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HIDDEN MARKOV MODEL FOR PARAMETER ESTIMATION OF A RANDOM
WALK IN A MARKOV ENVIRONMENT
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Abstract. We focus on the parametric estimation of the distribution of a Markov environment from
the observation of a single trajectory of a one-dimensional nearest-neighbor path evolving in this random
environment. In the ballistic case, as the length of the path increases, we prove consistency, asymptotic
normality and efficiency of the maximum likelihood estimator. Our contribution is two-fold: we cast
the problem into the one of parameter estimation in a hidden Markov model (HMM) and establish
that the bivariate Markov chain underlying this HMM is positive Harris recurrent. We provide different
examples of setups in which our results apply, in particular that of DNA unzipping model, and we give
a simple synthetic experiment to illustrate those results.
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1. Introduction

Random walks in random environments (RWRE) form a subclass of canonical models in the more general
framework of random motions in random media that is widely used in physics. These models go back to the
pioneer works of Chernov [16], who introduced them to describe DNA replication and of Temkin [39] who used
them in the field of metallurgy. A more complete list of application fields may be found in the introduction [12]
as well as in the references therein. These models have been intensively studied in the last four decades, mostly
in the physics and probability theory literature. Some surveys on the topic include [27, 35, 36, 40].

Statistical issues raised by those processes have been overlooked in the literature until very recently, when
new biophysics experiments produced data that can be modeled (at least in an ideal-case setup) by RWRE [7].
Consequently, a new series of works appeared on statistical procedures aiming at estimating parameters from
RWRE data. Another motivation to these studies comes from the fact that RWRE are closely linked to branching
processes with immigration in random environments (BPIRE) and that the statistical issues raised in one context
may potentially have an impact in the other.
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environment.
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In [5], the author investigates the local time of the one dimensional recurrent RWRE in order to estimate
the trajectories of the underlying random potential. In [6], the ideal-case model from [7] is considered: a (finite
length) DNA molecule is unzipped several times and some device translates these unzippings into random walks
along the DNA molecule, whose sequence of bases is the random environment. There, the goal is to reconstruct
this environment and thus achieve sequencing of the molecule. They prove that a Bayesian estimator (maximum
a posteriori) of this sequence of bases is consistent as the number of unzippings increases and they characterize
the probability of reconstruction error. In a different setting, several authors have considered the information
on the environment that is contained in one single trajectory of the walk with infinite length. In their pioneer
work [1], Adelman and Enriquez consider a very general RWRE and provide equations linking the distribution of
some statistics of the trajectory to some moments of the environment distribution. In the specific case of a one-
dimensional nearest neighbor path, those equations give moment estimators for the environment distribution
parameters. More recently, the article [18] studies a maximum likelihood estimator (MLE) in the specific context
of a one-dimensional nearest neighbor path in transient ballistic regime. The authors prove the consistency of
this estimator (as the length of the trajectory increases). From a numerical point of view, this MLE outperforms
the moment estimator constructed from [1]. In a companion article [25], they have further studied the asymptotic
normality of the MLE (still in the ballistic regime), showed its asymptotic efficiency and constructed confidence
intervals for the parameters. This work has been extended to the transient sub-ballistic regime in [24]. In this
body of work on maximum likelihood procedures, the results rely on the branching structure of the sequence of
the number of left steps performed by the walk, which was originally observed in [29]. In the recurrent case, as
the walk visits every sites infinitely often, this branching process of left steps explodes and the same approach
is useless there. In theory, it is possible in this case to estimate the environment itself at each site, and then
show that the empirical measure converges to its distribution. The problem with such a “naive” approach is the
localization phenomena of recurrent RWRE, discovered by [37]: most of the sites visited by the RWRE will be
extremely few visited, because the walk spends a majority of its time in the valleys of the potential [3, 4]. This
non uniformity is automatically handled with the approach followed in [17] and the authors establish consistency
of two estimators, a MLE and a maximum pseudo-likelihood estimator.

We now stress the fact that all the previously mentioned statistical works but [6] are valid in the case
of an environment composed of independent and identically distributed (i.i.d.) random variables. While very
convenient, this assumption might be restrictive in some contexts, e.g. DNA modeling. In the present work,
we investigate the statistical estimation of a parametric Markov environment from a single trajectory of a one-
dimensional nearest-neighbor path, when its length increases to infinity. We consider the case of a transient
walk in the ballistic regime. Our contribution is twofold: first, we show how the problem is cast into the one of
estimating the parameter of a hidden Markov model (HMM), or more specifically of a first-order autoregressive
process with Markov regime. Indeed, the RWRE itself is not a HMM but the branching process of the sequence of
left steps performed by the walk, is. Second, we prove that the bivariate Markov chain that defines the underlying
autoregressive process is Harris positive and we exhibit its stationary distribution. As a consequence, we can rely
on previously established results for these autoregressive processes with Markov regime [22] and thus obtain the
consistency and asymptotic normality of the MLE for the original nearest-neighbor path in Markov environment.

Roughly speaking, an autoregressive model with Markov regime is a bivariate process where the first com-
ponent forms a latent (unobserved) Markov chain while conditionally on this first component, the second one
has the structure of an autoregressive process. These processes form a generalization of hidden Markov models
(HMM), in which the first component remains a latent Markov chain, while the second forms a sequence of
independent observations, conditionally on the first. HMM have been introduced in [8] with finite - latent and
observed - state spaces. Statistical properties of the MLE in HMM form a rich literature; a non exhaustive list
would start with the seminal work [8], include the developments [10, 11, 20, 22, 26, 28, 30, 31] and finish with the
latest results in [21]. A general introduction to HMM may be found in the survey [23] and the book [14].

While it is often believed that autoregressive processes with Markov regime are straightforward generalizations
of HMM (and this is indeed the case concerning e.g. algorithmic procedures), the statistical properties of these
models are slightly more difficult to obtain, (see e.g. for model selection issues[15]). As for the convergence
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properties of the MLE, only the article [22] considers the autoregressive case (instead of HMM) explaining
why we focus on their results in our context. It is also worth noticing that many of the previous results (with
exception of [21]) require uniform positivity of the transition density of the latent Markov chain, which might
not be satisfied in some applications (particularly in the case of an unbounded latent state space). As in our
case, the latent state space corresponds to the environment state space and is included in (0, 1), we do not
face such problems. Moreover, we stress that the results in [22] rely on rather weak assumptions (compared to
previous results in [11, 28], on which they are partly built). As a consequence, the assumptions that we obtain
on RWRE are also rather weak and will be satisfied in many contexts.

This article is organized as follows. Our one-dimensional nearest-neighbor path in Markov environment is
described in Section 2.1. Then we explain why the direct likelihood approach may not be followed (Sect. 2.2)
and cast the estimation problem as the one of parameter estimation in a hidden Markov model (Sect. 2.3). After
having set the scene, we state the assumptions (on the RWRE) and results in Section 3. We prove that (under
classical assumptions) the MLE is consistent and asymptotically normal. Section 4 illustrates our results: we start
by explaining how the likelihood may be computed (Sect. 4.1), then we explore different examples and describe
our assumptions in these cases (Sect. 4.2) and close the section with synthetic experiments on a simple example
(Sect. 4.3). The proofs of our results are presented in Section 5. The main point is to establish that the bivariate
Markov chain that underlies the HMM is positive Harris recurrent (Sect. 5.1). Then consistency, asymptotic
normality and efficiency (i.e. the asymptotic variance is the inverse of the Fisher information) follow from [22]
by proving that our assumptions on the RWRE imply theirs on the HMM (Sects. 5.2 and 5.3, respectively).

2. Model description

2.1. Ballistic random walk in a Markov environment

We start this section by describing the random environment. Let S be a closed subset of (0, 1) either finite,
discrete or continuous, and B(S) the associated Borel σ-field. The environment is given by ω = (ωx)x∈Z ∈ SZ,
a positive Harris recurrent, aperiodic and stationary Markov chain with values in S and transition kernel
Q : S × B(S) → [0, 1]. We suppose that the transition kernel Q = Qθ depends on some unknown parameter θ
and that θ belongs to some compact space Θ ⊂ R

q. Moreover, Qθ is absolutely continuous either with respect to
(w.r.t.) the Lebesgue measure on (0, 1) when S is continuous or w.r.t. the counting measure when S is discrete,
with density denoted by qθ. We denote by μθ the density of its associated stationary distribution. Let us denote
by Pθ the law of the environment ω on (SZ,B(SZ)) and Eθ the corresponding expectation.

Now, conditionally on the environment, the law of the random walk X = (Xt)t∈N is the one of the time
homogeneous Markov chain on Z starting at X0 = 0 and with transition probabilities

∀(x, y) ∈ Z
2, Pω(Xt+1 = y|Xt = x) =

⎧⎨⎩ ωx if y = x+ 1,
1 − ωx if y = x− 1,

0 otherwise.

The measure Pω on (ZN,B(ZN)) is usually referred to as the quenched law of walk X. Note that this conditional
law does not depend on the parameter θ but only on the environment ω at the current site x. We also denote
by pa(x, y) the corresponding transition density (w.r.t. to counting measure), namely

∀(x, y) ∈ Z
2, ∀a ∈ S, pa(x, y) = a�{y = x+ 1} + (1 − a)�{y = x− 1},

where �{·} denotes the indicator function. Next we define the measure P
θ on SZ × Z

N through

∀F ∈ B(SZ), ∀G ∈ B(ZN), P
θ(F ×G) =

∫
F

Pω(G)dPθ(ω). (2.1)

The second marginal of P
θ (that on Z

N), denoted also P
θ when no confusion occurs, is called the annealed law

of walk X. We denote by E
θ the corresponding expectation. Note that the first marginal of P

θ is the law of the
Markov chain ω, denoted by Pθ.
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For all k ∈ Z, we let

ω̃k =
1 − ωk

ωk
·

In the case of an i.i.d. environment ω, [38] gives the classification of X between transient or recurrent cases
according to whether Eθ(log ω̃0) is different or not from zero. For stationary ergodic environments, which is
the case here, [2] establishes that this characterization remains valid. Thus, if Eθ(log ω̃0) < 0, then the walk is
transient to the right, namely

lim
t→∞Xt = +∞, P

θ − a.s.

Let Tn be the first hitting time of the positive integer n,

Tn = inf{t ∈ N : Xt = n}
and define

R = (1 + ω̃1 + ω̃1ω̃2 + . . . ). (2.2)

Theorem 4.1 in [2] shows that if the environment satisfies the condition

Eθ(R) < +∞, (2.3)

then the speed of the walk is strictly positive. Namely, P
θ-almost surely, the ratio Tn/n converges to a finite limit

as n increases. Thus (2.3) gives the so-called ballistic condition on the random walk with Markov environment.
Note that in the i.i.d. case, this condition reduces to Eθ(ω̃0) < 1. Moreover, in the non independent case, when
the distribution of the environment is uniquely ergodic, namely ω is not i.i.d. and admits a unique invariant
distribution, [2] establishes that transience (namely Eθ(log ω̃0) < 0) automatically implies ballistic regime (see
Lem. 6.1 in [2]). Since in our context we assume that the Markov environment ω admits a unique invariant
distribution, the ballistic assumption thus reduces to{

Eθ(ω̃0) < 1 if ω i.i.d,

Eθ(log ω̃0) < 0 if ω non independent.
(2.4)

In the following, we consider a transient to the right ballistic process X.

2.2. Problem and motivation

We consider a finite trajectory Xn = (Xt)t≤Tn from the process X, stopped at the first hitting time of a
positive integer n ≥ 1. The apparently more general case of a sequence (X1, . . . , Xn) of observations is discussed
in Remark 3.3. We assume that this sequence of observations is generated under P

θ�

:= P
� for a true parameter

value θ� belonging to the interior Θ̊ of Θ. Our goal is to estimate this parameter value θ� from the sequence of
observations Xn using a maximum likelihood approach. To motivate the following developments, we will first
explain why we can not directly rely on the likelihood of these observations. Indeed, let Vn be the set of sites
x ∈ Z visited by the process up to time Tn, namely

Vn = {x ∈ Z; ∃0 ≤ s ≤ Tn, Xs = x}.
Under the assumption of a transient (to the right) process, the random set Vn is equal to [[ξn, n]], where ξn ∈ Z

−

and [[a, b]] denotes the set of integers between a and b for any a ≤ b in Z. Here, ξn is the smallest integer
value visited by the process Xn. We also introduce ω(Xn) := (ωξn , . . . , ωn) which is the random environment
restricted to the set of sites visited by Xn. Now, the likelihood of Xn is given by the following expression

P
θ(Xn) =

∫
S

. . .

∫
S

P
θ(ω(Xn) = (aξn , . . . , an),Xn)daξn . . . dan

=
∫

S

. . .

∫
S

μθ(aξn)
n−1∏
i=ξn

qθ(ai, ai+1)
Tn−1∏
s=0

paXs
(Xs, Xs+1)daξn . . .dan. (2.5)
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Computing the likelihood from the above expression would require to compute |Vn| integral terms (where
| · | denotes cardinality). As |Vn| ≥ n, this means that using a discretization method over N points for each
integral (or letting N be the cardinality of S) would result in summing over at least Nn different terms. This
is unfeasible but for small values of n. Moreover, the above expression is not well suited for studying the
convergence properties of this likelihood. Following [18], instead of focusing on the observed process Xn, we
will rather consider the underlying sequence Ln

n, L
n
n−1, . . . , L

n
0 of the number of left steps of the process Xn at

the sequence of sites (n, n− 1, . . . , 0) and construct our estimator from this latter sequence. Though we do not
need it, note that it is argued in [18] that the latter is in fact a sufficient statistic (at least asymptotically) for
the parameter θ. In the next section, we show that in the case of a Markov environment, this process exhibits
a hidden Markov structure. Moreover for transient RWRE, this process is recurrent, allowing us to study the
convergence properties of MLE.

2.3. The underlying hidden Markov chain

We define the sequence of left steps at each visited site from the (positive part of the) trajectory Xn as
follows. Let

Ln
x :=

Tn−1∑
s=0

�{Xs = x; Xs+1 = x− 1}, ∀x ∈ {0, . . . , n}.

It is observed by [29] in the case of an i.i.d. random environment that the sequence (Ln
n, L

n
n−1, . . . , L

n
0 ) is

distributed as a branching process with immigration in a random environment (BPIRE). We will first show
that this remains true in the case of a Markov environment. To this aim, let us introduce the time reversed
environment ω̆ = (ω̆x)x∈Z defined by ω̆x = ω−x for all x ∈ Z. It is a Markov chain on S with stationary density
μθ and transition q̆θ defined by

∀a, b ∈ S, q̆θ(a, b) =
μθ(b)qθ(b, a)

μθ(a)
·

Now we recursively define a sequence of random variables (Zk)k≥0 with Z0 = 0 and

∀k ≥ 0, Zk+1 =
Zk∑
i=0

ξk+1,i, (2.6)

where for all k ≥ 1, the random variables (ξk,i)i∈N, are defined on the same probability space as previously, are
independent and their conditional distribution, given the environment ω̆ is

∀m ∈ N, Pω̆(ξk,i = m) = (1 − ω̆k)mω̆k. (2.7)

Here, Pω̆ is defined similarly as Pω for the environment ω̆ replacing ω. Then, conditionally on ω̆, the sequence
(Zk)k∈N is an inhomogeneous branching process with immigration, with identical offspring and immigration
law, given by a geometric distribution (whose parameter depends on the random environment ω̆). Moreover, it
is easily seen that the annealed distribution of the sequence (Ln

n, L
n
n−1, . . . , L

n
0 ) and that of (Z0, Z1, . . . , Zn) are

the same.

Lemma 2.1. For any fixed integer n ≥ 1, the sequence of left steps (Ln
n, L

n
n−1, . . . , L

n
0 ) has same distribution

as (Z0, Z1, . . . , Zn) under P
θ.

Proof. For any fixed integer n ≥ 1, let ω̄n := (ωn, ωn−1, . . . , ω0, ω−1, . . .) denote the time reversed environment
starting at ωn. Let also Pω̄n be defined similarly as Pω for the environment ω̄n replacing ω. Then it is known
that for any sequence (z0, . . . , zn) ∈ N

n+1, we have the equality

Pω((Ln
n, L

n
n−1, . . . , L

n
0 ) = (z0, . . . , zn)) = Pω̄n((Z0, . . . , Zn) = (z0, . . . , zn))
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(see for instance Sect. 4.1 in [18]). Now the right-hand side Pω̄n((Z0, . . . , Zn) = (z0, . . . , zn)) only depends on
the environment ω̄n through the first (n + 1) variables (ωn, ωn−1, . . . , ω0) whose distribution under Pθ is the
same as (ω̆0, ω̆1, . . . , ω̆n). As a consequence, using definition (2.1) of distribution P

θ we obtain the result. �

When the environment ω is composed of i.i.d. random variables, the resulting sequence (Zk)k≥0 is a homoge-
neous Markov chain under P

θ (see e.g. [18]). Now, when the environment ω is itself a Markov chain, we observe
that (Zk)k≥0 is distributed as a hidden Markov chain, or more precisely as the second marginal of a first order
autoregressive process with Markov regime [22], where the latent sequence is given by ω̆. We state this result as
a lemma (namely Lem. 2.2 below) even though its proof is obvious and thus omitted. Let us recall that a first
order autoregressive process with Markov regime (or Markov-switching autoregression) is a bivariate process
{(ω̆k, Zk)}k≥0 such that ω̆ = (ω̆k)k≥0 is a Markov chain and conditionally on ω̆, the sequence (Zk)k≥0 is an
inhomogeneous Markov chain whose transition from Zk−1 to Zk only depends on Zk−1 and ω̆k.

For any a ∈ S and (x, y) ∈ N
2, denote

ga(x, y) =
(
x+ y

x

)
ax+1(1 − a)y (2.8)

and let δx be the Dirac measure at x. Let us recall that the process (Zk)k≥0 is defined through (2.6) and (2.7).

Lemma 2.2. Under P
θ, the process {(ω̆k, Zk)}k≥0 is a first-order autoregressive process with Markov regime.

The first component ω̆ is an homogenous Markov chain with transition kernel density q̆θ and initial distribution
μθ. Conditionally on ω̆, the process (Zk)k∈N, is an inhomogeneous Markov chain, starting from Z0 = 0 and with
transitions

∀(x, y) ∈ N
2, ∀k ∈ N Pω̆(Zk+1 = y|Zk = x) = gω̆k+1(x, y).

As a consequence, {(ω̆k, Zk)}k≥0 is a Markov chain with state space S × N, starting from μθ ⊗ δ0 and with
transition kernel density Πθ defined for all (a, b, x, y) ∈ S2 × N

2 by

Πθ((a, x), (b, y)) = q̆θ(a, b)gb(x, y). (2.9)

Remark 2.3. The conditional autoregressive part of the distribution, given by (2.8), is usually referred to as
emission distribution. Note that in our framework, this law does not depend on the parameter θ.

Under P
θ, the process (ω̆, Z) has initial distribution μθ ⊗ δ0. In the sequel, we also need (ω̆, Z) as well as the

chain (ωk)k≥0 starting from any initial distribution. For any probability ν on B(S × N), denote P
θ
ν the law of

(ω̆, Z) starting from (ω0, Z0) ∼ ν (note that ω̆0 = ω0). Denote E
θ
ν the corresponding expectation. In particular,

for (a, x) ∈ S × N, we let P
θ
(a,x) and E

θ
(a,x) be the probability and expectation if (ω0, Z0) = (a, x). Moreover,

when only the first component is concerned and when no confusion occurs, if the chain ω̆ or ω starts from its
stationary distribution μθ, we still denote this marginal law by Pθ and the corresponding expectation by Eθ.
If ω̆ or ω start from another initial law, for example ω0 = a, we denote their law by Pθ

a and corresponding
expectation Eθ

a. For n ∈ N, we let Fn = σ{ωk, k = 0, . . . , n} (resp. F̆n = σ{ω̆k, k = 0, . . . , n}) be the σ-field
induced by the (n + 1) first random variables of the environment (resp. of the time reversed environment).
Moreover, we denote by ωn = (ωn, ωn+1, . . .) and ω̆n = (ω̆n, ω̆n+1, . . .) the shifted sequences. The family of shift
operators (τn)n≥1 where τn : Ω → Ω is defined by

∀ω, ω̆ ∈ Ω, τn(ω) = ωn and τn(ω̆) = ω̆n. (2.10)

In Section 5, we show that under the ballistic assumption, the bivariate kernel Πθ((a, x), (b, y)) is positive Harris
recurrent and admits a unique invariant distribution with density πθ, for which we give an explicit formula (see
Prop. 5.1). In the following, we let P

θ
and E

θ
be the probability and expectation induced when considering the

chain {(ω̆k, Zk)}k≥0 under its stationary distribution πθ.
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3. Assumptions and results

3.1. Estimator construction

Recall that our aim is to infer the unknown parameter θ� ∈ Θ̊, using the observation of a finite trajectory Xn

up to the first hitting time Tn of site n. The observed trajectory is transformed into the sequence Ln
n, L

n
n−1, . . . , L

n
0

of the number of left steps of the process Xn at the sequence of sites (n, n−1, . . . , 0). This trajectory is generated
under the law P

� (recall that P
� is a shorthand notation of P

θ�

). Due to the equality in law given by Lemma 2.1,
we can consider that we observe a sequence of random variables (Z0, . . . , Zn) which is the second component of
an autoregressive process with Markov regime described in Lemma 2.2. Thus under P

�, the law of the MLE of
these observations is the same than the law of MLE built from (Z0, . . . , Zn).

As a consequence, we can now rely on a set of well established techniques developed in the context of
autoregressive processes with Markov regime, both for computing efficiently the likelihood and for establishing
its asymptotic properties. Following [22], we define a conditional log-likelihood, conditioned on an initial state
of the environment ω̆0 = a0 ∈ S. The reason for doing so is that the stationary distribution of {ω̆k, Zk)}k≥0 and
hence the true likelihood, is typically infeasible to compute.

Definition 3.1. Fix some a0 ∈ S and consider the conditional log-likelihood of the observations defined as


n(θ, a0) := log P
θ
(a0,0)(Z1, . . . , Zn) = log

∫
Sn

n∏
i=1

q̆θ(ai−1, ai)gai(Zi−1, Zi)dai. (3.1)

Note that the above expression of the (conditional) log-likelihood shares the computational problems men-
tioned for expression (2.5). However, in the present context of autoregressive processes with Markov regime,
efficient computation of this expression is possible. The key ingredient for this computation (that also serves to
study the convergence properties of 
n) is to rely on the following additive form


n(θ, a0) =
n∑

k=1

log P
θ
(a0,0)(Zk|Z0, . . . , Zk−1)

=
n∑

k=1

log
(∫∫

S2
gb(Zk−1, Zk)q̆θ(a, b)Pθ

(a0,0)(ω̆k−1 = a|Zk−1
0 )dadb

)
,

where Zt
s denotes Zs, Zs+1, . . . , Zt for any integers s ≤ t. We further develop this point in Section 4.1 and also

refer to [22] for more details.

Definition 3.2. The estimator θ̂n is defined as a measurable choice

θ̂n ∈ Argmax
θ∈Θ


n(θ, a0).

Note that we omit the dependence of θ̂n on the initial state a0 of the environment.

Remark 3.3. When considering a size-n sample X1, . . . Xn instead of a trajectory stopped at random time Tn,
we may consider m := m(n) = max1≤i≤nXi and restrict our attention to the sub-sample X1, . . . , XTm . As we
consider a transient random walk, m(n) increases to infinity with n. Consistency with respect to n or m(n) is
equivalent. Now considering the rates, note that in the ballistic case we can easily obtain that m(n) ∼ cn for
some c > 0 so that rates of convergence as well as efficiency issues with respect to m(n) or n are the same. Note
that information about Tm has to be extracted first and then the data may be reduced to the sequence of left
steps without loosing information.
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3.2. Assumptions and results

Recall that qθ and μθ are respectively the transition and the invariant probability densities of the environment
Markov chain ω with values in S, while q̆θ and μθ are the same quantities for the time reversed chain ω̆. Moreover,
S is a closed subset of (0, 1) so that we can assume that there exists some ε ∈ (0, 1) such that

S ⊆ [ε; 1 − ε]. (3.2)

The above assumption is known as the uniform ellipticity condition.
We also recall that the random variable R is defined by (2.2).

Assumption 1 (Ballistic case). For any θ ∈ Θ, Inequality (2.4) is satisfied.

Assumption 2. There exist some constants 0 < σ−, σ+ < +∞ such that

σ− ≤ inf
θ∈Θ

inf
a,b∈S

qθ(a, b) ≤ sup
θ∈Θ

sup
a,b∈S

qθ(a, b) ≤ σ+.

Note that it easily follows from this assumption that the stationary density μθ also satisfies

σ− ≤ inf
θ∈Θ

inf
a∈S

μθ(a) ≤ sup
θ∈Θ

sup
a∈S

μθ(a) ≤ σ+. (3.3)

Moreover, we also get that the time reversed transition density q̆θ satisfies

σ2
−
σ+

≤ inf
θ∈Θ

inf
a,b∈S

q̆θ(a, b) ≤ sup
θ∈Θ

sup
a,b∈S

q̆θ(a, b) ≤ σ2
+

σ−
· (3.4)

Assumptions 1 and 2 are used to establish that the bivariate process {(ω̆k, Zk)}k≥0 is positive Harris recurrent.
Note in particular that the weakest assumptions currently ensuring consistency of the MLE in the HMM setting
contain positive Harris recurrence of the hidden chain [21] and Assumption 2 is further required in the less
simple case of an autoregressive model with Markov regime [22]. The lower bound in Assumption 2 may be
restrictive in a general HMM setting as it prevents the support S from being unbounded. However here we have
S ⊆ (0, 1) and thus Assumption 2 is satisfied in many examples (see Sect. 4).

Next assumption is classical from a statistical perspective and requires smoothness of the underlying model.

Assumption 3 (Regularity condition). For all (a, b) ∈ S2, the map θ 
→ qθ(a, b) is continuous.

In order to ensure identifiability of the model, we naturally require identifiability of the parameter from the
distribution of the environment.

Assumption 4 (Identifiability condition).

∀θ, θ′ ∈ Θ, θ = θ′ ⇐⇒ qθ = qθ′ .

Theorem 3.4. Under Assumptions 1 to 4, the maximum likelihood estimator θ̂n converges P
�-almost surely to

the true parameter value θ� as n tends to infinity.

We now introduce the conditions that will ensure asymptotic normality of θ̂n under P
�. In the following, for any

function ϕ : Θ 
→ R, we let ∂θϕ and ∂2
θϕ denote gradient vector and Hessian matrix, respectively. Moreover,

‖ · ‖ is the uniform norm (of a vector or a matrix). Again, next condition is classical and requires regularity of
the mapping underlying the statistical model.
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Assumption 5. For all (a, b) ∈ S2, the map θ 
→ qθ(a, b) is twice continuously differentiable on Θ̊. Moreover,

sup
θ∈Θ̊

sup
a,b∈S

‖∂θ log qθ(a, b)‖ < +∞, sup
θ∈Θ̊

sup
a,b∈S

‖∂2
θ log qθ(a, b)‖ < +∞,

sup
θ∈Θ̊

sup
a∈S

‖∂θ logμθ(a)‖ < +∞ and sup
θ∈Θ̊

sup
a∈S

‖∂2
θ logμθ(a)‖ < +∞.

Following the notation from Section 6.1 in [22], we now introduce the asymptotic Fisher information matrix.
We start by extending the chain {(ω̆k, Zk)}k∈N with indexes in N to a stationary Markov chain {(ω̆k, Zk)}k∈Z

indexed by Z. Let us recall that P
θ

and E
θ

respectively denote probability and expectation under the stationary
distribution πθ of the chain {(ω̆k, Zk)}k≥0. For any k ≥ 1,m ≥ 0, we let

Δk,m(θ) = E
θ

(
k∑

i=−m+1

∂θ log q̆θ(ω̆i−1, ω̆i)

∣∣∣∣∣Zk
−m

)
− E

θ

(
k−1∑

i=−m+1

∂θ log q̆θ(ω̆i−1, ω̆i)

∣∣∣∣∣Zk−1
−m

)
.

Note that this expression derives from Fisher identity stated in [32]. Indeed, under general assumptions, the
score function equals the conditional expectation of the complete score, given the observed data. As the emission
distribution g does not depend on the parameter θ, the complete score reduces to a sum of terms involving q̆θ
only.

Lemma 10 in [22] establishes that for any k ≥ 1, the sequence (Δk,m(θ�))m≥0 converges in L
2(P

�
) to some

limit Δk,∞(θ�). From this quantity, we may define

I(θ�) = E
�
(Δ0,∞(θ�)ᵀΔ0,∞(θ�)), (3.5)

where by convention Δ0,∞ is a row vector and uᵀ is the transpose vector of u. Then, I(θ�) is the Fisher
information matrix of the model. We can now state the asymptotic normality result.

Theorem 3.5. Under Assumptions 1 to 5, if the asymptotic Fisher information matrix I(θ�) defined by (3.5)
is invertible, we have that

n−1/2(θ̂n − θ�) −→
n→+∞N (0, I(θ�)−1), P

�-weakly.

Note that the definition of I(θ�) is not constructive. In particular, asymptotic normality of the MLE requires
that I(θ�) is invertible but this may not be ensured through more explicit conditions on the original process.
However, the Fisher information may be approximated through the Hessian of the log-likelihood. Indeed, The-
orem 3 in [22] states that the normalized Hessian of the log-likelihood converges to −I(θ�) under stationary
distribution P

�
. Moreover, this result is generalized to obtain convergence under non stationary distribution P

�

(see the proof of Thm. 6 in that reference). Thus we have

1
n
∂2

θ
n(θ̂n) −→
n→+∞−I(θ�), P

� − a.s. (3.6)

In practice, this may be used to approximate the asymptotic variance of the estimator θ̂n, as illustrated in
Section 4.3.

4. Illustration: Examples and simulations

4.1. Computation of the likelihood

The computation of the log-likelihood relies on the following set of equations. As already noted, we have


n(θ, a) =
n∑

k=1

log P
θ
(a,0)

(
Zk|Zk−1

0

)
,

=
n∑

k=1

log
(∫∫

S2
gb′(Zk−1, Zk)q̆θ(b, b′)Pθ

(a,0)

(
ω̆k−1 = b|Zk−1

0

)
dbdb′

)
. (4.1)
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In this expression, the quantity
F θ,a

k (·) = P
θ
(a,0)

(
ω̆k = ·|Zk

0

)
, (4.2)

is the called the prediction filter. It is a probability distribution on S and it is computed through recurrence
relations. Indeed, we have{

F θ,a
0 = δa,

F θ,a
k+1(b

′) ∝ gb′(Zk, Zk+1)
∫

S q̆θ(b, b
′)F θ,a

k (b)db, k ≥ 0, b′ ∈ S,
(4.3)

where ∝ means proportional to (up to a normalizing constant).
When S is discrete, the integral terms over S reduce to sums and computing the prediction filter recursively

enables to compute the log-likelihood of the observations, and then the MLE. We illustrate these computations
in the case of Example 2 below as well as in Section 4.3. When S is continuous, approximation methods are
required, e.g. particle filters or Monte Carlo expectation-maximisation (em) algorithms. We refer to Section 8
in [22] for more details.

Note that in any case, optimisation of the log-likelihood is either done through em algorithm [9, 19] or by
direct optimisation procedures, as there is no analytical expression for its maximiser. Thus, the computation of
the gradient of this log-likelihood is often used (e.g. in descent gradient optimisation methods). As soon as we
can differentiate under the integral sign (which is valid under Assumption 5), the gradient function ∂θ
n(θ, a)
writes

∂θ
n(θ, a) =
(∫∫

S2
gb′(Zk−1, Zk)q̆θ(b, b′)F

θ,a
k−1(b)dbdb

′
)−1

×
n∑

k=1

(∫∫
S2
gb′(Zk−1, Zk)[∂θ q̆θ(b, b′)F

θ,a
k−1(b) + q̆θ(b, b′)∂θF

θ,a
k−1(b)]dbdb

′
)
. (4.4)

Note that the gradient of the prediction filter ∂θF
θ,a
k−1 may be obtained through recurrence relations similar

to (4.3). However, these relations are more involved since the normalizing constant in (4.3) depends on θ and
can not be neglected.

To conclude this section, we mention that computing the Hessian of the log-likelihood can be done in a similar
way.

4.2. Examples

In this section, we provide some examples of environments ω and check the assumptions needed for consistency
and asymptotic normality of the MLE.

Example 1 (Simple i.i.d. environment on two values). Let qθ(a, b) = μθ(b) and μθ(·) = μp(·) = pδa1(·) + (1 −
p)δa2(·) with known values a1, a2 ∈ (0, 1) and unknown parameter p ∈ [γ, 1 − γ] ⊆ (0, 1).

The support of the environment is reduced to S = {a1, a2}. Moreover, we assume that a1, a2 and Θ are
such that the process is transient to the right and ballistic. In the i.i.d. case, the ballistic assumption (that also
implies transience) reduces to Eθ(ω̃0) < 1 and thus to

p
1 − a1

a1
+ (1 − p)

1 − a2

a2
< 1.

The log-likelihood of the observations has a very simple form in this setup


n(p) =
n∑

k=1

log
[
pa

Zk−1+1
1 (1 − a1)Zk + (1 − p)aZk−1+1

2 (1 − a2)Zk
]
,
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and its maximiser θ̂n = p̂n is obtained through numerical optimisation. We refer to [18, 25] for previous results
obtained in this setup.

Assumptions 2 and 4 are satisfied as soon as Θ ⊆ [γ, 1−γ] and a1 �= a2, respectively. Moreover, Assumptions 3
and 5 are automatically satisfied. Indeed, for any p ∈ Θ and any a ∈ S, we have

|∂p logμp(a)| =
1

p�{a = a1} + (1 − p)�{a = a2} ,

|∂2
p logμp(a)| =

1
p2�{a = a1} + (1 − p)2�{a = a2}·

As a consequence, Theorems 3.4 and 3.5 are valid in this setup.

Example 2 (Finite Markov chain environment).
Let us assume that S = {a1, a2} is fixed and known and the stationary Markov chain ω is defined through its
transition matrix

Qθ =

(
α 1 − α

1 − β β

)
,

where the parameter is θ = (α, β) ∈ [γ, 1 − γ]2 for some γ > 0

Note that Assumption 2 is satisfied as soon as γ > 0. The stationary measure of the Markov chain is given
by

μθ =
(

1 − β

2 − α− β
,

1 − α

2 − α− β

)
·

This is automatically a reversible Markov chain so that q̆θ = qθ. The transience condition writes

(1 − β) log
(

1 − a1

a1

)
+ (1 − α) log

(
1 − a2

a2

)
< 0.

Moreover, as soon as α �= 1 − β the sequence ω is non independent and the existence of a unique stationary
measure for ω ensures the ballistic regime from transience assumption (Lem. 6.1 in [2]). Let us now consider
the log-likelihood expression in this setup. As already explained, the key point for computing the log-likelihood
in the setup of an autoregressive process with Markov regime is to rely on the following additive form


n(θ, a1) =
n∑

k=1

log P
θ(Zk|Zk−1

0 , ω0 = a1)

=
n∑

k=1

log

⎛⎝ ∑
b,b′∈S2

gb′(Zk−1, Zk)qθ(b, b′)F
θ,a1
k−1 (b)

⎞⎠ ,

where F θ,a
k is the prediction filter defined by (4.2) and we used q̆θ = qθ. Relying on matrix notation, we let

F θ,a
k be the row vector (F θ,a

k (a1), F
θ,a
k (a2)) while Gk is the row vector (ga1(Zk−1, Zk), ga2(Zk−1, Zk)) and uᵀ

the transpose vector of u. Then we obtain


n(θ, a1) =
n∑

k=1

log
[
F θ,a1

k−1QθG
ᵀ
k

]
.

Moreover, the sequence of prediction filters {F θ,a1
k }0≤k≤n−1 is obtained through the recurrence relations (4.3)

that in our context, write as {
F θ,a1

0 = (1, 0)

F θ,a1
k+1 ∝ F θ,a

k QθDiag(Gk+1).
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Now, the gradient function ∂θ
n(θ, a) given by (4.4) satisfies the following equations⎧⎪⎪⎨⎪⎪⎩
∂α
n(θ, a) =

∑n
k=1

[
(∂αF

θ,a1
k−1Qθ + F θ,a1

k−1Q
′
1)G

ᵀ
k

](
F θ,a1

k−1QθG
ᵀ
k

)−1

,

∂β
n(θ, a) =
∑n

k=1

[
(∂βF

θ,a1
k−1Qθ + F θ,a1

k−1Q
′
2)G

ᵀ
k

](
F θ,a1

k−1QθG
ᵀ
k

)−1

,

where ∂iF
θ,a1
k−1 is the row vector with entries (∂iF

θ,a1
k−1 (a1), ∂iF

θ,a1
k−1 (a2)) and

Q′
1 =

(
1 −1
0 0

)
, Q′

2 =
(

0 0
−1 1

)
.

Let us denote by 1 the row vector (1, 1). In the current setup, the derivative of the prediction filter is obtained
through ∂αF

θ,a1
0 = ∂βF

θ,a1
0 = (0, 0) and for any k ≥ 0,

∂αF
θ,a1
k+1 =

(
F θ,a1

k QθDiag(Gk+1)1ᵀ
)−1

×
(
∂αF

θ,a1
k Qθ + F θ,a1

k Q′
1

)
Diag(Gk+1)

−
[(
∂αF

θ,a1
k Qθ + F θ,a1

k Q′
1

)
Diag(Gk+1)1ᵀ

]
(
F θ,a1

k QθDiag(Gk+1)1ᵀ
)2 × F θ,a1

k QθDiag(Gk+1),

and a similar equation holds for ∂βF
θ,a1
k+1 .

In Section 4.3, we provide an illustration of the numerical performances of the maximum likelihood estimator
in this setup. Note that second order derivatives of the prediction filter and thus the log-likelihood are obtained
similarly. These are used to estimate the asymptotic covariance matrix of the MLE in Section 4.3.

To conclude this section, note that the regularity Assumptions 3 and 5 are satisfied, as well as the identifiability
Assumption 4, as soon as a1 �= a2 and α �= β. As a consequence, Theorems 3.4 and 3.5 are valid in this setup.

Example 3 (DNA unzipping). We consider the context of DNA unzipping studied in [7] where the goal is the
sequencing of a molecule (see also [6]). The physical experiment consists in observing many different unzippings
of a DNA molecule which, due to its physical properties, may naturally (re)-zip. In this context, the random
walk X represents the position of the fork at each time t of the experiment, or equivalently the number of
currently unzipped bases of the molecule. In the previous works, the authors are interested in the observation
of many finite trajectories of the random walk in this random environment. Here, we consider the different
problem of a single unzipping of a sufficiently long molecule.

Let A = {A,C,G, T } denote the finite nucleotide alphabet. The sequence of bases {bx}1≤x≤n ∈ An of the
(finite length) molecule are unknown and induce a specific environment that will be considered as random. More
precisely, the conditional transitions of the random walk are given by

ωx =
1

1 + exp(βg(x, x + 1))
·

where g(x, x+ 1) := g0(bx, bx+1) − g1(f). The known parameter g1(f) is the work to stretch under a force f
the open part of the two strands, it can be adjusted but is constant during the unzipping. Parameter β > 0 is
also known and proportional to the inverse of temperature. The quantity g0(bx, bx+1) is the binding energy that
takes into account additional stacking effects and therefore depends on the base values at the (x+1)th and also
at the xth positions. Table 1 gives these binding energies at room temperature (see [7]). To take into account
this dependence between energies, we assume that {g0(x) := g0(bx, bx+1)}x≥1 is a Markov chain. With this
assumption and since the mapping g0(x) 
→ ωx is one-to-one, ω = (ωx)x≥1 is Markov as well. The parameter of
the model is thus the transition matrix Qθ between the binding energies. Note that while the set of dinucleotides
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Table 1. Binding free energies (units of kBT ).

g0 A T C G
A 1.78 1.55 2.52 2.22
T 1.06 1.78 2.28 2.54
C 2.54 2.22 3.14 3.85
G 2.28 2.52 3.90 3.14

has cardinality 16, function g0 takes only 10 different values. So random environment ω takes values in S with
cardinality 10 and the underlying transition matrix Qθ (for the binding energies) is of size 10×10 but has many
zero entries.

The ballistic condition is not difficult to satisfy. Indeed, we have

ω̃x = exp(β(g0(x) − g1(f)))

and g1 is increasing with f . Thus we may choose f such that g1 is large enough to ensure either Eθ(ω̃0) < 1 if the
sequence {g0(x)}x≥1 is only i.i.d. or to ensure Eθ(log ω̃0) < 0 when the sequence {g0(x)}x≥1 is not independent.
In both cases, this ensures the ballistic regime.

In this context and for a long enough sequence, we can estimate the matrix Qθ of the transitions between the
different binding energies, as well as μθ which gives the frequencies of appearance of the binding energies. In
turn, this also gives the frequencies of appearance of certain base pairs thanks to Table 1. Since both parameter
space Θ and state space S are finite, Assumptions 2, 3 and 5 are satisfied. This is also the case for identifiability
Assumption 4. As a consequence, Theorems 3.4 and 3.5 are valid in this setup.

Example 4 (Auto-regressive environment). Let y0 ∼ μθ and for any n ≥ 0, we let yn+1 = αyn + un where
α ∈ R and (un)n≥0 is an i.i.d. sequence. Fix some ε > 0. The environment ω is defined on S = [ε, 1− ε] through
a truncated logistic function

ωn = φε(yn) :=

⎧⎨⎩ eyn(1 + eyn)−1 if eyn(1 + eyn)−1 ∈ S,
ε if eyn(1 + eyn)−1 ≤ ε,
1 − ε if eyn(1 + eyn)−1 ≥ 1 − ε.

A time reversibility condition on first-order autoregressive processes is studied in [34]. If we assume that un

has Gaussian distribution, say un ∼ N (μ, σ2), then for any value |α| < 1, it is easily seen that there exists a
stationary density μθ for (yn)n≥0 given by

∀y ∈ R, μθ(y) =
(

1 − α2

2πσ2

)1/2

exp
[
−1 − α2

2σ2

{
y − μ

1 − α

}2
]
,

where θ = (α, μ, σ2) is the model parameter. Moreover, the process (yn)n≥0 is reversible w.r.t. this stationary
distribution. Then (ωn)n≥0 is also stationary and time reversible.

Note that the inverse function φ−1
ε : S → [log(ε/(1 − ε)), log((1 − ε)/ε)] is well defined and given by

∀a ∈ S, φ−1
ε (a) = log

(
a

1 − a

)
·

The transience condition writes Eθ(y0) > 0 or equivalently μ > 0. As soon as α �= 0, the sequences (yn)n≥0

and thus also (ωn)n≥0 are non independent and the existence of a unique stationary distribution implies the
ballistic regime from transience assumption (Lem. 6.1 in [2]). Now, the transition density of ω is given by

qθ(a, b) =
1√

2πσb(1 − b)
exp

(
− 1

2σ2
(φ−1

ε (b) − αφ−1
ε (a) − μ)2

)
·
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Figure 1. Boxplots of MLE obtained from M =100 iterations and for values n ranging in
{103k; 1 ≤ k ≤ 10} (x-axis indicates the value k). First and second panel display estimation of
α� and β�, respectively. The true values are indicated by horizontal lines.

As a consequence, Assumption 2 is satisfied as soon as σ2 and μ are bounded. Thus we assume that the parameter
space satisfies

Θ = A× [μmin, μmax] × [σmin, σmax],

where A is a compact subset of (−1, 1) and the constants satisfy μmin > C(ε)+σ2
max/2 and σmin > 0. Moreover,

regularity Assumptions 3 and 5 are also satisfied, as well as identifiability Assumption 4. As a consequence,
Theorems 3.4 and 3.5 are valid in this setup.

4.3. Numerical performance

In this section, we illustrate our results in the simple case of Example 2. We start by describing the experiment.
The support of the environment is fixed to S = {0.4, 0.8}. The true parameter value is chosen as (α�, β�) =
(0.2, 0.9). These choices ensure transience of the walk as well as ballistic regime. Next, we repeat 100 times
the following procedure. We simulate a RWRE under the model described in Example 2 with parameter values
(α�, β�) and stop it successively at the hitting times Tn, with n ∈ {103k; 1 ≤ k ≤ 10}. For each value of n, the
likelihood is computed as detailed in the previous section and we compute the MLE (α̂n, β̂n) through numerical
optimisation of this likelihood. The likelihood optimisation procedure is performed according to the “L-BFGS-
B” method of [13]. It is worth mentioning that the length of the random walk is not n but rather Tn, a quantity
that is much larger in practice, see e.g. Section 5.2 in [18]. Figure 1 shows the boxplots of the MLE obtained
from M =100 iterations of the procedure and increasing values of n. The red horizontal dotted line shows the
true parameter value. As expected, the MLE converges to the true value as n increases.

We further explore estimation of the asymptotic covariance matrix through the Hessian of the log-likelihood
according to (3.6). Note that the true value I(θ�)−1 is unknown as there is no constructive form of the Fisher
information for this model. However, this true value may be approximated by the empirical covariance matrix
obtained from running the above experiment with M =100 iterations. Figure 2 shows the boxplots of the entries
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Figure 2. Boxplots of the entries of Σ̂n obtained from M = 100 iterations and for values
n ranging in {103k; 1 ≤ k ≤ 10} (x-axis indicates the value k). From top to bottom: second
derivative with respect to α, second derivative with respect to β and second derivative with
respect to α and β. The red dotted line is the empirical estimate of the covariance matrix
entries obtained from M = 100 iterations for the largest value n = 10 000. From top to bottom:
V̂ ar(α̂n), V̂ ar(β̂n), Ĉov(α̂n, β̂n). (Color online).

of the opposite normalized Hessian of the log-likelihood at the estimated parameter value, namely

Σ̂n := − 1
n
∂2

θ
n(θ̂),

obtained by iterating the procedure M =100 times. The red horizontal dotted line does not represent the entries
of I(θ�)−1 (which remain unknown even if θ� is known) but rather the entries of the empirical covariance estimate
matrix

Ĉov(θ̂n) :=
1
M

M∑
i=1

(
θ̂(i)n − 1

M

M∑
i=1

θ̂(i)n

)ᵀ (
θ̂(i)n − 1

M

M∑
i=1

θ̂(i)n

)
,

where θ̂(i)n is the estimator obtained at ith iteration. We choose the most accurate estimator obtained with
n = 10 000. The results obtained are quite good.

To conclude this section, we consider the construction of confidence regions for (α�, β�). The asymptotic
normality of the estimator θ̂n together with the estimation of the asymptotic variance I(θ�)−1 leads to the
following confidence region

Rγ,n :=
{
θ ∈ Θ,n(θ̂n − θ)ᵀΣ̂n(θ̂n − θ) ≤ χ1−γ

}
,

where 1 − γ is the asymptotic confidence level and χz is the zth quantile of the chi-square distribution with
2 degrees of freedom. Table 2 presents the empirical coverages obtained from these confidence regions Rγ,n with
M = 100 iterations and for γ ∈ {0.01, 0.05, 0.1} and n ranging in {103k; 1 ≤ k ≤ 10}. For the values n ≤ 6000 we
observe that the confidence regions are too wide. However, for the large values n ≥ 9000 the empirical coverages
are quite good.
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Table 2. Empirical coverage of (1 − γ) asymptotic level confidence regions, with γ ∈
{0.01, 0.05, 0.1}.

n 0.01 0.05 0.1
1000 1.00 1.00 1.00
2000 1.00 1.00 1.00
3000 1.00 1.00 1.00
4000 1.00 1.00 1.00
5000 1.00 1.00 0.99
6000 1.00 0.99 0.98
7000 1.00 0.98 0.97
8000 0.99 0.98 0.95
9000 0.98 0.97 0.96
10 000 0.99 0.95 0.92

5. Proofs

5.1. Properties of the underlying HMM

In this section, we investigate the properties of the bivariate process {(ω̆k, Zk)}k≥0, namely we show that it
is positive Harris recurrent and we exhibit its invariant distribution. Let us first define R̆ for the time reversed
environment ω̆ similarly as R from equation (2.2) by

R̆ = (1 + ω̃−1 + ω̃−1ω̃−2 + . . . ). (5.1)

We first remark that Condition (2.4) writes the same for ω and ω̆ so that environment ω̆ is ballistic under
Assumption 1 and thus Eθ(R̆) < +∞. Moreover, under Assumptions 1 and 2, we obtain the following uniform
ballistic condition on the time reversed environment

1 ≤ inf
a∈S

Eθ
a(R̆) ≤ sup

a∈S
Eθ

a(R̆) ≤ c+ <∞, (5.2)

for some positive and finite constant c+. Indeed, the lower bound follows from R̆ ≥ 1, by definition of R. Now,
for any a ∈ (0, 1), we let ã = (1 − a)/a. The upper bound is obtained through

Eθ
a(R̆) = 1 + Eθ

a[ω̃−1Eθ
ω−1

(R̆)] = 1 +
∫

S

b̃Eθ
b(R̆)q̆θ(a, b)db ≤ 1 +

(1 − ε)σ+

εσ−
Eθ(R̆),

where the first equality above is the strong Markov property and the inequality uses both (3.2) and the lower
bound (3.3) on the stationary distribution μθ.

The following proposition states the recurrence result on the Markov chain {(ω̆k, Zk)}k≥0 and gives an
expression for the density πθ of the corresponding invariant distribution.

Proposition 5.1. Under Assumptions 1 and 2, the Markov chain {(ω̆k, Zk)}k≥0 whose transition kernel is
given by (2.9) is positive Harris recurrent and aperiodic with invariant density distribution πθ given by

∀(a, x) ∈ S × N, πθ(a, x) = μθ(a)Eθ
a(R−1(1 −R−1)x).

Proof. Note that πθ is indeed a density. We first prove that it is the density of an invariant distribution. Thus
we want to establish that for any (b, y) ∈ S × N, we have

πθ(b, y) =
∑
x∈N

∫
S

πθ(a, x)Πθ((a, x), (b, y))da. (5.3)
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We start by considering the right-hand side of the above equation where we input the expressions for density
πθ and kernel Πθ. We let

T =
∑
x∈N

∫
S

πθ(a, x)Πθ((a, x), (b, y))da

=
∑
x∈N

∫
S

μθ(a)Eθ
a[R−1(1 −R−1)x]

(
x+ y

x

)
q̆θ(a, b)bx+1(1 − b)yda.

From the definition of q̆θ and using Fubini’s theorem for positive functions, we get

T = μθ(b)
∫

S

qθ(b, a)(1 − b)y
∑
x∈N

(
x+ y

x

)
Eθ

a[R
−1(1 −R−1)x]bx+1da

= μθ(b)
∫

S

qθ(b, a)(1 − b)yEθ
a

[
R−1b

[1 − b(1 −R−1)]y+1

]
da

= μθ(b)
∫

S

qθ(b, a)Eθ
a

[
1

1 + b̃R
×
(

1 − b

1 − b+ bR−1

)y]
da.

Now, applying Markov’s property and the definition of the shift operator, we obtain

T = μθ(b)Eθ
b

(
Eθ

ω1

[
1

1 + b̃R
×
(

1 − b

1 − b+ bR−1

)y])
= μθ(b)Eθ

b

(
Eθ

b

[
1

1 + b̃R
×
(

b̃R

1 + b̃R

)y

◦ τ1
∣∣∣F1

])

= μθ(b)Eθ
b

(
Eθ

b

[
1

1 + b̃+ b̃ω1 + . . .
×
(

b̃+ b̃ω̃1 + . . .

1 + b̃+ b̃ω̃1 + . . .

)y ∣∣∣F1

])
= μθ(b)Eθ

b(R
−1(1 −R−1)y).

This concludes the validity of (5.3).
As the marginal process {ωk}k≥0 is aperiodic, this is also the case for the time reversed marginal process

{ω̆k}k≥0 and for the bivariate process {(ω̆k, Zk)}k≥0. Following Theorem 9.1.8 in [33], we want to prove that
the Markov chain {(ω̆k, Zk)}k≥0 is ψ-irreducible for some probability measure ψ and that there exists a petite
set C ∈ S × N and a function V : S × N → R+, such that

(1) ΔV (a, x) := ΠθV (a, x) − V (a, x) ≤ 0, ∀(a, x) /∈ C;
(2) ∀N ∈ N, VN := {(a, x) ∈ S × N; V (a, x) ≤ N} is a petite set.

For all B ∈ B(S × N) and i ∈ {1, 2} let pri(B) be the projection of B onto S when i = 1 and onto N when
i = 2. We also let TB be the first hitting time of the set B by the chain {(ω̆k, Zk)}k≥0. Thanks to Assumptions 2
and (3.2), we can write

P
θ
(a,x)(TB <∞) ≥

∫
pr1(B)

∑
y∈pr2(B)

(
x+ y

x

)
bx+1(1 − b)y q̆θ(a, b)db

≥ σ2−
σ+

εx

∫
pr1(B)

∑
y∈pr2(B)

b(1 − b)ydb.

Hence the Markov’s chain is ϕ-irreducible (see Sect. 4.2 in [33]), where the measure ϕ defined on B(S × N) by

B 
→ ϕ(B) :=
∫

pr1(B)

∑
y∈pr2(B)

b(1 − b)ydb
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is a probability measure. From Proposition 4.2.2 in [33], the chain is also ψ-irreducible. Thanks to Assumption 2
again, we can easily see that for all N ∈ N, the set S × [[1, N ]] is a small set and as a consequence a petite set.
Indeed, for any (a, x) ∈ S × [[1, N ]] we have

Πθ((a, x), (b, y)) ≥ σ2−
σ+

bN+1(1 − b)y ≥ σ2−
σ+

εNb(1 − b)y.

Let
V (a, x) = xEθ

a(R̆) = xEθ
a(1 + ω̃−1 + ω̃−1ω̃−2 + . . . ).

By using (5.2), function V is finite. Moreover, we get that if (a, x) ∈ VN , then x ≤ N, which proves that for all
N ∈ N, the set VN is a petite set. Now, we consider

ΠθV (a, x) =
∫

S

∑
y∈N

yEθ
b(R̆)Πθ((a, x); (b, y))db

=
∫

S

∑
y∈N

yEθ
b(R̆)

(
x+ y

x

)
bx+1(1 − b)y q̆θ(a, b)db

= (x+ 1)
∫

S

q̆θ(a, b)
(

1 − b

b

)
Eθ

b(R̆)db

= (x+ 1)Eθ
a[ω̃−1Eθ

ω−1
(R̆)]

= (x+ 1)Eθ
a[ω̃−1Eθ

a[R̆ ◦ τ1|F̆1]]

= (x+ 1)Eθ
a[ω̃−1(1 + ω̃−2 + ω̃−2ω̃−3 + . . . )]

= (x+ 1)Eθ
a(R̆− 1).

Note also that (c+ − 1) ≥ Eθ
a(R̆− 1) > 0. As a consequence, for all (a, x) /∈ S× [[0, c+ − 1]] we have ΠθV (a, x) ≤

V (a, x). This concludes the proof of the proposition. �

5.2. Proof of consistency

Consistency of the maximum likelihood estimator is given by Theorem 1 in [22] for the observations generated
under stationary distribution and then extended by Theorem 5 in the same reference for a general initial
distribution case. Both results are established under some assumptions that we now investigate in our context.
Note that our process is not stationary since it starts from (ω0, Z0) ∼ μθ� ⊗ δ0. Thus, we rely on Theorem 5
from [22] to establish the properties of our estimator. We show that our assumptions on the RWRE ensure the
general assumptions on the autoregressive process with Markov regime needed to establish the consistency of
the MLE (assumptions (A1) to (A5) in [22]).

First, Assumption 2 is sufficient to ensure assumption (A1) from [22]. Indeed, Assumption 2 implies inequal-
ities (3.4) which correspond exactly to part (a) of (A1) on transition q̆θ. Moreover, statement (b) of (A1) writes
in our case as

∀(x, y) ∈ N
2,

∫
S

ga(x, y)da =
(
x+ y

x

)∫
S

ax+1(1 − a)yda

positive and finite, which is automatically satisfied here.

Assumption (A2) from [22] requires that the transition kernel density Πθ of the Markov chain {(ω̆k, Zk)}k≥0

defined by (2.9) is positive Harris recurrent and aperiodic. In Proposition 5.1, we proved that this is satisfied as
soon as this is the case for the environment kernel qθ (namely Assumption 2) and under the ballistic Assumption 1
on the RWRE. Let us recall that P

θ
and E

θ
are the probability and expectation induced when considering the

chain {(ω̆k, Zk)}k≥0 under its stationary distribution πθ.
With the ballistic condition, we obtain assumption (A3) from [22], as stated in the following proposition.
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Proposition 5.2. Under Assumptions 1 and 2, we have

sup
(x,y)∈N2

sup
a∈S

ga(x, y) < +∞ and E
θ
[
log

∫
S

ga(Z0, Z1)da
]
< +∞.

Proof. The first condition is satisfied according to the definition of g given in (2.8). Moreover, we have

log
∫

S

ga(Z0, Z1)da = log
(
Z0 + Z1

Z0

)
+ log

∫
S

aZ0+1(1 − a)Z1da.

Relying on Stirling’s approximation, we have

log
(
Z0 + Z1

Z0

)
= Z0 log

(
1 +

Z1

Z0

)
+ Z1 log

(
1 +

Z0

Z1

)
+OP (log(Z0 + Z1)),

where OP (1) stands for a sequence that is bounded in probability. Thus we can write

log
(
Z0 + Z1

Z0

)
≤ Z0 + Z1 +OP (log(Z0 + Z1)).

Moreover, under assumption (3.2), we have

|S| × [(Z0 + 1) log ε+ Z1 log ε] ≤ log
∫

S

aZ0+1(1 − a)Z1da ≤ (Z0 + 1) log(1 − ε) + Z1 log(1 − ε),

where |S| denotes either the Lebesgue’s measure of S or its cardinality when S is discrete. As a conclusion, as
soon as E

θ
(Z0) < +∞, the second statement in the proposition is satisfied. Now, from the definition of πθ given

in Proposition 5.1, we get

E
θ
(Z0) =

∑
x∈N

∫
S

xμθ(a)Eθ
a(R−1(1 −R−1)x)da =

∫
S

μθ(a)Eθ
a(R− 1)da = Eθ(R) − 1,

which is finite thanks to Assumption 1. �

Assumption 3 on qθ is sufficient to ensure (A4) from [22] on q̆θ.
Now, we let P

θ,Z
denote the marginal of the distribution P

θ
on the set N

N (corresponding to the second
marginal). In order to ensure identifiability of the model (assumption (A5) in [22]), we require identifiability of
the parameter from the distribution of the environment (Assumption 4 in our work).

Lemma 5.3. Under Assumption 4, the autoregressive process with Markov’s regime has identifiable parameter,
i.e.

∀θ, θ′ ∈ Θ, θ = θ′ ⇐⇒ P
θ,Z

= P
θ′,Z

.

Proof. We prove that θ is uniquely defined from P
θ,Z

. The knowledge of the distribution P
θ,Z

means that for
any n ∈ N, any sequence z0, . . . , zn ∈ N

n+1, we know the quantity

P
θ
((Z0, . . . , Zn) = (z0, . . . , zn)) =

∫
S

. . .

∫
S

πθ(a0, z0)
n∏

i=1

q̆θ(ai−1, ai)
n∏

i=1

gai(zi−1, zi)da0 . . . dan.

Since g does not depend on θ and is positive, if we assume that P
θ,Z

= P
θ′,Z

we obtain from the above expression
that

πθ(a0, z0)
n∏

i=1

q̆θ(ai−1, ai) = πθ′(a0, z0)
n∏

i=1

q̆θ′(ai−1, ai),

almost surely (w.r.t. the underlying measure on Sn+1). Noting that Assumption 4 can be formulated on qθ or
on q̆θ equivalently, this implies θ = θ′. �
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Now a direct application from Theorem 5 in [22] combined with our previous developments establishes
that under Assumptions 2 to 4, the maximum likelihood estimator θ̂n converges P

�-almost surely to the true
parameter value θ� as n tends to infinity.

5.3. Proof of asymptotic normality

Applying Theorem 6 from [22] and using that in our case, their assumptions (A6) to (A8) are satisfied for q̆θ
under our Assumption 5, we obtain the weak convergence of the conditional score to a Gaussian distribution, as
soon as the asymptotic variance is defined, which means as soon as the Fisher information matrix is invertible.

Acknowledgements. We would like to thank an anonymous referee who made interesting comments on our work.
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