surely transient in case (a) and recurrent in case (b).

In the present paper, we restrict to case (a) when X is transient to the right. Then, it was also
found that the rate of its increase (with respect to time t) is either linear or slower than linear. The
first case is called ballistic case and the second one sub-ballistic case. More precisely, letting Tn
be the first hitting time of the positive integer n,

Tn = inf{t ∈ N : X t = n}, (2)

and assuming Eθ (log ρ0) < 0 all through, we have

(a1) if Eθ (ρ0) < 1, then, Pθ -almost surely,

Tn

n
−−−→
n→∞

1 + Eθ (ρ0)

1 − Eθ (ρ0)
, (3)

(a2) if Eθ (ρ0) ≥ 1, then Tn/n → +∞ Pθ -almost surely, when n tends to infinity.
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2.2. Construction of a M-estimator

We address the following statistical problem: estimate the unknown parameter θ from a single
observation of the RWRE path till the time it reaches a distant site. Assuming transience to the
right, we then observe X[0,Tn ] = {X t : t = 0, 1, . . . , Tn}, for some n ≥ 1.

If x[0,t] := (x0, . . . , xt ) is a nearest neighbour path of length t , we define for all x ∈ Z,

L(x, x[0,t]) :=

t−1
s=0

1{xs = x; xs+1 = x − 1}, (4)

and R(x, x[0,t]) :=

t−1
s=0

1{xs = x; xs+1 = x + 1}, (5)

the number of left steps (resp. right steps) from site x . (Here, 1{·} denotes the indicator function.)
We let also vt (resp. VTn ) be the set of integers visited by the path x[0,t] (resp. X[0,Tn ]). Consider
now a nearest neighbour path x[0,tn ] starting from 0 and first hitting site n at time tn . It is
straightforward to compute its quenched and annealed probabilities, respectively

Pω(X[0,Tn ] = x[0,tn ]) =


x∈vtn

ω
R(x,x[0,tn ])
x (1 − ωx )

L(x,x[0,tn ])

and

Pθ (X[0,tn ] = x[0,tn ]) =


x∈vtn

 1

0
aR(x,x[0,tn ])(1 − a)L(x,x[0,tn ])dνθ (a).

Under the following assumption, these weights add up to 1 over all possible choices of x[0,tn ].

Assumption I (Transience to the Right). For any θ ∈ Θ , Eθ
| log ρ0| < ∞ and

Eθ (log ρ0) < 0.

Introducing the short-hand notation

Ln
x := L(x, X[0,Tn ]) and Rn

x := R(x, X[0,Tn ]),

we can express the (annealed) log-likelihood of the observations as

ℓ̃n(θ) =

n−1
x=0

log
 1

0
aRn

x (1 − a)Ln
x dνθ (a) +


x<0,x∈VTn

log
 1

0
aRn

x (1 − a)Ln
x dνθ (a). (6)

Noting that as the random walk X starts from 0 (namely X0 = 0) and is observed until the first
hitting time Tn of n ≥ 1, we have Rn

x = Ln
x+1 + 1 for x = 1, 2, . . . , n − 1. We will perform

this change in the first line of the right-hand side of (6). Also, since the walk is transient to the
right (Assumption I), the second sum on the right-hand side (accounting for negative sites x) is
almost surely bounded. Hence, this sum will not influence in a significant way the behaviour of
the normalised log-likelihood, and we will drop it. Therefore, we are led to the following choice.

Definition 2.1. Let φθ be the function from N2 to R given by

φθ (x, y) = log
 1

0
ax+1(1 − a)ydνθ (a). (7)
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The criterion function θ → ℓn(θ) is defined as

ℓn(θ) =

n−1
x=0

φθ (Ln
x+1, Ln

x ), (8)

that is the first sum (dominant term) in (6).

We maximise this criterion function to obtain an estimator of the unknown parameter. To
prove convergence of the estimator, some assumptions are further required.

Assumption II (Ballistic Case). For any θ ∈ Θ, Eθ (ρ0) < 1.

As already mentioned, Assumption I is equivalent to the transience of the walk to the right,
and together with Assumption II, it implies positive speed.

Assumption III (Continuity). For any x, y ∈ N, the map θ → φθ (x, y) is continuous on Θ .

Assumption III is equivalent to the map θ → νθ being continuous on Θ with respect to the
weak topology.

Assumption IV (Identifiability). ∀(θ, θ ′) ∈ Θ2, νθ ≠ νθ ′ ⇐⇒ θ ≠ θ ′.

Assumption V. The collection of probability measures {νθ : θ ∈ Θ} is such that

inf
θ∈Θ

Eθ
[log(1 − ω0)] > −∞.

Note that under Assumption II we have Eθ
[log ω0] > − log 2 for any θ ∈ Θ . Assumptions III

and V are technical and involved in the proof of the consistency of our estimator. Assumption IV
states identifiability of the parameter θ with respect to the environment distribution νθ and is
necessary for estimation.

According to Assumption III, the function θ → ℓn(θ) is continuous on the compact parameter
set Θ . Thus, it achieves its maximum, and we define the estimatorθn as a maximiser.

Definition 2.2. An estimatorθn of θ is defined as a measurable choiceθn ∈ Argmax
θ∈Θ

ℓn(θ). (9)

Note thatθn is not necessarily unique.

Remark 2.3. The estimatorθn is a M-estimator, that is, the maximiser of some criterion function
of the observations. The criterion ℓn is not exactly the log-likelihood for we neglected the
contribution of the negative sites. However, with some abuse of notation, we callθn a maximum
likelihood estimator.

2.3. Asymptotic consistency of the estimator in the ballistic case

From now on, we assume that the process X is generated under the true parameter value θ⋆,
an interior point of the parameter space Θ , that we want to estimate. We shorten to P⋆ and E⋆

(resp. P⋆ and E⋆) the annealed probability Pθ⋆
and its corresponding expectation Eθ⋆

(resp. the
law of the environment Pθ⋆

and its corresponding expectation Eθ⋆
) under parameter value θ⋆.



274 F. Comets et al. / Stochastic Processes and their Applications 124 (2014) 268–288

Theorem 2.4 (Consistency). Under Assumptions I to V, for any choice of θn satisfying (9), we
have

lim
n→∞

θn = θ⋆,

in P⋆-probability.

3. Examples

3.1. Environment with finite and known support

Example I. Fix a1 < a2 ∈ (0, 1) and let ν = pδa1 + (1 − p)δa2 , where δa is the Dirac mass
located at a. Here, the unknown parameter is the proportion p ∈ Θ ⊂ [0, 1] (namely θ = p).
We suppose that a1, a2 and Θ are such that Assumptions I and II are satisfied.

In the framework of Example I, we have

φp(x, y) = log[pax+1
1 (1 − a1)

y
+ (1 − p)ax+1

2 (1 − a2)
y
], (10)

and

ℓn(p) := ℓn(θ) =

n−1
x=0

log


pa
Ln

x+1+1
1 (1 − a1)

Ln
x + (1 − p)a

Ln
x+1+1

2 (1 − a2)
Ln

x


. (11)

Now, it is easily seen that Assumptions III to V are satisfied. Coupling this point with the
concavity of the function p → ℓn(p) implies that pn = Argmaxp∈Θℓn(p) is well-defined and
unique (as Θ is a compact set). There is no analytical expression for the value of pn . Nonetheless,
this estimator may be easily computed by numerical methods. Finally, it is consistent from
Theorem 2.4.

This example is easily generalised to ν having m ≥ 2 support points namely ν =
m

i=1 piδai ,
where a1, . . . , am are distinct, fixed and known in (0, 1), we let pm = 1 −

m−1
i=1 pi and the

parameter is now θ = (p1, . . . , pm−1).

3.2. Environment with two unknown support points

Example II. We let ν = pδa1 + (1− p)δa2 and now the unknown parameter is θ = (p, a1, a2) ∈

Θ , where Θ is a compact subset of

(0, 1) × {(a1, a2) ∈ (0, 1)2
: a1 < a2}.

We suppose that Θ is such that Assumptions I and II are satisfied.

This case is particularly interesting as it corresponds to one of the setups in the DNA unzipping
experiments, namely estimating binding energies with two types of interactions: weak or strong.

The function φθ and the criterion ℓn(·) are given by (10) and (11), respectively. It is easily
seen that Assumptions III to V are satisfied in this setup, so that the estimatorθn is well-defined.
Once again, there is no analytical expression for the value ofθn . Nonetheless, this estimator may
also be easily computed by numerical methods. Thanks to Theorem 2.4, it is consistent.
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3.3. Environment with Beta distribution

Example III. We let ν be a Beta distribution with parameters (α, β), namely

dν(a) =
1

B(α, β)
aα−1(1 − a)β−1da, B(α, β) =

 1

0
tα−1(1 − t)β−1dt.

Here, the unknown parameter is θ = (α, β) ∈ Θ where Θ is a compact subset of

{(α, β) ∈ (0, +∞)2
: α > β + 1}.

As Eθ (ρ0) = β/(α−1), the constraint α > β +1 ensures that Assumptions I and II are satisfied.

In the framework of Example III, we have

φθ (x, y) = log
B(x + 1 + α, y + β)

B(α, β)
(12)

and

ℓn(θ) = −n log B(α, β) +

n−1
x=0

log B(Ln
x+1 + α + 1, Ln

x + β)

=

n−1
x=0

log
(Ln

x+1 + α)(Ln
x+1 + α − 1) · · · α × (Ln

x + β − 1)(Ln
x + β − 2) · · · β

(Ln
x+1 + Ln

x + α + β − 1)(Ln
x+1 + Ln

x + α + β − 2) · · · (α + β)
.

In this case, it is easily seen that Assumptions III to V are satisfied, ensuring that θn is well-
defined. Moreover, thanks to Theorem 2.4, it is consistent.

4. Consistency

The proof of Theorem 2.4 relies on classical theory about the convergence of maximum
likelihood estimators, as stated for instance in the classical approach by Wald [22] for i.i.d.
random variables. We refer for instance to Theorem 5.14 in [21] for a simple presentation of
Wald’s approach and further stress that the proof is valid on a compact parameter space only. It
relies on the two following ingredients.

Theorem 4.1. Under Assumptions I to V, there exists a finite deterministic limit ℓ(θ) such that

1
n
ℓn(θ) −−−→

n→∞
ℓ(θ) in P⋆-probability,

and this convergence is “locally uniform” with respect to θ .

The sense of the local uniform convergence is specified in Lemma 4.7 in Section 4.3, and the
value of ℓ(θ) is given in (17).

Proposition 4.2. Under Assumptions I to V, for any ε > 0,

sup
θ :∥θ−θ⋆∥≥ε

ℓ(θ) < ℓ(θ⋆).

Theorem 4.1 induces a pointwise convergence of the normalised criterion ℓn/n to some
limiting function ℓ, and is weaker than assuming uniform convergence. Proposition 4.2 states
that the former limiting function ℓ identifies the true value of the parameter θ⋆, as the unique
point where it attains its maximum.
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Here is the outline of the current section. In Section 4.1, we recall some preliminary results
linking RWRE with branching processes in random environment (BPRE). In Section 4.2, we
define the limiting function ℓ involved in Theorem 4.1 thanks to a law of large numbers (LLN) for
Markov chains. In Sections 4.3 and 4.4, we prove Theorem 4.1 and Proposition 4.2, respectively.
It is important to note that the limiting function ℓ exists as soon as the walk is transient.
However, it is finite in the ballistic case and everywhere infinite in the sub-ballistic regime of
uniformly elliptic walks, see Lemma 4.9. This latter fact prevents the identification result stated
in Proposition 4.2 and explains why we obtain consistency only in the ballistic regime. From all
these ingredients, the consistency ofθn , that is, the proof of Theorem 2.4 easily follows.

4.1. From RWRE to branching processes

We start by recalling some already known results linking RWRE with branching processes
in random environment (BPRE). Indeed, it has been previously observed in [13] that for fixed
environment ω = {ωx }x∈Z, under quenched distribution Pω, the sequence Ln

n, Ln
n−1, . . . , Ln

0 of
the number of left steps performed by the process X[0,Tn ] from sites n, n − 1, . . . , 0, has the
same distribution as the first n generations of an inhomogeneous branching process with one
immigrant at each generation and with geometric offspring.

More precisely, for any fixed value n ∈ N∗ and fixed environment ω, consider a family of
independent random variables {ξk,i : k ∈ {1, . . . , n}, i ∈ N} such that for each fixed value
k ∈ {1, . . . , n}, the {ξk,i }i∈N are i.i.d. with a geometric distribution on N of parameter ωn−k ,
namely

∀m ∈ N, Pω(ξk,i = m) = (1 − ωn−k)
mωn−k .

Then, let us consider the sequence of random variables {Zn
k }k=0,...,n defined recursively by

Zn
0 = 0, and for k = 0, . . . , n − 1, Zn

k+1 =

Zn
k

i=0

ξk+1,i .

The sequence {Zn
k }k=0,...,n forms an inhomogeneous BP with immigration (one immigrant per

generation corresponding to the index i = 0 in the above sum) and whose offspring law depends
on n (hence the superscript n in notation Zn

k ). Then, we obtain that

(Ln
n, Ln

n−1, . . . , Ln
0) ∼ (Zn

0 , Zn
1 , . . . , Zn

n ),

where ∼ means equality in distribution. When the environment is random as well, and since
(ω0, . . . , ωn) has the same distribution as (ωn, . . . , ω0), it follows that under the annealed law
P⋆, the sequence Ln

n, Ln
n−1, . . . , Ln

0 has the same distribution as a branching process in random
environment (BPRE) Z0, . . . , Zn, defined by

Z0 = 0, and for k = 0, . . . , n, Zk+1 =

Zk
i=0

ξ ′

k+1,i , (13)

with {ξ ′

k,i }k∈N∗;i∈N independent and

∀m ∈ N, Pω(ξ ′

k,i = m) = (1 − ωk)
mωk .

Now, when the environment is assumed to be i.i.d., this BPRE is under annealed law a homoge-
neous Markov chain. We explicitly state this result because it is important.
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Proposition 4.3. Suppose that {ωn}n∈N are i.i.d. with distribution νθ . Then {Zn}n∈N is a
homogeneous Markov chain whose transition kernel Qθ is given by

Qθ (x, y) =


x + y

x


eφθ (x,y)

=


x + y

x

 1

0
ax+1(1 − a)ydνθ (a). (14)

Proof. Eq. (14) comes from the fact that the sum of x+1 independent random variables following
the geometric distribution on N with probability of success p is a negative binomial. �

Finally, going back to (8) and the definition (7) of φθ , the annealed log-likelihood satisfies the
following equality

ℓn(θ) ∼

n−1
k=0

φθ (Zk, Zk+1) under P⋆. (15)

Remark 4.4. Up to an additive constant (not depending on θ ), the right-hand side of (15) is the
log-likelihood of the Markov chain {Zk}0≤k≤n . Indeed, we have

log Qθ (x, y) = log


x + y

x


+ φθ (x, y), ∀x, y ∈ N.

We prove in the next section a weak law of large numbers for the sequence {φθ (Zk, Zk+1)}k∈N
and according to (15), this is sufficient to obtain a weak convergence of ℓn(θ)/n.

4.2. Existence of a limiting function

It was shown by Key [14, Theorem 3.3] that under Assumption I (and for a non-necessarily
i.i.d. environment), the sequence {Zn}n∈N converges in annealed law to a limit random variable
Z̃0 which is almost surely finite. An explicit construction of Z̃0 is given by Eq. (2.2) in [18].
In fact, a complete stationary version {Z̃n}n∈Z of the sequence {Zn}n∈N is given and such a
construction allows for an ergodic theorem. In the i.i.d. environment setup, we obtain more
precise results than what is provided by Key [14, Theorem 3.3], as {Zn}n∈N is a Markov chain.
Thus Theorem 4.5 below is specific to our setup: geometric offspring distribution, one immigrant
per generation and i.i.d. environment. We specify the form of the limiting distribution of the
sequence {Zn}n∈N and characterise its first moment. We later rely on these results to establish a
strong law of large numbers for the sequence {φθ (Zk, Zk+1)}k∈N.

Theorem 4.5. Under Assumption I, for all θ ∈ Θ the following assertions hold.

(i) The Markov chain {Zn}n∈N is positive recurrent and admits a unique invariant probability
measure πθ satisfying

lim
n→∞

Pθ (Zn = k) = πθ (k), ∀k ∈ N.

(ii) Moreover, for all k ∈ N, we have πθ (k) = Eθ
[S(1 − S)k

], where

S := (1 + ρ1 + ρ1ρ2 + · · · + ρ1 · · · ρn + · · · )−1
∈ (0, 1).

In particular, we have


k∈N kπθ (k) =


n≥1(Eθρ0)
n , and the distribution πθ has a finite

first order moment only in the ballistic case.
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Proof. We introduce the quenched probability generating function of the random variables ξ ′

n,i
and Zn introduced in (13), respectively defined for any u ∈ [0, 1] by

Hn(u) := Eω


uξ ′

n,0


=

ωn

1 − (1 − ωn)u
, and Fn(u) := Eω


uZn


,

as well as the quantities Sn and S̃n defined as

S−1
n = 1 + ρn + ρnρn−1 + · · · + ρn · · · ρ1,

S̃−1
n = 1 + ρ1 + ρ1ρ2 + · · · + ρ1 · · · ρn .

According to (13), we have

Fn+1(u) = Fn[Hn+1(u)] × Hn+1(u),

and a simple computation yields

Fn(u) =
Sn

1 − (1 − Sn)u
,

for any u ∈ [0, 1]. This means that under quenched law Pω, the random variable Zn follows a
geometric distribution on N with parameter Sn . Note that Sn and S̃n have the same distribution
under Pθ , implying that Fn(u) has the same distribution as

S̃n

1 − (1 − S̃n)u
.

Under Assumption I, we have Pθ -a.s.

lim
n→∞

1
n

log(ρ1 · · · ρn) = lim
n→∞

1
n

n
i=1

log ρi = Eθ log ρ0 := m < 0,

and hence

Pθ

∃n(ω), s.t. ∀n > n(ω), ρ1 · · · ρn ≤ enm/2


= 1.

Then, as n → +∞, S̃n ↘ S = (1 + ρ1 + ρ1ρ2 + · · · )−1 Pθ -a.s. with Pθ (0 < S < 1) = 1.
As a consequence, the quenched probability generating function Fn(u) converges in distribution
under Pθ to

F(u) =
S

1 − (1 − S)u
,

the probability generating function of a geometric distribution with parameter S. Under annealed
law, for any k ∈ N we have

Pθ (Zn = k) = Eθ Pω(Zn = k) = Eθ


Sn (1 − Sn)k


= Eθ


S̃n


1 − S̃n

k


.

Since 0 < S̃n < 1, dominated convergence implies that for all k ∈ N,

lim
n→+∞

Pθ (Zn = k) = Eθ


S (1 − S)k


:= πθ (k). (16)

As an immediate consequence, we obtain
k∈N

kπθ (k) = Eθ


S−1
− 1


=

∞
n=1

(Eθρ0)
n .
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Moreover, by Fubini–Tonelli’s theorem and Pθ (0 < S < 1) = 1, we have
k∈N

πθ (k) = 1 and πθ (k) > 0, ∀k ∈ N.

Thus the measure πθ on N is a probability measure and thanks to (16), it is invariant. We note that
{Zn}n∈N is irreducible as the transitions Qθ (x, y) defined by (14) are positive and the measure
νθ is not degenerate. Thus, the chain is positive recurrent and πθ is unique (see for instance
[16, Theorem 1.7.7]). This concludes the proof. �

Let us define {Z̃n}n∈N as the stationary Markov chain with transition matrix Qθ⋆ defined by
(14) and initial distribution π⋆

:= πθ⋆ introduced in Theorem 4.5. It will not be confused with
{Zn}n∈N from (13). We let ℓ(θ) be defined as

ℓ(θ) = E⋆
[φθ (Z̃0, Z̃1)] ∈ [−∞, 0], (17)

where φθ is defined according to (7). (Note that the quantity ℓ(θ) may not necessarily be finite.)
As a consequence of the irreducibility of the chain {Zn}n∈N and Theorem 4.5, we obtain the
following ergodic theorem (see for instance [16, Theorem 1.10.2]).

Proposition 4.6. Under Assumption I, for all θ ∈ Θ , the following ergodic theorem holds:

lim
n→∞

1
n

n−1
k=0

φθ (Zk, Zk+1) = ℓ(θ) P⋆-almost surely.

4.3. Local uniform convergence and finiteness of the limit

According to (15) and Proposition 4.6, we obtain

lim
n→∞

1
n
ℓn(θ) = ℓ(θ) in P⋆-probability. (18)

To achieve the proof of Theorem 4.1, it remains to prove that the convergence is “locally uniform”
and that the limit ℓ(θ) is finite for any value of θ . The local uniform convergence is given by
Lemma 4.7 below while Proposition 4.8 gives a sufficient condition for the latter fact to occur.

Lemma 4.7. Under Assumption I, the following local uniform convergence holds: for any open
subset U ⊂ Θ ,

1
n

n−1
x=0

sup
θ∈U

φθ (Ln
x+1, Ln

x ) −−−→
n→∞

E⋆


sup
θ∈U

φθ (Z̃0, Z̃1)


in P⋆-probability .

Proof of Lemma 4.7. Let us fix an open subset U ⊂ Θ and note that

1
n

n−1
x=0

sup
θ∈U

φθ (Ln
x+1, Ln

x ) ∼
1
n

n−1
k=0

ΦU (Zk, Zk+1),

where we have ΦU := supθ∈U φθ . As the function ΦU is non-positive, the expectation E⋆(ΦU

(Z̃0, Z̃1)) exists and relying again on the ergodic theorem for Markov chains, we obtain the
desired result. �
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Proposition 4.8 (Ballistic Case). As soon as

E⋆(ρ0) < 1, (19)

the limit ℓ(θ) is finite for any value θ ∈ Θ .

Proof of Proposition 4.8. For all x ∈ N, y ∈ N, by using Jensen’s inequality, we may write

log
 1

0
ax+1(1 − a)ydνθ (a) ≥ (x + 1)Eθ

[log(w0)] + yEθ
[log(1 − w0)]. (20)

This implies that for any k ∈ N,

φθ (Zk, Zk+1) ≥ (Zk + 1)Eθ
[log(w0)] + Zk+1Eθ

[log(1 − w0)],

and in particular

1
n

n−1
k=0

φθ (Zk, Zk+1) ≥ Eθ
[log(w0)]

1
n

n−1
k=0

(Zk + 1) + Eθ
[log(1 − w0)]

1
n

n−1
k=0

Zk+1. (21)

Now, as a consequence of Theorem 4.5, we know that in the ballistic case given by (19) the
expectation E⋆(Z̃0) is finite. From the ergodic theorem, P⋆-almost surely,

1
n

n−1
k=0

(Zk + 1) −−−→
n→∞

E⋆(Z̃0) + 1 and
1
n

n−1
k=0

Zk+1 −−−→
n→∞

E⋆(Z̃0). (22)

Combining this convergence with the lower bound in (21), we obtain ℓ(θ) ∈ (−∞, 0] in this
case. �

The next lemma specifies that condition (19) is necessary for ℓ(θ) to be finite at least in a
particular case.

Lemma 4.9 (Converse Result in the Uniformly Elliptic Case). Assume that νθ ([δ, 1 − δ]) = 1
for some δ > 0 and all θ ∈ Θ (uniformly elliptic walk). Then, in the sub-ballistic case, that is
E⋆(ρ0) ≥ 1, the limit ℓ(θ) is infinite for all parameter values.

Proof. For any integers x and y and any a in the support of νθ , we have

0 < δx+1
≤ ax+1

≤ (1 − δ)x+1, 0 < δy
≤ (1 − a)y

≤ (1 − δ)y,

and then

(x + y + 1) log(δ) ≤ log
 1

0
ax+1(1 − a)ydνθ (a) ≤ (x + y + 1) log(1 − δ).

This implies that for any k ∈ N,

(Zk + Zk+1 + 1) log(δ) ≤ φθ (Zk, Zk+1) ≤ (Zk + Zk+1 + 1) log(1 − δ),

and in particular

1
n

n−1
k=0

φθ (Zk, Zk+1) ≤ log(1 − δ)
1
n

n−1
k=0

(Zk + Zk+1 + 1). (23)

According to Proposition 4.6, the lower bound of (23) converges to ℓ(θ). Combining the conver-
gence (22) with the latter fact implies that as soon as ℓ(θ) > −∞, we get E⋆(Z̃0) < +∞ which
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is equivalent to


n≥1(E⋆ρ0)
n < ∞ according to point (ii) in Theorem 4.5. This corresponds to

E⋆(ρ0) < 1. �

4.4. Identification of the true parameter value

Fix ε > 0. We want to prove that under Assumptions I to V,

sup
θ :∥θ−θ⋆∥≥ε

ℓ(θ) < ℓ(θ⋆).

First of all, note that according to Proposition 4.8, Assumption II ensures that ℓ(θ) is finite for
any value θ ∈ Θ .

Now, we start by proving that for any θ ∈ Θ , we have ℓ(θ) ≤ ℓ(θ⋆). According to (17), we
may write

ℓ(θ) − ℓ(θ⋆) = E⋆
[φθ (Z̃0, Z̃1) − φθ⋆(Z̃0, Z̃1)],

which may be rewritten as
x∈N

π⋆(x)


y∈N

log


Qθ (x, y)

Qθ⋆(x, y)


Qθ⋆(x, y)


.

Using Jensen’s inequality with respect to the logarithm function and the (conditional) distribution
Qθ⋆(x, ·) yields

ℓ(θ) − ℓ(θ⋆) ≤


x∈N

π⋆(x) log


y∈N

Qθ (x, y)

Qθ⋆(x, y)
Qθ⋆(x, y)


= 0. (24)

The equality in (24) occurs if and only if for any x ∈ N, we have Qθ (x, ·) = Qθ⋆(x, ·), which is
equivalent to the probability measures νθ and νθ⋆ having identical moments. Since their supports
are included in the bounded set (0, 1), these probability measures are then identical (see for
instance [19, Chapter II, Paragraph 12, Theorem 7]). Hence, the equality ℓ(θ) = ℓ(θ⋆) yields
νθ = νθ⋆ which is equivalent to θ = θ⋆ from Assumption IV.

In other words, we proved that ℓ(θ) ≤ ℓ(θ⋆) with equality if and only if θ = θ⋆. To conclude
the proof of Proposition 4.2, it suffices to establish that the function θ → ℓ(θ) is continuous.

From Inequality (20) and Assumption V, we know that there exists a positive constant A such
that for any θ ∈ Θ ,φθ (Z̃0, Z̃1)

 ≤ A(1 + Z̃0 + Z̃1).

Under Assumption II, we know that E⋆(Z̃0) = E⋆(Z̃1) is finite, and under Assumption III, the
function θ → φθ (x, y) is continuous for any pair (x, y). We deduce that the function θ → ℓ(θ)

is continuous.

5. Numerical performance

In this section, we explore the numerical performance of our estimation procedure and com-
pare it with the performance of the estimator proposed by Adelman and Enriquez [1]. As this
latter procedure is rather involved and far more general than ours, we start by describing its form
in our specific context in Section 5.1. The simulation protocol as well as corresponding results
are given in Section 5.2, where we focus on Examples I to III.
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5.1. Estimation procedure of [1]

The estimator proposed by Adelman and Enriquez [1] is a moment estimator. It is based on
collecting information on sites displaying some specified histories. We briefly explain it in our
context: the one dimensional RWRE.

Let H(t, x) denote the history of site x at time t defined as

H(t, x) = (L(x, X[0,t]), R(x, X[0,t])),

where L(x, X[0,t]) and R(x, X[0,t]) are respectively defined by (4) and (5), and represent the
number of left and right steps performed by the walk at site x until time t . Note that H(0, x) =

(0, 0) for any site x .
We define H(t) as the history of the currently occupied site X t at time t , that is

H(t) = H(t, X t ).

For any h = (h−, h+) ∈ N2, let {K h
i }i≥0 be the successive times where the history of the

currently occupied site is h:

K h
0 = inf{t ≥ 0 : H(t) = h}, K h

i+1 = inf{t > K h
i : H(t) = h}.

Define ∆h
i with values in {−1, 1} as

∆h
i = X K h

i +1 − X K h
i
,

which represents the move of the walk at time K h
i , that is, the move at the i th time where the

history of the currently occupied site is h.
According to Proposition 4 and Corollary 2 in [1], the random variables ∆h

i are i.i.d. and we
have

lim
m→∞

1
m

m
i=1

1
{∆h

i =1}
= V1(h) P⋆-a.s., (25)

and lim
m→∞

1
m

m
i=1

1
{∆h

i =−1}
= V−1(h) P⋆-a.s., (26)

where

V1(h) =
E⋆

[ω
1+h+

0 (1 − ω0)
h− ]

E⋆[ω
h+

0 (1 − ω0)h− ]

and V−1(h) =
E⋆

[ω
h+

0 (1 − ω0)
1+h− ]

E⋆[ω
h+

0 (1 − ω0)h− ]

.

The quantities V1(h) and V−1(h) are the annealed right and left transition probabilities from
the currently occupied site with history h. In particular, in our case V1(h) + V−1(h) = 1. The
consequence of the previous convergence result is that by letting the histories h vary, we can
potentially recover all the moments of the distribution ν and thus this distribution itself. The
strategy underlying Adelman and Enriquez’s approach is then to estimate some well-chosen
moments V1(h) or V−1(h) so as to obtain a set of equations which has to be inverted to recover
parameter estimates.

We thus define Mh
n and for ε = ±1 the estimators V n

ε (h) as

Mh
n = sup{K h

i < Tn : i ≥ 1}, V n
ε (h) =

1
Mh

n

Mh
n

i=1

1
{∆h

i =ε}, ε = ±1.
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The quantity V n
ε (h) is either the proportion of sites from which the first move is to the right

(ε = 1) or to the left (ε = −1), among those with history h. (In particular, V n
1 (h)+V n

−1(h) = 1.)
Then, from (25) and (26) and the fact that Tn goes to infinity P⋆-almost surely when n grows to
infinity, we get

lim
n→∞

V n
ε (h) = Vε(h) P⋆-almost surely.

Hence, we can estimate θ⋆ by the solution of an appropriate system of equations, as illustrated
below.

Example I (Continued). In this case the parameter θ equals p and we have

V1(0, 0) = E⋆
[ω0] = p⋆a1 + (1 − p⋆)a2.

Hence, among the visited sites (namely sites with history h = (0, 0)), the proportion of those
from which the first move is to the right gives an estimator for p⋆a1 + (1 − p⋆)a2. Using this
observation, we can estimate p⋆.

Example II (Continued). In this case the parameter θ equals (p, a1, a2) and we may for instance
consider

V1(0, 0) = p⋆a⋆
1 + (1 − p⋆)a⋆

2,

V1(0, 1) = {p⋆
[a⋆

1]
2
+ (1 − p⋆)[a⋆

2]
2
} · V1(0, 0)−1, (27)

V1(0, 2) = {p⋆
[a⋆

1]
3
+ (1 − p⋆)[a⋆

2]
3
} · V1(0, 1)−1.

Hence, among the visited sites (sites with history h = (0, 0)), the proportion of those from
which the first move is to the right gives an estimator for p⋆a⋆

1 + (1 − p⋆)a⋆
2. Among the sites

visited at least twice from which the first move is to the right (sites with history h = (0, 1)),
the proportion of those from which the second move is also to the right gives an estimator for
p⋆

[a⋆
1]

2
+ (1 − p⋆)[a⋆

2]
2. Among the sites visited at least three times from which the first and

second moves are to the right (sites with history h = (0, 2)), the proportion of those from which
the third move is also to the right gives an estimator for p⋆

[a⋆
1]

3
+(1− p⋆)[a⋆

2]
3. Using these three

observations, we can theoretically estimate p⋆, a⋆
1 and a⋆

2, as soon as the solution to this system
of three nonlinear equations is unique. Note that inverting the mapping defined by (27) is not
trivial. Moreover, while the moment estimators might have small errors, inverting the mapping
might result in an increase of this error for the parameter estimates.

Example III (Continued). In this case, the parameter θ equals (α, β) and we have

V−1(0, 0) =
β⋆

α⋆ + β⋆
and V−1(1, 0) =

β⋆
+ 1

α⋆ + β⋆ + 1
.

Hence, among the visited sites (sites with history h = (0, 0)), the proportion of those from which
the first move is to the left gives an estimator for β⋆

α⋆+β⋆ . Among the sites visited at least twice
from which the first move is to the left (sites with history h = (1, 0)), the proportion of those
from which the second move is also to the left gives an estimator for β⋆

+1
α⋆+β⋆+1 . Using these two

observations, we can estimate α⋆ and β⋆.
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Table 1
Parameter values for each experiment.

Simulation Fixed parameter Estimated parameter

Example I (a1, a2) = (0.4, 0.7) p⋆
= 0.3

Example II – (a⋆
1, a⋆

2, p⋆) = (0.4, 0.7, 0.3)

Example III – (α⋆, β⋆) = (5, 1)

Table 2
Quartiles of the hitting times Tn obtained from 1000 iterations in
Examples I and III and for values n equal to 1000, 5000 and 10,000.

Simulation Value of n (n) Quartiles of the hitting times Tn
Q1 Q2 Q3

Example I 1,000 6,218 6,769 7,482
5,000 33,224 34,643 36,316

10,000 67,512 69,662 72,029

Example III 1,000 1,616 1,660 1,710
5,000 8,212 8,322 8,438

10,000 16,482 16,640 16,808

5.2. Experiments

We now present the three simulation experiments corresponding respectively to Examples I
to III. The comparison with Adelman and Enriquez’s procedure is given only for Examples I
and III. In those cases, while Adelman and Enriquez’s procedure may be easily performed, we
already obtain much better estimates with our approach. In the case of Example II, we were not
able to perform (even only numerically) the mapping inversion needed to compute Adelman and
Enriquez’s estimator. Thus, in the experiments presented below, we choose to only consider our
estimation procedure in the case of Example II.

For each of the three simulations, we a priori fix a parameter value θ⋆ as given in Table 1
and repeat 1000 times the procedure described below. We first generate a random environment
according to νθ⋆ on the set of sites {−104, . . . , 104

}. In fact, we do not use the environment values
for all the 104 negative sites, since only few of these sites are visited by the walk. However the
computation cost is very low comparing to the rest of the estimation procedure, and the symmetry
is convenient for programming purpose. Then, we run a random walk in this environment and
stop it successively at the hitting times Tn defined by (2), with n ∈ {103k; 1 ≤ k ≤ 10}. For
each stop, we estimate θ⋆ according to our procedure and Adelman and Enriquez’s one (except
for the second simulation). In the case of Example I, the likelihood optimisation procedure was
performed as a combination of golden section search and successive parabolic interpolation.
In the cases of Examples II and III, the likelihood optimisation procedures were performed
according to the “L-BFGS-B” method of [7] which uses a limited-memory modification of the
“BFGS” quasi-Newton method published simultaneously in 1970 by Broyden, Fletcher, Goldfarb
and Shanno. In all three cases, the parameters in Table 1 are chosen such that the RWRE is
transient and ballistic to the right. Note that the length of the random walk is not n but rather Tn .
This quantity varies considerably throughout the three setups and the different iterations. Table 2
shows the quartiles of the hitting times Tn for some selected values n (n = 1000, 5000 and
10,000), obtained from 1000 iterations of the procedures in Examples I and III.
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Fig. 1. Boxplots of our estimator (left and white) and Adelman and Enriquez’s estimator (right and grey) obtained from
1000 iterations and for values n ranging in {103k; 1 ≤ k ≤ 10} (x-axis indicates the value k). Top panel displays
estimation of p⋆ in Example I. Second and third panels display estimation of α⋆ (second panel) and β⋆ (third panel) in
Example III. The true values are indicated by horizontal lines.

Fig. 1 shows the boxplots of our estimator and Adelman and Enriquez’s estimator obtained
from 1000 iterations of the procedures in Examples I and III, while Fig. 2 only displays these
boxplots for our estimator in Example II. First, we shall notify that in order to simplify the
visualisation of the results, we removed in the boxplots corresponding to Example I (Bottom
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Fig. 2. Boxplots of our estimator obtained from 1000 iterations in Example II and for values n ranging in {103k; 1 ≤

k ≤ 10} (x-axis indicates the value k). Estimation of a⋆
1 (top panel), a⋆

2 (middle panel) and p⋆ (bottom panel). The true
values are indicated by horizontal lines.

panel of Fig. 1) about 0.8% of outliers values from our estimator, that were equal to 1. Indeed
in those cases, the likelihood optimisation procedure did not converge, resulting in the arbitrary
value p̂ = 1. In the same way for Example III, we removed from the figure parameter values
of Adelman and Enriquez’s estimator that were too large. It corresponds to about 0.7% of values
α̂ larger than 10 (for estimating α⋆

= 5) and about 0.2% of values β̂ larger than 3 (for estimating
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β⋆
= 1). In the following discussion, we neglect these rather rare numerical issues. We first

observe that the accuracies of the procedures increase with the value of n and thus the walk length
Tn . We also note that both procedures are unbiased. The main difference comes when considering
the variance of each procedure (related to the width of the boxplots): our procedure exhibits a
much smaller variance than Adelman and Enriquez’s one as well as a smaller number of outliers.
We stress that Adelman and Enriquez’s estimator is expected to exhibit its best performance
in Examples I and III that are considered here. Indeed, in these cases, inverting the system of
equations that link the parameter to the moments of the distribution is particularly simple. One
explanation for the worse performance of Adelman and Enriquez’s estimator comparing to our
procedure is the fact that only a few part of the trajectory is used in the estimation. As it can be
seen in Table 2, in the case of Example I the length Tn of the path is up to 7 times larger than
the number of visited sites on which Adelman and Enriquez’s procedure is based. In the case of
Example III, this length is only about 1.6 times larger than the number of visited sites. But the
method also relies on the number of sites visited at least twice, which is even smaller.
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