
Statistical analysis of graphs

Catherine Matias

CNRS - Laboratoire de Probabilités, Statistique et Modélisation, Paris
catherine.matias@math.cnrs.fr

http://cmatias.perso.math.cnrs.fr/

USP- October 2023

http://cmatias.perso.math.cnrs.fr/

Outline

▶ Part I: Introduction and basics
▶ Part II: Random graphs models
▶ Part III: Community detection

Part I

Introduction and basics

Outline Part 1

Introduction

Visualisation

Descriptive statistics

Examples of graphs I

Figure: A social network.

Examples of graphs II

Figure: Internet and WWW. Source: [1].

Examples of graphs III

Figure: Gene regulatory network of human diseases.

Examples of graphs IV

Figure: Subway network in Berlin.

Examples of graphs (foll.) I

Figure: Terrorist network 09/11. Source: [5].

Examples of graphs (foll.) II

Figure: Bipartite networks of genes and brain voxels. Source: [3].

Examples of graphs (foll.) III

Figure: Simplified trophic network (food web). A directed link
indicates who is the prey of whom.

Outline Part 1

Introduction

Visualisation

Descriptive statistics

Different visualisations of the same graph I

Warning: Visualisation can be misleading!

Figure: 2 representations of the same blogs network [4].

Different visualisations of the same graph II

Figure: Different visualisations of the food web from Figure 7.

Different visualisations of the same graph III

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure: Dotplot representation of a graph: random node numbering
(left) and specific permutation of the nodes (right)

Examples of representations
In circle

1

2

3
4

5
6

78910
11

12
13

14

15

16

17

18
19

20
21

22 23 24 25
26

27
28

29

30

as star

1 2

3

4
5

6
7

891011
12

13
14

15

16

17

18

19
20

21
22 23 24 25

26
27

28
29

30

randomly

1

2

3 4

5

6

7

8

9

10
11

12

13

14

1516

17

18

19

20

21

22

2324

25

26

27
28

29

30

Fruchterman Reingold

1

2

3
4

5

6

7

8

9 10

11
12

13

14
15

16
1718

19
20

21

22

23
24

25

26

27

2829
30

Kamada and Kawai

1

2

34

5

6

7

8

910

11

12

13

14
15

16

17 18

19

20
21

22

23

24

25
26

27

28

29

30

Multi−dimensional scaling

1

2

3

4

5

6

7

8
9

1011

12

13

14

15

16

17
18

19
202122

23

24

25

26

27

28

29
30

Outline Part 1

Introduction

Visualisation

Descriptive statistics

Vocabulary

Basic definitions
▶ A graph G = (V,E) is a set of nodes (or vertices)

V = {1, . . . ,n} and a set of edges (or links) E ⊂ V2

▶ n is the order; |E| is the size
▶ graphs can be undirected ({i, j} ∈ E) or directed ((i, j) ∈ E);

binary (edge {i, j} is present or absent) or weighted (present
edge {i, j} has a value wij; when wij ∈N this is a
multiplicity); with or without self-loops ({i, i} is a self-loop);

▶ a node is isolated if it doesn’t belong to any edge;
▶ a bipartite graph is s.t. V = V1 ∪ V2 and V1 ∩ V2 = ∅ and

edges e = {u, v} ∈ E are such that u ∈ V1, v ∈ V2 (e.g.
bipartite network of genes and brain voxels)

Data structures

▶ Adjacency matrix A = (Aij)i,j∈V where Aij = 1{{i, j} ∈ E} (or
Aij = wij)
▶ Undirected graphs have symmetric adjacency matrices
▶ when graphs are sparse (ie not too many edges), this

representation as a matrix is not efficient (n2 size);
▶ List of interactions: this encoding is the most efficient.

▶ NB: if the list of nodes is not additionally given, there
cannot be isolated nodes;

0 1 1 0 0 1 1
1 0 1 0 0 0 0
1 1 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0


1

2

3

4

5

6

7

1,2
1,3
1,6
1,7
2,3
3,4

Density

A simple binary graph has at most
(n

2
)

edges.
Its density is:

den(G) =
|E|(n
2
) = |E|

n(n − 1)/2
.

▶ the complete graph Kn is the undirected graph with n
nodes that contains all possible

(n
2
)

edges; it has density 1.
▶ a clique is a complete subgraph in a graph

Neighbors and degrees I

▶ Neighbors of node i ∈ V areVi = {j ∈ V, j , I, {i, j} ∈ E}:
nodes connected to i in the graph

▶ Degree of node i is the number of its neighbours
di = |Vi| =

∑
j,i Aij =

∑
j,i Aji

▶ In directed graphs, one may define indegrees and
outdegrees: dout

i =
∑

j,i Aij and din
i =

∑
j,i Aji

▶ Degrees are obtained as rowSums or colSums of adjacency
matrix

▶ we have
∑n

i=1 di = 2|E|
▶ Mean degree d̄ = n−1 ∑n

i=1 di

▶ a d-regular graph has constant degree d (ex infinite grid)
▶ Hubs (informal) a hub is a large degree node in a graph

Neighbors and degrees II
Degree distributions only loosely characterize graphs

Figure: Example of 2 graphs with same degree sequence.

Neighbors and degrees III
Graphs often show degree distributions with heavy tails, such
as scale-free distributions

Paths, connectivity, diameter I

Paths
▶ a path between nodes i, j ∈ V is a sequence of edges

e1, . . . , ek ∈ E such that et and et+1 share a node, i ∈ e1 and
j ∈ ek;

▶ Its length is k;
▶ a cycle is a path that connects a node to itself;

1

2

3

4

5 6

7
8

9

10

11

12 13

14

15

16

17

18

19

20

Paths, connectivity, diameter II
Connectivity

▶ a connected component (cc) is a nodes subset
C = {v1, . . . , vk} ∈ V such that for any vi, vj ∈ C there exist a
path that connects them;

▶ C is a maximal cc (mcc) if C = V or if for any v ∈ V \ C, the
subset C ∪ {v} is not a cc;

▶ an isolated node forms a mcc;
▶ any graph may be decomposed into a unique collection of

mcc;
▶ there are at most n − |E| such cc;
▶ the graph is connected when it has a unique mcc;
▶ Giant component (informal): In a sequence of graphs Gn

each with n nodes, let Cn be the largest mcc in Gn. We say
that Cn is a giant component if its relative size |Cn|/n does
not tend to 0 as n increases;

Paths, connectivity, diameter III

Diameter
▶ the distance ℓij between 2 nodes i, j ∈ V is the length of the

shortest path between i, j (and +∞ if the nodes are not in
the same cc)

▶ the mean distance in the graph is ℓ̄ = 1/(n(n − 1))
∑

i,j ℓij
▶ diameter diam(G) = max{ℓij; i, j ∈ V};
▶ It’s finite only if the graph is connected;
▶ Small-world property (informal): a graph has the

small-world property whenever ℓ̄ is of the order of log(n);
▶ see the small-world experiment by Stanley Milgram; and

its modern version: three and a half degrees of separation
[2]

https://en.wikipedia.org/wiki/Small-world_experiment

Clustering coefficients, transitivity, centrality I

Friends of my friends are my friends . . .
▶ Let Hi be the subgraph induced by the neighbors of node

i ∈ V, i.e.Hi = (Vi,Ei) whereVi is the set of neighbors and
Ei set of edges {j, k} ∈ E st j, k ∈ Vi.

▶ Clustering coefficient Ci of node i is

Ci =

{ 2|Ei|
di(di−1) if di ≥ 2,
0 otherwise

▶ It is the local density of the subgraph Hi and thus Ci ∈ [0, 1]
▶ the mean clustering coefficient is C̄ = 1

|V|
∑

i∈V Ci

▶ transitivity

T =
♯ triangles

♯ triplets of connected nodes

Clustering coefficients, transitivity, centrality II

Figure: Here Ci = 1 for all nodes except a, b and thus C̄ tends to 1.
However T tends to 0.

Clustering coefficients, transitivity, centrality III

Centrality

▶ Degree centrality CD(i) = di

▶ Closeness centrality CP(i) =
(∑

j∈V ℓij
)−1
,where ℓij is the

distance between i, j

▶ Betweenness centrality CB(i) =
∑

j,k:j,k,i
gjk(i)
gjk

, where gjk is
the number of shortest paths from j to k, and gjk(i) is the
number of shortest paths from j to k that go through i;

Motifs I

Figure: Examples of motifs: stars (k-stars with k = 3 and k = 8),
cliques (K3 or triangle and K6), cycle of length 8, . . .

Motifs II

▶ Counting frequencies of small sizes motifs may be a way to
characterize the topology of the graph;

▶ When the size of the motif becomes large, enumerating all
occurrences of a motif becomes a computationally difficult
problem;

▶ with a null model, one can test the hypothesis that the
observed frequencies of a motif are too large or too small
wrt to some expected value;

References for part 1 - I

[1] Albert, R. and A.-L. Barabási.
Statistical mechanics of complex networks.
Rev. Mod. Phys. 74, 47–97, 2002.

[2] Bhagat, S., M. Burke, C. Diuk, I. O. Filiz, and S. Edunov
(2016).
Three and a half degrees of separation.
facebook research blog https://research.fb.com/
three-and-a-half-degrees-of-separation/.

[3] Ji, S., W. Zhang, and R. Li
A probabilistic latent semantic analysis model for
coclustering the mouse brain atlas.
IEEE/ACM Transactions on Computational Biology and
Bioinformatics 10(6), 1460–1468, 2014.

https://research.fb.com/three-and-a-half-degrees-of-separation/
https://research.fb.com/three-and-a-half-degrees-of-separation/

References for part 1 - II

[4] Kolaczyk, E. D. and G. Csárdi (2014).
Statistical analysis of network data with R.
Use R! Springer, New York.

[5] V. Krebs.
Unloaking terrorist networks.
Connections, 24(3), 2001.

Part II

Some random graph models

Outline Part 2

The Erdős-Rényi model

Modeling the degree distribution

Preferential attachment

Exponential random graph model

Latent position model

Stochastic Block Model

Random graph models

A random graph model is simply a (finite or countable)
collection G of graphs together with a probability distribution
P on this collection.

Erdős-Rényi model I
▶ Introduced at the end of the 50’s, it’s the simplest random

graph model
▶ 2 variants, called G(n,M) and G(n, p)
▶ G(n,M) is the collection of all simples graphs (binary,

undirected, with no self-loops nor multiple edges) with n
nodes and M edges, together with the uniform distribution
P on that collection.

▶ G(n,M) contains
(N
M
)

different graphs, where N = n(n − 1)/2
and the occurrence probability of each of these graphs is
1/

(N
M
)
.

▶ G(n, p) is the collection of all simple graphs generated with
2 parameters: n is the number of nodes and p ∈ (0, 1) the
probability of connection of any 2 nodes,

▶ each graph in G(n, p) is such that its adjacency matrix
A = (Aij) contains iid random variables ∼ B(p) (for
1 ≤ i < j ≤ n).

Erdős-Rényi model II

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

1

2

3

4
5

6

7

8

910

11

12

13 14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5
67

8

9

10

11

12

13

14

15

Figure: Erdős-Rényi graphs G(n, p) with n = 15 and
p ∈ {0.05, 0.2, 0.6, 0.9}.

Erdős-Rényi model III

Exercise
Let n and p be fixed. Consider a graph generated under the model
G(n, p):

1. Give the average number of edges in this graph.
2. Let M ≥ 0. What is the probability that the graph is of size M?
3. Give the law of the random variable Di which denotes the degree

of the node i in the model G(n, p). Deduce the expectation of the
degree Di.

4. Study the convergence of D̄n/(n − 1) when n→∞, where D̄n
denotes the average degree of the graph under G(n, p).

5. Give an approximation of the law of Di when n is large.

Erdős-Rényi model IV

Simulation of large graphs

▶ In principle, it is enough to generate n(n − 1)/2 rv with
distribution B(p);

▶ When n is large and p = pn is the order of 1/n, this
procedure is very inefficient (the expected degree of a node
is finite and therefore most variables are 0).

▶ A more efficient procedure is to simulate the number M of
edges present in the graph according to a binomial law
Bin(n(n − 1)/2, p), and then draw the positions of the edges,
i.e. draw without replacement M positions among the
n(n − 1)/2 possible ones;

▶ the computational complexity is then O(n + |E|) instead of
O(n2) (See [4], section 6.2.3 for more details).

Erdős-Rényi model V

Properties in G(n, p)

▶ The degree Di of the node i satisfies Di ∼ Bin(n − 1, p)
▶ (LLN): D̄/(n − 1) converges to E(Aij) = p
▶ In particular, E(Di) = (n − 1)p = pn(1 + o(1)) (when n large

and p small)
▶ When n→ +∞ and p→ 0 with np→ λ > 0 then the law

Bin(n − 1, p) is approximated by a Poisson law P(λ).
▶ Binomial and Poisson distribution are light-tailed

distributions; thus Erdős-Rényi model does not fit well real
networks

Outline Part 2

The Erdős-Rényi model

Modeling the degree distribution

Preferential attachment

Exponential random graph model

Latent position model

Stochastic Block Model

Scale-free (or power law) distribution

Many real world networks are such that their degree
distribution is a power-law:

fDi(k) := P(Di = k) =
c

kγ
,

where c is a normalising constant and γ > 0 is the exponent of
the power law.

Configuration models I
We can define random graph models using only the
distribution of the degrees Di of the nodes:

1. Power law of degrees: We consider random graphs with n
nodes such that D1, . . . ,Dn are i.i.d according to a power
law

2. Model with fixed degrees: Let d = (d1, . . . , dn) be a
(possible) sequence of degrees of nodes and FD(d) the
collection of all the graphs on n nodes which have exactly
the sequence of degrees d, provided with uniform
probability.

3. Model with variable degrees: Let d = (d1, . . . , dn) be a
(possible) sequence of degrees of nodes and RD(d) the
random graph model on n nodes such that all edges Aij are
independent, with law B(pij) with pij = didj/C where C
positive constant such that 0 ≤ pij ≤ 1 (for example
C = maxi,j didj).

Configuration models II

Rems on the sequence of degrees

▶ In the FD(d) model, all graphs have exactly the sequence of
degrees d.

▶ In the power law model, we start by drawing a sequence d
of degrees according to this power law, then we consider a
graph which has this sequence of fixed degrees.

▶ In the RD(d) model, the degrees are only approximately
equal to d. Indeed in that case

E(Di) =
∑
j,i

E(Aij) =
∑
j,i

pij =
di

C

∑
j,i

dj =
di(2|E| − di)

C
.

By taking di not too large and C ≃ 2|E|we obtain E(Di) ≃ di.

Simulation

▶ The power law model of degrees is not constructive nor
simply generative: if we draw a sequence of Di as
indicated, it is unlikely that the realization satisfies the
conditions of the Erdős-Gallai theorem and therefore is
achievable as a sequence of degrees of a graph.

▶ The simulation of graphs in the random degree RD(d)
model is direct since it suffices to draw the Aij from
independent (not identically distributed) Bernoulli
distributions.

▶ To generate graphs in FD(d), we use either a matching
algorithm; either a rewiring or switching algorithm.

Matching algorithm

▶ Input: d = (d1, . . . , dn); Output: list of edges.
▶ Initialization: Edge.List← (); Node.List←()
▶ Create fake Node.List: For i ∈ {1, . . . ,n},

▶ While di ≥ 1,
▶ Node.list← concatenate(Node.List,i)
▶ di ← di − 1

▶ Create Edge.List: While (Node.List is not empty)
▶ Draw i, j uniformly and without replacement in Node.List
▶ Edge.List← concatenate(Edge.List, {i, j})

▶ Simple graph test: If Edge.List contains loops or multiple
edges, the output is invalid. Let’s start again.

Rewiring algorithm

▶ Input: Edge.List; Nb.iter
▶ Output: Edge.List
▶ While(Nb.iter ≥ 1)

▶ Choose e1 = {u1, v1} and e2 = {u2, v2} uniformly in Edge.List
▶ Propose the creation of e′1 = {u1, v2}, e′2 = {u2, v1}
▶ If no loop or multiple edge created: replace e1, e2 with e′1, e

′

2
▶ Nb.iter← Nb.iter -1

Matching versus rewiring

▶ matching algorithm does not necessarily create a simple
graph (before the final test, because possibility of loops and
multiple edges)

▶ If the produced graph is not simple, it must be discarded
and we draw a new one. Very inefficient algorithm!

▶ a naive correction of this algorithm, which verifies that i , j
or that the edge {i, j} does not yet exist may either not
converge, or give biased sampling from all the possible
graphs

▶ rewiring algorithm is more efficient but it works only from
an already existing graph which has the sequence of
degrees that we have set for ourselves.

▶ In addition, it requires to set the number of iterations.
Empirically, around 100 times the number of edges in the
graph.

Application to testing

The behavior of the model FD(d) can be studied using
(expensive) numerical simulations.
▶ In order to test significance of a statistic Tobs measured on

the observed graph, one can define the null model H0 as the
hypothesis FD(d), where d is the observed degree sequence

▶ By simulating a large number of graphs under H0 (using
the rewiring algorithm), one obtains a sequence of values
for the random variable T and thus its empirical
distribution under H0

▶ Comparing Tobs with the quantiles of that distribution, one
can test wether T is too large or too small wrt to FD(d).

Outline Part 2

The Erdős-Rényi model

Modeling the degree distribution

Preferential attachment

Exponential random graph model

Latent position model

Stochastic Block Model

Preferential attachment I

Rich get richer

Principle

▶ Start with a small initial graph G0 = (V0,E0) with degrees
sequence (d1,0, . . . , d|V0|,0) ;

▶ construct an increasing (in the number of nodes) sequence
of graphs Gt = (Vt,Et).

Preferential attachment II

Iterations
At each time step t ≥ 1,
▶ a new node it with degree m ≥ 1 is added

Vt = Vt−1 ∪ {it} = V0 ∪ {i1, . . . , it}.
▶ This new node connects with m existing nodes chosen with

probability dj,t−1/(2|Et−1|) where dj,t is the degree of node j
at time t and 2|Et| is the total number of edges at time t
(preferential attachment to large degree nodes),

▶ Update degrees dj,t for all nodes j ∈ Vt.

At final timestep T, the graph has |V0| + T nodes and |E0| + Tm
edges.

Preferential attachment III

(Dis)-advantages

▶ , This is a dynamic generative model that can be used to
simulate data

▶ , (Under certain conditions) the degree distribution of the
graph follows a power law.

▶ / Problem with the choice of parameters G0,m,Tfinal.
Impact of this choice on the graph obtained?

▶ / From a statistical point of view, this is not a model that
can be fitted to the data (with one exception, see [2])

Outline Part 2

The Erdős-Rényi model

Modeling the degree distribution

Preferential attachment

Exponential random graph model

Latent position model

Stochastic Block Model

Exponential random graph model (ERGM) I

▶ n ≥ 1 an integer
▶ An the set of binary adjacency matrices (symmetric or not)

with size n × n
▶ for any A ∈ An, let S(A) ∈ Rp denote a vector of statistics

on the graph

ERGM(S) is defined by the probability {Pθ}θ∈Rp overAn:

∀θ ∈ Rp,∀A ∈ An, Pθ(A) =
1

c(θ)
exp

(
θ⊺S(A)

)
,

where c(θ) =
∑

A∈An
exp(θ⊺S(A)) is a normalizing constant.

Exponential random graph model (ERGM) II

Comments
▶ S(A) automatically becomes a vector of exhaustive

statistics of the model: All graphs having the same
observed value of S have the same probability of
occurrence under ERGM(S).

▶ In practice, S(A) can contain the number of edges,
triangles, k-stars, . . . or even covariates of the model.

Examples I

the simplest

▶ If S0(A) = vec((Aij)1≤i<j≤n) then ERGM(S0) is such that
Pθ(A) ∝ exp(

∑
i<j θijAij),

where ∝means ’proportional to’.
▶ the rv Aij are independent and non identically distributed

with Ai,j ∼ B(pij) and pij = exp(θij)/(1 + exp(θij)).
▶ the model has as many parameters as observations!

Examples II

a particular case
When we moreover impose the constraint θij = θ for all i, j, then
we obtain Erdős-Rényi model

Pθ(A) ∝ exp(θS1(A)),

where S1(A) =
∑

i,j Aij number of edges and
p̂ = S1(A)/[n(n − 1)/2] (this is the MLE).

Examples III

a less elementary example

▶ If S(A) = (S1(A),S2(A)) with S1 as above and
S2(A) =

∑
i,j,k AijAik then the rv (Aij)i<j are non independent

and there is no analytical expression for a MLE
▶ For k ≥ 1 let Sk(A) be the number of k-stars and

T(A) =
∑

ijk AijAikAjk the number of triangles. Markov
random graphs rely on S = (S1, . . . ,Sn−1,T).

▶ In practice, k = n − 1 is much too large and we use
k << n − 1 for most ERGMs.

Problems with ERGM

▶ The constant c(θ) may not be computed. Parameter
estimation methods based on MCMC with for instance
Gibbs sampling can get rid of that issue;

▶ Maximisation of the likelihood in ERGMs is a very difficult
pbm, and it is ill-posed. These models often degenerate in
the sense that either they concentrate the mass of the
distribution on the complete graph Kn, or on the empty
graph, or on a mixture of these 2 extremes [1, 5]

I do not recommend using ERGMs.

Outline Part 2

The Erdős-Rényi model

Modeling the degree distribution

Preferential attachment

Exponential random graph model

Latent position model

Stochastic Block Model

Latent position model I

Principe

▶ Suggested to study social networks in [3];
▶ Latent variables {Zi}1≤i≤n (ie unobserved) associated with

each node live in the space R2 which represents a social
space

▶ The proximity of individuals in this space induces a
greater probability of connection in the graph. Thus, only
the relative position of the latent variables between them is
important for the model (and not their absolute position).

Latent position model II

Definition
▶ Consider an undirected binary graph (Aij)1≤i,j≤n

▶ (possibly) covariate vectors xij ∈ R
s on each relation (i, j).

▶ We use a logistic regression model

logit(P(Aij = 1|Zi,Zj, xij)) =
P(Aij = 1|Zi,Zj, xij)

1 − P(Aij = 1|Zi,Zj, xij)

= α + β⊺xij − ∥Zi − Zj∥,

where ∥ · ∥ is the Euclidean norm in the latent space R2.

Latent position model III

Remarks
▶ The model parameters are (α, β) ∈ R ×Rs. The α parameter

adjusts the density of the graph.
▶ We can replace the Euclidean norm with any distance.
▶ The variables {Zi}i can only be reconstructed up to rotation,

axial symmetry and translation.

The R package latentnet proposes a Bayesian inference
procedure in this model.

Comments and extensions of the latent position model

Comments
▶ Originally, the model is proposed with Zi ∈ R

q but there is
no statistical way to choose the dimension q

▶ the software latentnet deals with q = 2, 3 but there is no
reason to believe that this is a “good” choice. It’s only that
then you can solve the problem.

Extensions
▶ You can mix the latent position model with a clustering

approach: assume that the latent positions Zi follow a
mixture of multivariate Gaussian variables, then you will
obtain a clustering of the nodes in your graph;

▶ There is also a directed version of the model where you
replace the distance ∥Zi − Zj∥ by a normalized scalar
product Z⊺i Zj/∥Zi∥

Outline Part 2

The Erdős-Rényi model

Modeling the degree distribution

Preferential attachment

Exponential random graph model

Latent position model

Stochastic Block Model

Stochastic block model I

1 2

3

4

5

6

7

84

5

6

7

8

p••

9

10
p••

p••

p••

p••

n = 10,Z5• = 1
A12 = 1,A15 = 0

▶ K groups (=colors •••).
▶ {Zi}1≤i≤n i.i.d. vectors Zi = (Zi1, . . . ,ZiK) ∼ M(1,π), with
π = (π1, . . . , πK) groups proportions. Zi not observed
(latent).

▶ Observations: presence/absence of an edge {Aij}1≤i<j≤n,
▶ Conditional on {Zi}’s, the r.v. Aij are independent B(pZiZj).

Stochastic block model II

Comments
▶ SBM represents a compromise between 2 extremes cases:

▶ in Erdős-Rényi graphs, the rv Aij where iid B(p) with the
same value p for every edge; this was too homogeneous;

▶ in RD(d), the rv Aij where independent with B(pij), each one
having its own value pij (no estimation possible!)

▶ Besides, the rv Aij are not independent here (only
conditionally independent), which is more interesting

▶ SBM automatically gives you a clustering of the nodes:
groups of nodes that have the same probability of
connection to the other groups.

▶ For all its advantages, it’s a widely used model.

References for part 2 - I

[1] Chatterjee, Sourav and Diaconis, Persi (2013).
Estimating and understanding exponential random graph
models.
Ann. Statist. 41(5), 2428–2461.

[2] Gao, F and van der Vaart, A (2022).
Statistical Inference in Parametric Preferential Attachment
Trees.
ArXiV preprint https://arxiv.org/abs/2111.00832.

[3] Hoff, P., A. Raftery, and M. Handcock (2002).
Latent space approaches to social network analysis.
J. Amer. Statist. Assoc. 97(460), 1090–98.

[4] Kolaczyk, E. D. (2009).
Statistical Analysis of Network Data: Methods and Models.
Springer.

References for part 2 - II

[5] Schweinberger, Michael and Handcock, Mark S. (2015).
Local dependence in random graph models:
characterization, properties and statistical inference.
JRSSB 77(3), 647–676.

Part III

Community detection

Outline Part 3

Introduction

Similarity graphs

Laplacian matrices of graphs

Spectral clustering algorithms

Practical comments

Introduction I

Partition the nodes of the graph into a finite number of groups.

Interest
▶ Summarize the information of a graph;
▶ Find classes of homogeneous nodes, i.e. individuals with

similar behavior.

Introduction II

Group types

▶ Several existing clustering methods;
▶ In this part we limit ourselves to the detection of

communities: i.e. groups of nodes that are strongly
connected to each other and poorly connected to
individuals in other groups.

▶ More general groups can be considered with other
techniques (see SBM).

▶ In this course, we also limit ourselves to partitions: the
groups have an empty intersection (and cover all nodes).
There exist methods that do overlapping clustering.

Introduction III

Community detection methods

▶ Techniques based on modularity;
▶ Random walk methods (type InfoMap);
▶ Probabilistic methods (ex SBM), often more general than

communities;
▶ Spectral clustering (detailed here);
▶ . . .

Modularity based methods I

Principle

▶ We give ourselves a measure of the quality of a partition of
the nodes of the network into groups;

▶ We seek to optimize this quality measure;
▶ As the number of possible partitions is too large to be

explored exhaustively, heuristics are necessary to find the
optimum.

Modularity based methods II

Modularities
The most popular is the Newman & Girvan [2] modularity. For
a fixed partition C into K classes, we set

Q(C) =
1

2|E|

∑
i,j;C(i)=C(j)

(
Aij −

didj

2|E|

)
where |E| is the total number of edges in the graph, C(i) is the
class of node i in the partition C and di is the degree of node i.
Equivalently

Q(C) =
K∑

k=1

(∑
i,j;C(i)=C(j)=k Aij

2|E|

)
−

(∑
i;C(i)=k di

2|E|

)2

.

Modularity based methods III

Implementations

▶ Louvain algorithm [1] is the most famous one;
▶ The R package igraph contains a function
cluster louvain

▶ see also variants [5] and
https://github.com/vtraag/louvain-igraph

Disadvantages

▶ Very unstable: partitions vary a lot from one try to another
one

▶ No guarantee of reaching the optimum.

https://github.com/vtraag/louvain-igraph

Methods based on random walks

Principle

▶ We consider a walker which starts from a node (taken at
random) and which visits the graph by drawing uniformly
at random a neighbour of its current position.

▶ If the graph is organized into communities, the walker will
spend a lot of time in one of them (he remains stuck in the
community). By repeating the process, we can thus
determine subgroups of nodes strongly connected.

Spectral clustering I

A very good (but quite old) tutorial on spectral clustering is [6].

Beyond graphs

▶ Spectral clustering is used more largely than just for graph
clustering

▶ Usable on a classic data table, for example as an alternative
to the k-means algorithm, by constructing a data similarity
graph.

Spectral clustering II

Characteristics of spectral clustering

▶ Classification adapted to the search of communities
(almost exclusively);

▶ Which is not based on a probabilistic model;
▶ But which has the advantage of working on very large

graphs.
▶ Technique limited to undirected graphs (edges =

similarities or distances, therefore symmetrical). Binary or
valued.

Outline Part 3

Introduction

Similarity graphs

Laplacian matrices of graphs

Spectral clustering algorithms

Practical comments

Spectral clustering on a dataframe I

Data structure
▶ Dataframe of size n × p, i.e. n observations x1, . . . , xn with

xi ∈ R
p has dimension p.

▶ We will do (unsupervised) classification of this set of n
points.

▶ Usual techniques: k-means or hierarchical classification.
Based on similarity sij ≥ 0 (inversely proportional to
distance) between pairs of observations xi, xj.

Spectral clustering on a dataframe II

Principle for the construction of a similarity graph

▶ We construct G = (V,E) with V = {v1, . . . , vn} set of nodes of
the graph and e = {vi, vj} is an edge of the graph if the
similarity sij between xi, xj is greater than a certain
threshold.

▶ For a binary graph: sij ≥ s =⇒ {vi, vj} ∈ E and
sij < s =⇒ {vi, vj} < E ;

▶ For a valued graph: sij ≥ s =⇒ {vi, vj} ∈ E and the edge
carries the value sij, otherwise the edge is not present.

▶ In practice, several constructions are possible (see below).

Spectral clustering on a dataframe III

Link between data clustering and graph communities
The problem of clustering points x1, . . . , xn can be reformulated
as a problem of partitioning the similarity graph where we look
for groups of nodes such that within-group connections are
large (i.e. the corresponding vectors xi in the same group are
very similar to each other) and such that the connections
between-groups are small (i.e. little similarity between the
vectors xi which correspond to nodes in different groups).

Different similarity graphs I

Dense (or complete) similarity graph

▶ The neighborhoods in Rp (ie the distance between points)
define the similarity.
Ex: ∀i , j we set sij = exp(−∥xi − xj∥

2/(2σ2)) for a certain
σ2 > 0 which controls the size of neighborhouds in Rp and
sii = 0.

▶ Valued graph, each edge (i, j) being weighted by sij > 0.
▶ As the similarities are strictly positive, we obtain a dense

(complete) valued graph (all edges are present).

ϵ-neighborhood graph
We set a threshold ϵ > 0 and we connect all the nodes vi, vj such
that sij ≥ ϵ (i.e. distance between the vectors xi, xj below a
threshold). The graph thus constructed is binary.

Different similarity graphs II

k-nearest neighbor graph

▶ We start by defining a directed graph G̃ = (V, Ẽ). If xj is one
of the k nearest neighbors of xi (i.e. dij is among the k
smallest elements of {dil; l , i} or sij is among the k largest
elements of {sil; l , I}), then we create an (oriented) edge
from vi to vj, i.e. (vi, vj) ∈ Ẽ.

▶ From this directed graph G̃, we can define undirected
G = (V,E) in two different ways:
▶ Let {vi, vj} ∈ E as soon as (vi, vj) ∈ Ẽ or (vj, vi) ∈ Ẽ (graph of

the nearest k neighbors) ;
▶ Let {vi, vj} ∈ E as soon as (vi, vj) ∈ Ẽ and (vj, vi) ∈ Ẽ (graph of

the nearest k mutual neighbors).

▶ The edges are then given their weight sij to form a valued
graph.

Different similarity graphs III

Comments
▶ The graph of k-nearest neighbors is a sort of compromise

between the dense graph and the graph of ϵ-neighborhood:
both have a thresholding step which reduces the noise, but
in the former, we keep the values of the largest similarities
sij (unlike ϵ-neighborhood and like dense graph).

▶ The choice of the similarity graph between the vectors xi
influences the result of the partitioning that we get on
points. But we don’t know which choice is better a priori.

▶ In the following, we have a graph (binary or valued),
which is already constructed and which defines the
relationships between our entities. We will apply spectral
clustering on this graph.

Outline Part 3

Introduction

Similarity graphs

Laplacian matrices of graphs

Spectral clustering algorithms

Practical comments

Notation I

▶ G undirected valued graph, A its valued adjacency matrix
(size n × n) with positive entries Aij ≥ 0 (similarities).

▶ D = diag(d1, . . . , dn) diagonal matrix (of size n × n) where di
= valued degree of node i in G, i.e. di =

∑
j Aij =

∑
j Aji (sum

of the weights of the edges from i).
▶ There are several definitions of the Laplacian matrix of a

graph. The interest of these matrices lies in the properties
of their spectrum (=eigenvalues and eigenvectors).

Definitions of Laplacian matrices
Let G be a graph, we define
▶ a non-normalized Laplacian L = D − A ;
▶ a normalized Laplacian

LN = D−1/2LD−1/2 = I −D−1/2AD−1/2,

▶ an absolute Laplacian Labs = D−1/2AD−1/2 = I − LN.

Notation II

Remarks
▶ Since D is a diagonal matrix, D−1/2 and D−1 are the

matrices whose diagonal elements are equal to 1/
√

di and
1/di respectively (this is not true if D is not diagonal!).

▶ Left (resp. right) multiplication by diagonal matrix =
multiply row (resp. columns) vectors. Thus, D−1/2A is the
matrix whose rows are the d−1/2

i Ai• (it is a stochastic
matrix) while D−1/2AD−1/2 is the matrix with entries i, j
equal to Aij/

√
didj.

why is this useful? I

Laplacian spectrum

▶ The spectra of these matrices are connected to the maximal
connected components (mcc) of the graph G.

▶ L,LN are real symmetric matrices which have n positive
real eigenvalues (counted with multiplicity), denoted
0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

▶ In particular, 0 is always an eigenvalue of L,LN and its
multiplicity is equal to the number of mcc in the graph G.

▶ Labs has the same eigenvectors as LN but its eigenvalues are
1 − λLn

n ≤ . . . ≤ 1 − λLn
2 ≤ 1 − λLn

1 = 1.

why is this useful? II

From mcc to clusters
▶ If we denote C1, . . . ,Ck ⊂ {v1, . . . , vn} these (unique) mcc

and 1C1 , . . . , 1Ck the indicator vectors of the mcc (defined by
1Cl(i) = 1 if vi ∈ Cl and 1Cl(i) = 0 otherwise), then the
eigenspace associated with the eigenvalue 0 (for L,LN) is
generated by 1C1 , . . . , 1Ck .

▶ In practice, we look at graphs with a single connected
component (otherwise we study them separately). So 0 is
an eigenvalue of multiplicity 1 and the associated
eigenspace is generated by the vector 1: not very
interesting. The study of the spectrum brings nothing
more here!

▶ However, a community is almost a mcc. So we use spectral
decomposition to find communities.

why is this useful? III

In practice

▶ Spectral clustering consists in focusing on the first k
eigenvectors of the Laplacians (i.e. the k eigenvectors
corresponding to the k smallest eigenvalues of L,LN) to
find k communities.

▶ Attention: in L,LN it is the small eigenvalues which
contain the interesting information whereas for Labs we
will see that it is the large eigenvalues, in absolute value !

▶ NB: These eigenvectors are different for the 3 Laplacians (L
and LN or Labs) so the resulting clusterings will a priori also
be different!

Outline Part 3

Introduction

Similarity graphs

Laplacian matrices of graphs

Spectral clustering algorithms

Practical comments

Algorithms I

Preliminaries
▶ There are several variants of algorithms (just as there are

several Laplacians).
▶ We will only see 2: a normalized spectral clustering

algorithm which uses LN [3] and an absolute spectral
clustering algorithm based on Labs [4]

▶ In the following, A is the valued adjacency matrix of an
undirected graph with positive entries.

Algorithms II

Normalized spectral clustering [3]

▶ Input: A of size n × n, symmetric with positive entries;
number k of clusters

▶ Output: Clusters C1, . . . ,Ck that partition {1, . . . ,n}
▶ Procedure:

▶ Compute the normalized Laplacian matrix LN
▶ Compute the k eigenvectors u1, . . . ,uk associated with k

smallest eigenvalues of LN
▶ Form the matrix U of size n× k whose columns are u1, . . . ,uk
▶ Form the matrix T of size n × k by normalizing the rows of

U to have a Euclidean norm 1 (i.e. tij = uij/
√∑

k u2
ik)

▶ Create clusters C1, . . . ,Ck on the n lines of T by k-means
algorithm with k clusters.

Algorithms III

Absolute spectral clustering [4]

▶ Input: A of size n × n, symmetric with positive entries;
number of clusters k

▶ Output: Clusters C1, . . . ,Ck partitioning {1, . . . ,n}
▶ Procedure:

▶ Compute the absolute Laplacian Labs
▶ Compute the first k eigenvectors u1, . . . ,uk of Labs associated

to the k largest eigenvalues in absolute value
▶ Form the matrix U with size n × k whose columns are

u1, . . . ,uk
▶ Create clusters C1, . . . ,Ck on the n rows of U by using

k-means algorithm with k clusters.

Comments

▶ Principle of spectral clustering: transforming the obs.
xi ∈ R

p, 1 ≤ i ≤ n in a new set yi ∈ R
k, 1 ≤ i ≤ n (=the rows

of the matrix U), by using a similarity graph, its associated
Laplacian and its first k eigenvectors. You can see this as an
embedding

▶ Properties of Laplacian matrices imply that this new set
{yi}1≤i≤n is easily clustered into k groups (By simple
k-means).

▶ the k groups obtained tend to form communities = gps of
nodes with a high within-group connection probability
and low between-group connection probability

▶ Absolute spectral clustering finds not only communities
but also bipartite or dis-assortative structures

Outline Part 3

Introduction

Similarity graphs

Laplacian matrices of graphs

Spectral clustering algorithms

Practical comments

Spectral clustering in practice I

About the similarity graph

▶ Choice of similarity (when starting with ordinary dataset)
should depend on the data type.

▶ Difference between ϵ-neighbourhood and k-nearest
neighbour graphs (simple or mutual) = local adaptation to
the neighbourhood of the latter. Neighbourhood sizes are
different depending on the regions of space (larger in
sparse regions, smaller in denser regions).

▶ mutual k-nearest neighbours tends to connect between
them points which are in regions of constant density (like
the simple version) but it does not connect regions with
(very) different densities which are close together. ⇒
compromise between ϵ-neighbourhood and simple
k-nearest neighbours.

Spectral clustering in practice II

About the similarity graph (cont.)

▶ k-nearest neighbour graphs are easier to handle than
Gaussian similarity graph (which is dense/complete).
Preferable; but be careful about the loss of information! We
can by ex. have more mcc in these graphs than desired
number of clusters!

Spectral clustering in practice III

Choice of the parameters of the similarity function
Empirical recommandations:
▶ take k of the order of log(n) for the graph of simple

k-nearest neighbours and something large (no explicit rule)
for the mutual one. In any case, we must look at the
number of mcc obtained, compare it to the number of
desired clusters and adjust accordingly.

▶ take ϵ such that the resulting ϵ-neighbourhood graph is
connected.

▶ there is no rule for choosing σ in the Gaussian similarity.

Spectral clustering in practice IV

Maximal connected components

▶ If the graph has p mcc, then the eigenspace associated with
the eigenvalue 0 (for L,LN) has dimension p and is
generated by the cluster indicators.

▶ However, the output of a spectral decomposition algo is
any orthogonal basis of eigenvectors of this space (i.e. not
necessarily the basis of the indicator vectors but a basis
resulting from a linear combination thereof).

▶ Nonetheless, the k-means algo on these vectors allows us
to simply obtain the clusters.

Spectral clustering in practice V

Choosing the number of eigenvectors

▶ Choice of the number of clusters k = recurrent problem in
clustering.

▶ Here, no probabilistic model therefore no BIC type
criterion or one based on likelihood;

▶ But we can use other ad-hoc criteria, for eg looking at
within-group and between-group similarity.

▶ A common technique is to use the heuristic ’eigengap’: we
choose the number of clusters k that realises the largest
difference λk+1 − λk

Spectral clustering in practice VI

Laplacian choice

▶ To choose which Laplacian matrix to use, it is
recommended to look at the degree distribution of the
graph. If this is homogeneous, so the choice of Laplacian
has little impact on the result. On the other hand, if the
degrees are very different, this is no longer the case.

▶ In general, the degrees are not homogeneous at all.

References for part 3 - I

[1] V. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre.
Fast unfolding of communities in large networks.
Journal of Statistical Mechanics : Theory and Experiment, 2008.

[2] M. Newman and M. Girvan.
Finding and evaluating community structure in networks.
Physical Review E, 2004.

[3] Ng, A. Y., M. I. Jordan, and Y. Weiss (2001).
On spectral clustering: Analysis and an algorithm.
In Advances in neural information processing systems, pp.
849–856. MIT Press.

[4] Rohe, K., S. Chatterjee, and B. Yu (2011).
Spectral clustering and the high-dimensional stochastic
blockmodel.
Annals of Statistics 39(4), 1878–1915.

References for part 3 - II

[5] V. Traag.
Faster unfolding of communities : Speeding up the louvain
algorithm.
Physical Review E, 2015.

[6] von Luxburg, U. (2007).
A tutorial on spectral clustering.
Statistics and Computing 17(4), 395–416.

	Introduction and basics
	Introduction
	Visualisation
	Descriptive statistics

	Some random graph models
	The Erdős-Rényi model
	Modeling the degree distribution
	Preferential attachment
	Exponential random graph model
	Latent position model
	Stochastic Block Model

	Community detection
	Introduction
	Similarity graphs
	Laplacian matrices of graphs
	Spectral clustering algorithms
	Practical comments

