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SEMIPARAMETRIC DECONVOLUTION
WITH UNKNOWN NOISE VARIANCE

Catherine Matias1

Abstract. This paper deals with semiparametric convolution models, where the noise sequence has
a Gaussian centered distribution, with unknown variance. Non-parametric convolution models are
concerned with the case of an entirely known distribution for the noise sequence, and they have been
widely studied in the past decade. The main property of those models is the following one: the more
regular the distribution of the noise is, the worst the rate of convergence for the estimation of the
signal’s density g is [5]. Nevertheless, regularity assumptions on the signal density g improve those
rates of convergence [15]. In this paper, we show that when the noise (assumed to be Gaussian centered)
has a variance σ2 that is unknown (actually, it is always the case in practical applications), the rates
of convergence for the estimation of g are seriously deteriorated, whatever its regularity is supposed to
be. More precisely, the minimax risk for the pointwise estimation of g over a class of regular densities
is lower bounded by a constant over log n. We construct two estimators of σ2, and more particularly,
an estimator which is consistent as soon as the signal has a finite first order moment. We also mention
as a consequence the deterioration of the rate of convergence in the estimation of the parameters in
the nonlinear errors-in-variables model.

Mathematics Subject Classification. 62G05, 62G07, 62C20.

1. Introduction

Consider a convolution model Y = X + ε, where the signal X has an unknown density g with respect to the
Lebesgue measure on R, and the error measurement ε is supposed to be Gaussian, centered, with variance σ2,
and independent of X . Deconvolution density estimation has been studied in depth by several authors. Recent
related work include [1–5,11,16,17,21]. When σ2 is known, Fan [5] proved that for all fixed point x0 in R, g(x0)
can be approximated at the optimal rate of convergence (log n)−(m+α)/2, when g is supposed to belong to the
set

Cm,α,β = {g ∈ L1 : g ≥ 0; and ∀x ∈ R, ∀δ > 0, |g(m)(x)− g(m)(x + δ)| ≤ βδα} (1)

where m in N, β > 0 and 0 < α ≤ 1 are known constants. More precisely,

lim inf
n→∞ inf

T̂n

sup
g∈Cm,α,β

(log n)(m+α)
E[T̂n − g(x0)]2 > 0,
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and this rate of convergence is attained. Results about convergence in Lp-norm were also obtained in [4] and [6],
where it is proved:

lim inf
n→∞ inf

T̂n

sup
g∈Cm,α,β

(log n)(m+α)/2
E‖T̂n − g‖p > 0,

and this rate is attained. This result is improved in [15], when the density g is super-smooth. Denote by g∗ the
Fourier transform of g, and assume that the density g belongs to the set

SSα,ν,ρ(A) =
{

g ∈ L1 :
∫
|g∗(t)|2(t2 + 1)α exp(2ρ|t|ν)dt ≤ A

}
, (2)

for some positive constants α, ν, ρ and A. Pensky and Vidakovic [15] constructed an estimator ĝn of g, whose
mean integrated square error

MISE(ĝn) = E

∫
(ĝn(x) − g(x))2dx (3)

satisfies

sup
g∈SSα,ν,ρ(A)

MISE(ĝn) =

{
O(n−η(log n)ξ), if ν < 2,

O((log n)−α exp(−ζ(log n)ν/2)) if ν ≥ 2,

where η, ξ and ζ have explicit forms. So that assuming the density of the signal super-smooth ensures faster
rates of convergence, in the case of an entirely known noise density.

The question that naturally arises is what happens when σ2 is unknown? This problem becomes a particular
case of a semiparametric model [19], and more precisely, of mixture models [10], known as the normal mean
mixture model. This problem of measurements being contaminated with errors is used in many different areas
such as physics or biology (practical problems of deconvolution can be found in [13]).

Semiparametric mixture models are studied in [9]. The author shows a loss of information for the finite-
dimensional parameter when the model is constrained to allow for only discrete mixtures. In the normal mean
mixture model, allowing discrete mixtures to have limit points leads to a breakdown of the classical

√
n inference

for the finite-dimensional parameter. Can we be more precise in quantifying this breakdown? The answer is
yes, and we will see that for regular mixtures, the estimation of the finite-dimensional parameter σ happens at
a slower rate than (log n)−1.

Assuming that the error density is perfectly known seems to be unrealistic in many practical applications.
In [14] a scheme is given to estimate σ2 when observations of the noise sequence are available. Our estimator
of σ2 is based only on the observations of the convolution model. More precisely, we assume that we observe:

Yn = Xn + εn ; n ∈ N,

where {Xn}n≥0 is a sequence of independent and identically distributed random variables on R, and {εn}n≥0

is a centered Gaussian white noise, with variance σ2. The sequences {Xn}n≥0 and {εn}n≥0 are supposed to
be independent. We denote by g (resp. h) the density of the distribution of X (resp. Y ) with respect to the
Lebesgue measure on R. In this paper, Φσ denotes the density of a Gaussian centered random variable, with
variance σ2, and the notation g ∗Φσ stands for the convolution product between g and Φσ. A density function g
(with respect to the Lebesgue measure on R) is said to have “no Gaussian component” if the equality g = g′∗Φσ

where g′ is a density function on R implies σ = 0 (and then g = g′). We consider:

G = {g ∈ L1 : g density without Gaussian component},
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the set of densities for the signal, with respect to the Lebesgue measure on R. Note that the restriction on g
enables us to identify the parameter σ2. Denote also

H = {g ∗ Φσ : g ∈ G and σ > 0},

the set of densities for the observed sequence, with respect to the Lebesgue measure on R. We denote by Pσ,g

the distribution of the observations {Yn}n≥0 and Eσ,g the corresponding expectation.
When σ2 is unknown, we prove that the pointwise estimation of g is deteriorated in many cases. In fact, the

minimax quadratic risk over a set of regular densities, for the estimation of σ2 is lower bounded by a constant
divided by log n. Then, the estimation of g(x0) (for some fixed point x0 in R) will not be possible, uniformly
over a set of regular densities, at a faster rate than (logn)−1.

This paper is organized as follows. Section 2 gives lower bounds for the estimations of σ2 and g(x0) in
the convolution model with unknown variance for the noise sequence, using the van Trees inequality [8]. In
Section 3, we construct an estimator of σ that is consistent, assuming nothing but a first order moment on g.
This section also gives the rate of convergence of an estimator of σ2 when the Laplace transform of g has some
decrease at infinity. Section 4 gives the main examples for which the lower bound results apply. It also gives
a result about the degradation of the estimation of linear functionals coming from polynomial functions in the
errors-in-variables model. Proofs are given in Section 5.

2. Lower bounds

We give lower bounds for the minimax quadratic risks for the estimation of σ and g(x0), when x0 is a fixed
point in R:

inf
T̂n

sup
σ∈V(σ0)

sup
g∈R

[
Eσ,g(T̂n − σ2)2

]1/2

and inf
T̂n

sup
σ∈V(σ0)

sup
g∈R

[
Eσ,g(T̂n − g(x0))2

]1/2

,

where T̂n ranges over all estimators based on the observations Y1, . . . Yn, R is a set of densities with properties
to be precised, and V(σ0) is a neighborhood of a fixed point σ0 > 0. We use the van Trees inequality [8] on a
suited one-dimensional sub-model. In fact, the difficulty of the model is contained in a “worst-case” sub-model,
that is to say a worst one-dimensional sub-model. As always in this kind of proof, the purpose is to exhibit
densities ht and h0 which are close to each other, in the sense that the Fisher information I(t) of the model is
small for fixed t > 0, whereas the corresponding parameters σ2

t and σ2
0 are well-separated.

For some density probability g0 and τ > 0, define the set

H(g0, τ) = {g0 ∗ (Φ√t1lτ |·|≤√t) ; 0 ≤ t ≤ τ2}, (4)

with the convention that the centered Gaussian density with variance zero is the dirac mass at the point zero.

Assumption 1. The set of densities H(g0, τ) is included in G for some positive τ .

Assumption 2. The function α0(y) =
∫ 1

−1 g0(y + u)du satisfies
∫

[α0(y)]−1e−y2/2dy < ∞.

Assumption 3. The function g0 is three times continuously differentiable with supx∈R∗

∣∣∣g′0(x)
x

∣∣∣ < +∞, g′′0 (0) 6=
0 and ‖g(3)

0 ‖∞ < +∞.

These assumptions are satisfied for example with g0(x) = π−1/(1 + x2).
Fix the points x0 in R and σ0 in R+, a real positive parameter τ , a bounded function g0 satisfying

Assumptions 1 and 2. For all 0 < t ≤ τ2, we define

pt(u) = CτΦ√t σ0
(u)1lτ |u|≤√t σ0

,
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where the normalizing constant Cτ is equal to
(∫

Φ1(z)1lτ |z|≤1dz
)−1

. Now, let us construct a path in G:

∀ 0 < t ≤ τ2, ht = g0(· − x0) ∗ pt ∗ Φ√1−t σ0
and h0 = g0(· − x0) ∗ Φσ0 . (5)

The function pt is the truncated density of a centered Gaussian random variable, with variance tσ2
0 . Since the

convolution of Φ√t σ0
with Φ√1−t σ0

is equal to Φσ0 , we can expect that the densities ht (for t > 0) and h0 are
close to each other (in a sense to be precised).

Theorem 2.1. Assume that g0 is a bounded function satisfying Assumptions 1 and 2 and fix τ > 0. Then for
all σ0 > 0 and every neighborhood V(σ0) of σ0, we have

lim inf
n→∞ inf

T̂n

sup
σ∈V(σ0)

sup
g∈H(g0,τ)

(log n)
[
Eσ,g(T̂n − σ2)2

]1/2

> 0, (6)

where the infimum is taken over all estimators T̂n based on the observations Y1, . . . Yn.

A slight adaptation of this path gives the corresponding result on the pointwise estimation of g at x0.

Theorem 2.2. Assume that g0 is a bounded function satisfying Assumptions 1, 2 and 3 and fix τ > 0. Then
for all real number x0, for all σ0 > 0, and every neighborhood V(σ0) of σ0, we have

lim inf
n→∞ inf

T̂n

sup
σ∈V(σ0)

sup
g∈H(g0,τ)

(log n)
[
Eσ,g(T̂n − g(x0))2

]1/2

> 0,

where the infimum is taken over all estimators T̂n based on the observations Y1, . . . , Yn.

A consequence of these theorems is that the minimax risk for the estimation of σ2 or g(x0), over a class of
densities containing the set H(g0, τ) for some well-chosen density g0 and some τ > 0 small enough, is lower
bounded by a constant over log n. That means that the estimation of σ2 or g(x0) happens at a slower rate than
(log n)−1 over these sets of densities. In particular, if R is some “regular” set of densities without Gaussian
component and g0 is chosen in R, then R contains the path H(g0, τ) for some small enough τ > 0. Section 4
gives the main examples of sets R for which these theorems apply.

3. Estimation of the noise variance

In this part, we propose two different procedures for the estimation of the noise variance σ2. The first one is
the most powerful as it gives an estimator consistent as soon as we assume a first order moment on the signal.
The second procedure applies when the Laplace transform of the density of the signal g has some decrease at
infinity, and is interesting as its rate of convergence is explicit. In particular, it includes the case of densities g
with a fixed support [−M ; M ].

We denote by g∗ (resp. h∗) the Fourier transform of g (resp. h) and fix the noise variance σ2 > 0. For all ζ
in R and all τ > 0, define

α(ζ; τ) = g∗(ζ)e−ζ2(σ2−τ2)/2 = h∗(ζ)eζ2τ2/2. (7)

The function α is the product of the Fourier transform of h (the density of the distribution of the observations)
and the function (Φ∗τ )−1. When τ equals the standard deviation σ, the function α(·; σ) equals g?, the character-
istic function of the signal. Note also that since g has no Gaussian component, the function ζ 7→ g?(ζ)eζ2v2/2,
for a fixed v > 0, is not the Fourier transform of a positive measure. We observe the following properties of α:

– when τ ≤ σ, the function α(·; τ) is the Fourier transform of the positive measure g ∗ Φ√σ2−τ2;
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– when τ > σ, the function α(·; τ) is no longer a Fourier transform of a probability measure on the real line
(since g is supposed to belong to the set G and then has no Gaussian component). By Bochner’s theorem
(see for example [7]), the function α(·; τ) is then not positive definite.

So that we conclude:

σ = inf{τ ; α(·, τ) is not positive definite} ·

In the rest of the section, u is used to denote a point in C
p, where p may change along the lines, and ‖u‖

denotes the norm (
∑p

j=1 |uj |2)1/2. The idea is that the real parameter σ is the first value of τ for which the
function α(·; τ) is not positive definite. That means that σ is the smallest value of τ satisfying that there exists
an integer n and a n-tuple of real numbers {tk; 1 ≤ k ≤ n}, such that the smallest eigenvalue of the matrix
(α(tk − tl; τ))1≤k,l≤n is negative.

σ = inf

τ ; ∃n ∈ N , ∃(tk)1≤k≤n ∈ R : inf
u; ‖u‖=1

∑
1≤k,l≤n

ukα(tk − tl; τ)ūl ≤ 0

 ·

We approximate the function α by its empirical estimator α̂n:

α̂n(ζ; τ) =

(
1
n

n∑
p=1

eiζYp

)
eζ2τ2/2. (8)

Let us construct a dense family {tk,n}n≥0 of points in R. Consider (kn)n≥0 and (`n)n≥0 two sequences of
numbers increasing to infinity, in such a way that `n/kn also increases to infinity. The points tk,n = k/kn form
a partition of the interval [−`n/kn; `n/kn] when the integer k ranges from −`n to `n. We define

σ̂n = inf

τ ; inf
u; ‖u‖=1

∑
−`n≤k,l≤`n

ukα̂n(tk,n − tl,n; τ)ūl < −εn

 (9)

where (εn)n≥0 is a sequence of positive numbers decreasing to zero. This estimator is computed considering the
matrices Tn(τ) = {α̂n(tk,n − tl,n; τ)}−`n≤k,l≤`n . The graph of the function τ 7→ λmin(Tn(τ)), where λmin(T )
denotes the smallest eigenvalue of the matrix T , gives the value of σ̂n by considering the first value of τ such
that λmin(Tn(τ)) < −εn.

Assumption 4. Fix Σ > 0 and choose the parameters `n; kn and εn in the following way:

• `n

kn
= 1

Σ

√
a log n

2 for some 0 < a < 1/2;

• kn = n1/2−a−b for some b > 0 and 2a + b < 1/2;
• εn =

√
2a
Σ

√
log n
nb vn where vn is an increasing sequence of numbers converging to infinity in such a way that

εn converges to zero, and v−1
n = o((log log n)−1/2).

Theorem 3.1. For all Σ > 0, under Assumption 4, and for all σ ∈]0; Σ], all g in G such that
∫ |x|g(x)dx < ∞,

we have:
∀ε > 0 , lim

n→∞Pσ,g(|σ̂n − σ| ≥ ε) = 0.

We only specify the asymptotic behaviour of the parameters `n, kn, εn and vn. Their values should be justified
by empirical applications, but this is beyond the scope of this paper.

Now, we propose another estimator of σ, assuming that the distribution of the signal possesses a Laplace
transform not rapidly increasing at infinity. This framework contains for example the case of g having a support
included in some fixed compact set. The construction of this estimator of σ is based on the behaviour of the
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Laplace transform of g at infinity: as the distribution of the signal has no Gaussian component, its Laplace
transform should increase lower than eCt2 at infinity. Assume that the density of the signal g belongs to the
following set of functions:

Lv =
{

g ∈ L1 / g ≥ 0 ,

∫
g(x)dx = 1 ,

∣∣∣∣log
(∫

etxg(x)dx

)∣∣∣∣ ≤ t2v(t)
}

, (10)

for some positive function v vanishing at infinity. Note for example that when v(t) = M/|t|, the set of func-
tions Lv contains the set of functions with support included in [−M ; M ]. In the rest of the paper, we will use
the abbreviated notation:

L(M) =
{

g ∈ L1 / g ≥ 0 ,

∫
g(x)dx = 1 ,

∣∣∣∣log
(∫

etxg(x)dx

)∣∣∣∣ ≤ M |t|
}
·

When the density g of the signal belongs to Lv,M for some function v vanishing at infinity, the variance of the
noise becomes identifiable, as can be seen by computing the Laplace transform of the observations. In fact, we
have the equality

∀g ∈ Lv,M , σ2 = lim
t→∞

2
t2

log Eσ,g

(
etY1

)
.

It is then natural to define the following empirical estimator of σ:

σ̂2
L,n(tn) =

2
t2n

log

 1
n

n∑
j=1

etnYj

 ,

where (tn)n≥0 is some sequence of positive numbers increasing to infinity (the subscript L stands for Laplace).

Proposition 3.2. For any Σ > 0 and some 0 < α < 1, define tn =
√

α log n/(2Σ). Then for all positive
function v vanishing at infinity:

sup
σ∈[0;Σ]

sup
g∈Lv

[
Eσ,g(σ̂2

L,n(tn)− σ2)
]1/2 ≤ 8Σ2

α(log n)n(1−α)/2
+ 2v(tn).

Now, we consider the special case v(t) = M/|t|, and obtain as a straightforward application:

Corollary 3.3. For all M > 0, all Σ > 0 and some 0 < α < 1, define tn =
√

α log n/(2Σ). Then

sup
σ∈[0;Σ]

sup
g∈L(M)

[
Eσ,g(σ̂2

L,n(tn)− σ2)
]1/2 ≤ 4MΣ√

α log n
·

Note that Theorem 2.1 does not apply for the set L(M) since any function g0 with compact support will not
satisfy Assumption 2.

4. Examples

We now give some examples of sets R containing a bounded function g0 satisfying Assumptions 1, 2, 3, and
such that R contains the set H(g0, τ) for some small enough τ , and we compare our results with existing ones.

Example 4.1. Consider the set of functions Cm,α,β defined by (1). The regularity assumption on the function
g has been used in [5] when the distribution of the noise sequence is known. Fan proved that the minimax rate
of convergence when the density of the noise sequence is known and super smooth, is (log n)−(m+α). Adding
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the condition on non-Gaussian components, in order to have an identifiable model, we prove that when σ is
unknown, the rate of convergence in the pointwise estimation of g is seriously deteriorated, as it becomes slower
than (log n)−1.

Example 4.2. Consider now the set of functions SSα,ν,ρ(A) defined by (2). Pensky and Vidakovic [15] gave
the following improvement on the results of Fan: when the density g of the distribution of the signal is known
to be super-smooth, they constructed an estimator of g, whose MISE error (3) is upper bounded by a constant
divided by some power of n, times some power of log n (see [15] for more details). But when the variance of
the noise sequence is unknown, the fact that g is super-smooth does not improve the rate of convergence of its
pointwise estimation, which remains slower than (log n)−1. It seems to be also the case for the MISE error in
the estimation of g.

A consequence of these results concerns the non-linear errors-in-variables model. Consider the model where
the observations {(Yn; Zn)}n≥0 satisfy the following relations:{

Zn = fβ(Xn) + ηn

Yn = Xn + εn

, ∀ n ≥ 0, (11)

where the function fβ is known up to the finite dimensional parameter β, the errors {(ηn; εn)}n≥0 are inde-
pendent, identically distributed and centered with respective variances σ2

η and σ2
ε = 1, the variables εn being

Gaussian and the sequence {Xn}n≥0 is not observed and is a sequence of independent and identically distributed
random variables with distribution admitting a density g with respect to the Lebesgue measure on R. The pur-
pose is to estimate the parameter β in this model where g is considered as a nuisance. Taupin [18] constructed
an estimator of β based on the estimation of the conditional expectation E(fβ(Xn)|Yn). The fact is that this
conditional expectation writes in the following form:

E(fβ(Xn)|Yn = y) =
∫

fβ(x)g(x)Φ1(x − y)dx∫
g(x)Φ1(x− y)dx

·

Taupin [18] constructed an estimator based on the observations {Yn}n≥0, of the linear functional Γf of the
density g, defined by the formula:

Γf (y) =
∫

f(x)g(x)Φ1(x − y)dx; ∀y ∈ R.

When f is identically equal to one, the functional Γf equals to the density h of the observations Yn. Rates
of convergence for this estimator of the functionals when f is either a polynomial function or a trigonometric
function of the form x 7→∑`

j=0 βj cos(jx) or of the form x 7→∑`
j=0 βj sin(jx) for some integer ` and real fixed

parameters (βj)0≤j≤` are given in [18] and are shown to be minimax in [12]. Typically, the minimax rate of
convergence in Lp-norm or in pointwise quadratic risk for a functional Γf where f is a polynomial function of
degree less or equal to ` is equal to (log n)(2`+1)/4/

√
n [18]. In the case of the estimation of h, those rates of

convergence are not deteriorated when σ2 becomes unknown. Now consider the case where f is a polynomial
function with degree ` greater or equal to one. We prove that the estimation of Γf is seriously deteriorated in
this case when σ2 is unknown as the minimax quadratic risk becomes lower bounded by a constant divided by
log n.

Let P be a polynomial function of degree ` greater or equal to one, and g0 a density probability, and define
the set

GP (g0, τ) =
{

Γ =
∫

P (x)Φσ(· − x)g(x)dx ; g = g0 ∗ (Φ√t1lτ |·|≤√t), 0 ≤ t ≤ τ2 , σ > 0
}

,
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of those functionals constructed with a density g of the form g0 ∗ (Φ√t1lτ |·|≤√t) for some 0 ≤ t ≤ τ2. We have
the following theorem concerning the estimation of a functional Γ in GP (g0, τ).

Theorem 4.3. Assume that g0 is a bounded function that is supposed to be ` times continuously differentiable,
satisfying Assumptions 1, 2 and 3 with ‖g(`)

0 ‖∞ < ∞, and fix τ > 0. Then, for all fixed real number y0 and
every polynomial function P of degree ` greater or equal to one, we have:

lim inf
n→∞ inf

bΓn

sup
Γ∈GP (g0,τ)

(log n)
[
E(Γ̂n − Γ(y0))2

]1/2

> 0,

where the infimum is taken over all the estimators Γ̂n based on the observations Y1, . . . Yn.

5. Proofs

Proof of Proposition 2.1. Without loss of generality, we assume that x0 = 0 and σ0 = 1. The first thing to
check is that the parametric path belongs to the model. But g0 is chosen so that for all 0 ≤ t ≤ τ2, the density
gt = g0 ∗ pt has no Gaussian component. By applying definition (5) of the density ht, we can write, for all
0 < t ≤ τ2:

ht(y) = Cτh0(y)− (Cτh0 − ht)(y)

= Cτh0(y)− g0 ∗
(CτΦ1 − pt ∗ Φ√1−t

)
(y). (12)

Note that we have the following identity: pt = CτΦ√t(1− 1lτ |·|>√t), so that

(CτΦ1 − pt ∗ Φ√1−t)(y) = Cτ

[
Φ1 −

(
Φ√t − Φ√t1l{τ |.|>√t}

)
∗ Φ√1−t

]
(y).

Since the convolution between the normal densities Φ√t and Φ√1−t is equal to Φ1, we have

(CτΦ1 − pt ∗ Φ√1−t)(y) = Cτ

(
Φ√t1l{τ |·|>√t}

)
∗ Φ√1−t(y).

Combining with (12), we get

ht(y) = Cτh0(y)− Cτg0 ∗
(
Φ√t1l{τ |·|>√t}

)
∗ Φ√1−t(y)

= Cτh0(y)− Cτ

∫∫
Φ√1−t (y − u)Φ√t (u− v) 1lτ |u−v|>√tg0(v)dvdu. (13)

We have:

Φ√t (u− v)Φ√1−t (y − u) =
1

2π
√

t(1− t)
exp

[
− (u− (1 − t)v − ty)2

2t(1− t)
− v2

2t
− y2

2(1− t)
+

[(1 − t)v + ty]2

2t(1− t)

]
= Φ√

t(1−t)
(u− (1 − t)v − ty) Φ1(v − y),
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and then returning to (13),

ht(y) = Cτh0(y)− Cτ√
2π

∫ [∫
1√

t(1 − t)
Φ1

(
u− (1− t)v − ty√

t(1− t)

)
1lτ |u−v|>√tdu

]
e−

(v−y)2

2 g0(v)dv

= Cτh0(y)− Cτ√
2π

∫ ∫ +∞

(1/τ)+
√

t(v−y)√
1−t

Φ1(z)dz +
∫ −(1/τ)+

√
t(v−y)√

1−t

−∞
Φ1(z)dz

 e−
(y−v)2

2 g0(v)dv. (14)

This expression of ht is useful in the computation of the corresponding Fisher information. In the rest of this
section, the notation Et stands as an abbreviation for Eσt,gt . The Fisher information associated to our path is
defined by:

I(t) = Et

(
∂ log ht

∂t
(Y )
)2

=
∫ (

∂ht

∂t

)2

(y)h−1
t (y)dy , for all 0 ≤ t ≤ τ2. (15)

Lemma 5.1. The Fisher information satisfies:

∀ 0 ≤ t ≤ τ2 , I(t) = I(0)(1 + o(1)) =
C2

τ

4π2
τ−2e−1/τ2

(∫
f0(y)2h0(y)−1dy

)
(1 + o(1)),

where f0 is defined by

f0(y) =
∫

[1− (v − y)2]e−
(y−v)2

2 g0(v)dv.

The proof of this lemma stands after this one.
Now, let us consider λ0(t)dt a probability measure on [0; 1] satisfying the following conditions
– λ0(0) = λ0(1) = 0;
– t 7→ λ0(t) is continuously differentiable in ]0; 1[;
– λ0(t)dt has finite Fisher information:

J0 =
∫ 1

0

λ
′2
0 (t)

λ0(t)
dt,

where the prime stands for derivation with respect to the parameter t.
Rescaling this measure on the interval [0; τ2] we define:

λ(t)dt =
1
τ2

λ0

(
t

τ2

)
dt

which has the Fisher information J0/τ4. Denote by Eλ(I) the quantity
∫

I(t)λ(t)dt (t is seen as a random vari-
able with values in [0; τ2], distributed according to the probability measure λ(t)dt). The van Trees inequality [8]
for the estimation of the variance of the noise in the convolution model gives us for small enough τ :

inf
T̂n

sup
σ∈V(σ0)

sup
g∈H(g0,τ)

Eσ,g(T̂n − σ2)2 ≥ inf
T̂n

∫ τ2

0

Et(T̂n − σ2
t )2λ(t)dt

≥
(∫

∂σ2
t

∂t
(t)λ(t)dt

)2 (
nEλ(I) + J0/τ4

)−1
.
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And then

inf
T̂n

sup
σ∈V(σ0)

sup
g∈H(g0,τ)

Eσ,g(T̂n − σ2)2 ≥ (nEλ(I) + J0/τ4
)−1

.

Using Lemma 5.1,

Eλ(I) = I(0)(1 + o(1)) =
C2

τ

4π2
τ−2e−1/τ2

(∫
f0(y)2h0(y)−1dy

)
(1 + o(1)),

and then, returning to the van Trees inequality

inf
T̂n

sup
σ∈V(σ0)

sup
g∈H(g0,τ)

Eσ,g(T̂n − σ2)2 ≥
[
n
C2

τ

4π2

(∫
f0(y)2h0(y)−1dy

)
τ−2e−1/τ2

(1 + o(1)) + J0/τ4

]−1

.

Choosing τ−1 =
√

log n, we get:

lim inf
n→∞ inf

T̂n

sup
σ∈V(σ0)

sup
g∈H(g0,τ)

(log n)2Eσ,g(T̂n − σ2)2 > 0,

which achieves the proof of Proposition 2.1. �
Proof of Lemma 5.1. We calculate the derivative of ht with respect to the parameter t, using equation (14):

∂ht

∂t
(y) = − Cτ√

2π

∫ [
−Φ1

(
(1/τ) +

√
t(v − y)√

1− t

)(
(v − y)

2
√

t(1− t)
+

(1/τ) +
√

t(v − y)
2(1− t)3/2

)

+Φ1

(−(1/τ) +
√

t(v − y)√
1− t

)(
(v − y)

2
√

t(1− t)
+
−(1/τ) +

√
t(v − y)

2(1− t)3/2

)]
e−

(y−v)2

2 g0(v)dv.

But the equalities

Φ1

(
(1/τ) +

√
t(v − y)√

1− t

)
=

1√
2π

exp
(
−τ−2 + t(v − y)2

2(1− t)

)
exp

(
−
√

t(v − y)
τ(1 − t)

)
Φ1

(−(1/τ) +
√

t(v − y)√
1− t

)
=

1√
2π

exp
(
−τ−2 + t(v − y)2

2(1− t)

)
exp

(
+
√

t(v − y)
τ(1 − t)

)
lead to:

∂ht

∂t
(y) =

−Cτ

2π

∫
e−

τ−2+t(v−y)2

2(1−t)

[(
(v − y)

2
√

t(1− t)
+
−(1/τ) +

√
t(v − y)

2(1− t)3/2

)
e+

√
t(v−y)

τ(1−t)

−
(

(v − y)
2
√

t(1− t)
+

(1/τ) +
√

t(v − y)
2(1− t)3/2

)
e−

√
t(v−y)

τ(1−t)

]
e−

(y−v)2

2 g0(v)dv.

Simple calculations will give:

∂ht

∂t
(y) =

−Cτ

2π(1− t)3/2

∫
(v − y)e−

τ−2+t(v−y)2

2(1−t)
1√
t
sh
(√

t(v − y)
τ
√

1− t

)
e−

(y−v)2

2 g0(v)dv

+
Cτ

2π(1− t)3/2τ

∫
e−

τ−2+t(v−y)2

2(1−t) ch
(√

t(v − y)
τ
√

1− t

)
e−

(y−v)2

2 g0(v)dv. (16)
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The second term in the right hand side of the last equality is well-defined when t is equal to zero. The first one
is continuous at t = 0, observing that:

• 1√
t
sh
(√

t(v−y)

τ
√

1−t

)
−→t→0

v−y
τ ;

• using a Taylor formula:

1√
t
sh
(√

t(v − y)
τ
√

1− t

)
=

(v − y)
2
√

1− t

∫ 1/τ

−1/τ

e
x
√

t(v−y)√
1−t dx,

we get an upper-bound, valid for all 0 < t ≤ min(1/2; τ2),∣∣∣∣ 1√
t
sh
(√

t(v − y)
τ
√

1− t

)∣∣∣∣ ≤
√

2
τ
|v − y|e|v−y|. (17)

This leads to the domination, valid for all 0 < t ≤ min(1/2; τ2),∣∣∣∣(v − y)e−
τ−2+t(v−y)2

2(1−t)
1√
t
sh
(√

t(v − y)
τ
√

1− t

)
e−

(y−v)2

2 g0(v)
∣∣∣∣ ≤

√
2

τ
(v − y)2e−τ−2/2e|v−y|e−

(y−v)2

2 g0(v)

and the dominating function, as a function of the variable v, belongs to L1.
Then, dominated convergence combined with the expression (16) gives the continuity of [(∂ht)/(∂t)](y) at t = 0:(

∂ht

∂t

)
|t=0

(y) =
Cτe−1/2τ2

2π τ

∫
[1− (v − y)2]e−

(y−v)2

2 g0(v)dv =
Cτe−1/2τ2

2π τ
f0(y)

where f0(y) =
∫

[1− (v − y)2]e−
(y−v)2

2 g0(v)dv

belongs to L1. Then, we have by definition

I(t) = Et

(
∂ log ht

∂t
(Y )
)2

=
∫ (

∂ht

∂t

)2

(y)h−1
t (y)dy.

And now, we claim the continuity of t 7→ I(t) at t = 0, using that:

• t 7→ (
∂ht

∂t

)2
(y)h−1

t (y) is continuous at t = 0 for all y ∈ R;
• consider the expression (16), and use the inequality |a + b|2 ≤ 2(a2 + b2), combined with the Cauchy–

Schwarz inequality (recall that g0 is a probability density). We get the following domination:∣∣∣∣∂ht

∂t
(y)
∣∣∣∣2 ≤ C2

τ

2π2(1 − t)3

∫
|v − y|2e− τ−2+t(v−y)2

(1−t)
1
t

∣∣∣∣sh(√t(v − y)
τ
√

1− t

)∣∣∣∣2 e−(v−y)2g0(v)dv

+
C2

τ τ−2

2π2(1− t)3

∫
e−

τ−2+t(v−y)2

(1−t)

∣∣∣∣ch(√t(v − y)
τ
√

1− t

)∣∣∣∣2 e−(v−y)2g0(v)dv.

Now, assume that 0 < t ≤ min(1/2; τ2), use the upper-bound (17) and the inequality |ch(x)| ≤ e|x| to
obtain:∣∣∣∣∂ht

∂t
(y)
∣∣∣∣2 ≤ 8C2

τ e−1/τ2

π2 τ2

∫
|v − y|4e2|v−y|e−(v−y)2g0(v)dv +

4C2
τe−1/τ2

π2 τ2

∫
e2|v−y|e−(v−y)2g0(v)dv

≤ 8C2
τ e−1/τ2

π2 τ2

∫
(1 + |v − y|4)e2|v−y|e−(v−y)2g0(v)dv; (18)



282 C. MATIAS

• remember equality (14)

ht(y) = Cτh0(y)− Cτ√
2π

∫ ∫ +∞

τ−1+
√

t(v−y)√
1−t

Φ1(z)dz +
∫ −τ−1+

√
t(v−y)√

1−t

−∞
Φ1(z)dz

 e−(v−y)2/2g0(v)dv

=
Cτ√
2π

∫ ∫ τ−1+
√

t(v−y)√
1−t

−τ−1+
√

t(v−y)√
1−t

Φ1(z)dz

 e−(v−y)2/2g0(v)dv.

We lower bound this integral by its restriction to the set {|v − y| ≤ 1} so that for small enough τ , it can
also be lower bounded by

ht(y) ≥ 1
2
√

2π

∫
1l|v−y|≤1e−(v−y)2/2g0(v)dv,

and we obtain

ht(y) ≥ e−1/2

2
√

2π

∫ 1

−1

g0(y + u)du.

Now, by assumption, the function α0(y) =
∫ 1

−1
g0(y + u)du satisfies∫

[α0(y)]−1e−y2/2dy < ∞.

Combining with (18), we obtain a domination on the quantity∣∣∣∣∂ht

∂t
(y)
∣∣∣∣2 ht(y)−1

by an integrable function of the variable y.
This achieves the proof of the continuity of the function t → I(t) at the point t = 0. In conclusion, we have

I(t) = I(0)(1 + o(1)) =
C2

τ

4π2
τ−2e−1/τ2

(∫
f0(y)2h0(y)−1dy

)
(1 + o(1)). �

Proof of Theorem 2.2. Without loss of generality, we will assume x0 = 0 and σ0 = 1. We use the same path
as in the proof of Proposition 2.1, assuming moreover that g0 satisfies Assumption 3. The only thing to care
about is the functional to be estimated. Here we have:

gt(0) =
∫

g0(u)pt(u)du = Cτ

∫
|v|≤(1/τ)

g0(
√

tv)e−v2/2 dv√
2π

∂gt(0)
∂t

=
Cτ

2
√

t

∫
|v|≤(1/τ)

vg′0(
√

tv)Φ1(v)dv.

Expanding g′0 in the neighborhood of 0, there exists a point v̄ between 0 and
√

tv such that

g′0(
√

tv) = g′0(0) +
√

tvg′′0 (0) + tv2g
(3)
0 (v̄).
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Then, using the same notations as in the proof of Proposition 2.1,

∂gt(0)
∂t

= g′′0 (0)
Cτ

2

(∫
|v|≤(1/τ)

v2Φ1(v)dv

)
(1 + O(

√
t))

(∫
∂gt(0)

∂t
(t)λ(t)dt

)2

= [g′′0 (0)]2
C2

τ

4

(∫
|v|≤(1/τ)

v2Φ1(v)dv

)2

(1 + O(τ)).

Now, applying the van Trees inequality, we obtain that for small enough τ :

inf
T̂n

sup
σ∈V(σ0)

sup
g∈H(g0,τ)

Eσ,g(T̂n − g(0))2 ≥ inf
T̂n

∫ τ

0

Et(T̂n − gt(0))2λ(t)dt

≥
(∫

∂gt(0)
∂t

(t)λ(t)dt

)2 (
nEλ(I) + J0/τ4

)−1

≥ [g′′0 (0)]2
C2

τ

4

(∫
|v|≤(1/τ)

v2Φ1(v)dv

)2

(1 + o(1))
(
nEλ(I) + J0/τ4

)−1
.

Using Lemma 5.1, we have the equality

Eλ(I) = I(0)(1 + o(1)) =
C2

τ

4π2

e−1/τ2

τ2

(∫
f0(y)2h0(y)−1dy

)
(1 + o(1)).

And then, returning to the van Trees inequality

inf
T̂n

sup
σ∈V(σ0)

sup
g∈H(g0,τ)

Eσ,g(T̂n − g(0))2 ≥
[g′′0 (0)]2 C2

τ

4

(∫
|v|≤(1/τ) v2Φ1(v)dv

)2

(1 + o(1))

n
C2

τ

4π2

(∫
f0(y)2h0(y)−1dy

)
τ−2e−1/τ2(1 + o(1)) + J0/τ4

·

Choosing τ−1 =
√

log n, we get

lim inf
n→∞ inf

T̂n

sup
σ∈V(σ0)

sup
g∈H(g0,τ)

(log n)2Eσ,g(T̂n − g(0))2 > 0. �

Proof of Theorem 3.1. We have to choose the parameters to ensure that σ̂n will converge to the true value of
the parameter σ. We will first study the quantity

α̂n(t; τ) − α(t; τ)

that represents the difference between the value of α and its estimator. We have:

α̂n(t; τ)− α(t; τ) = et2τ2/2 1√
n

Gn(ft)

where Gn is the empirical process associated to the observations (that is to say Gn =
√

n(Pn − Pσ,g) and Pn

is the empirical probability measure for the observations: Pn(f) = (1/n)
∑n

i=1 f(Yi)), and ft(u) = eitu. This
leads to the upper-bound:

sup
u:‖u‖=1

sup
τ∈[0;Σ]

∣∣∣∣∣∣
∑

−`n≤k,l≤`n

uk [α̂n(tk,n − tl,n; τ)− α(tk,n − tl,n; τ)] ūl

∣∣∣∣∣∣ ≤ 2`n

 sup
|t|≤ `n

kn

|Gnft|
 e2`2nΣ2/k2

n√
n

·
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We impose the following condition on the parameters

`n

kn
=

1
Σ

√
a log n

2
where 0 < a < 1/2, (19)

so that we get: e2`2nΣ2/k2
n = na. It leads to

sup
u,τ

∣∣∣∣∣∣
∑

−`n≤k,l≤`n

uk[α̂n(tk,n − tl,n; τ)− α(tk,n − tl,n; τ)]ūl

∣∣∣∣∣∣ ≤
√

2a

Σ

√
log nkn

n1/2−a

 sup
|t|≤ `n

kn

|Gnft|
 , (20)

and we impose

kn ≤ n1/2−a−b, where b > 0,

so that the quantity
√

2a

Σ

√
log nkn

n1/2−a

converges to zero. Recall that the parameter εn is chosen as

εn =
√

2a

Σ

√
log nkn

n1/2−a
× vn,

where vn is an increasing sequence of numbers converging to infinity such that εn tends to zero:

vn −→
n→∞∞, εn −→

n→∞ 0.

In fact, we choose the sequence (vn)n≥0 increasing to infinity, under the constraint:

vn = o

(
n1/2−a

√
log nkn

)
·

This choice of the parameters is made in order to ensure the convergence to zero of the term:

∆n = Pσ,g

 sup
u:‖u‖=1

sup
τ∈[0;Σ]

∣∣∣∣∣∣
∑

−`n≤k,l≤`n

uk[α(tk,n − tl,n; τ) − α̂(tk,n − tl,n; τ)]ūl

∣∣∣∣∣∣ ≥ εn

 . (21)

Let us prove this convergence. Using the domination (20), we have:

∆n ≤ Pσ,g

√2a

Σ

√
log nkn

n1/2−a

 sup
|t|≤ `n

kn

|Gnft|
 ≥ εn

 .

So that,

∆n ≤ Pσ,g

 sup
|t|≤ `n

kn

|Gnft| ≥ vn

 ≤ 1
vn

Eσ,g

 sup
|t|≤ `n

kn

|Gnft|
 . (22)
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Now we use a maximal inequality to control the mean of the empirical process. The following notations can be
found in more details in [20]. We consider the class of functions Fn defined by {ft; |t| ≤ `n/kn} (note that this
class has an envelope function equal to one). The complexity of this family stands in its entropy defined through
the bracketing numbers for this class. Theorem 2.7.11 in [20] applies in our context: denote by F (x) = 2|x| the
function such that for all s, t in Tn = [−`n/kn; `n/kn]

|ft(x)− fs(x)| = |eitx − eisx| ≤ |s− t|F (x).

This theorem asserts that the bracketing numbers for the class Fn (that means the minimal number of brackets
of size ε needed to cover Fn) are controlled by the covering numbers of Tn (i.e. the minimal number of balls of
radius ε needed to cover Tn):

N[ ](ε;Fn; ‖ · ‖Pσ,g,2) ≤ N

(
ε

2‖F‖Pσ,g,2
; Tn; | · |

)
(here ‖ · ‖Pσ,g,2 denotes the L2-norm under the measure Pσ,g). But it is easy to bound the covering numbers for
Tn

N

(
ε

2‖F‖Pσ,g,2
; Tn; | · |

)
≤ 4`n‖F‖Pσ,g,2

knε
·

So that we obtain the following control on the bracketing numbers for the class Fn

N[ ](ε;Fn; ‖ · ‖Pσ,g,2) ≤
4`n‖F‖Pσ,g,2

knε
· (23)

Let us define the entropy of this class by the formula:

J[ ](1;Fn; ‖ · ‖Pσ,g,2) =
∫ 1

0

√
1 + log N[ ](ε;Fn; ‖ · ‖Pσ,g,2)dε. (24)

Now we apply Theorem 2.14.2 in [20]: there exist a universal constant C such that

Eσ,g

 sup
|t|≤ `n

kn

|Gnft|
 ≤ CJ[ ](1;Fn; ‖ · ‖Pσ,g,2).

Combining with the definition of the entropy (24), with inequality (23) and using (19), we obtain that there
exist some constant κ such that

Eσ,g

 sup
|t|≤ `n

kn

|Gnft|
 ≤ κ(log log n)1/2.

Now return to the quantity ∆n defined in (21) and to its upper-bound (22):

∆n ≤ 1
vn

Eσ,g

 sup
|t|≤ `n

kn

|Gnft|
 ≤ κ

vn
(log log n)1/2. (25)

Recall that the parameter vn satisfies the constraint

v−1
n = o

(
(log log n)−1/2

)
,
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in order to get the convergence of ∆n to zero:

∆n −→
n→∞ 0. (26)

We will now prove the consistency of the estimator σ̂n. We start by studying what happens if σ̂n is greater
than or equal to σ + ε for some arbitrary ε > 0. Using the definition of σ̂n (see (9))

Pσ,g(σ̂n ≥ σ + ε) ≤ Pσ,g

 inf
u:‖u‖=1

∑
−`n≤k,l≤`n

ukα̂n(tk,n − tl,n; σ + ε)ūl ≥ −εn

 .

But this quantity involves the estimator α̂ whereas the real parameter α is more tractable. Using the definition
of ∆n (see(21)) we write:

Pσ,g(σ̂n ≥ σ + ε) ≤ Pσ,g

 inf
u:‖u‖=1

∑
−`n≤k,l≤`n

ukα(tk,n − tl,n; σ + ε)ūl ≥ −2εn

+ ∆n. (27)

But ∆n tends to zero as n tends to infinity. We will show that the first term in the right hand side is null for
n large enough. At the point σ + ε, the function α(·; σ + ε) is not positive definite, and then there exists n0 in
N, (ζ1, . . . ζn0) in Rn0 , and u0 = (u0

1, . . . u
0
n0

) in Cn0 with ‖u0‖ = 1 such that∑
1≤k,j≤n0

u0
kα(ζk − ζj ; σ + ε)ū0

j < 0.

But with the choice (19) for the parameters, for n large enough, we obtain that for all k in {1; . . . n0}, the
point ζk satisfies |ζk| ≤ `n

kn
, and there exists some φn(k) with

∣∣ζk − tφn(k),n

∣∣ ≤ 1
kn

·

Moreover,

∂

∂ζ
α(ζ; τ) = eζ2τ2/2

(
ζτ2

∫
eiζuh(u)du +

∫
iueiζuh(u)du

)
∣∣∣∣ ∂

∂ζ
α(ζ; τ)

∣∣∣∣ ≤ eζ2Σ2/2
(|ζ|Σ2 + Eσ,g|Y1|

)
and then for all ζ, ζ′ belonging to the interval [−`n/kn; `n/kn], we get

|α(ζ; τ) − α(ζ′; τ)| ≤ |ζ − ζ′|e2`2nΣ2/k2
n

(
`n

kn
Σ2 + Eσ,g|Y1|

)
and then

|α(ζk − ζj ; τ) − α(tφn(k),n − tφn(j),n; τ)| ≤ 2
kn

e2`2nΣ2/k2
n

(
`n

kn
Σ2 + Eσ,g|Y1|

)
∣∣∣∣∣∣
∑

1≤k,j≤n0

u0
k

[
α(ζk − ζj ; τ) − α(tφn(k),n − tφn(j),n; τ)

]
ū0

j

∣∣∣∣∣∣ ≤ Cn0
na
√

log n

kn
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where C is a constant. We choose

kn = n1/2−a−b where
(

1
2
− a− b

)
> a ; i.e. 2a + b <

1
2

(note that this implies in fact that a < 1/4). Then we get

sup
τ∈]0;Σ]

∣∣∣∣∣∣
∑

1≤k,j≤n0

u0
k

[
α(ζk − ζj ; τ) − α(tφn(k),n − tφn(j),n; τ)

]
ū0

j

∣∣∣∣∣∣ −→n→∞ 0.

So we can conclude that the first term in (27) is bounded in the following way, for large enough n

Pσ,g

 inf
u:‖u‖=1

∑
−`n≤k,l≤`n

ukα(tk,n − tl,n; σ + ε)ūl ≥ −2εn

 ≤

Pσ,g

 ∑
−`n≤k,l≤`n

vkα(tk,n − tl,n; σ + ε)v̄l ≥ −2εn



where

vk =

{
u0

j when k = φn(j) and 1 ≤ j ≤ n0,

0 otherwise

and ‖v‖2 =
∑`n

k=−`n
v2

k =
∑n0

j=0(u
0
j)

2 = 1. So we have

Pσ,g

 inf
u:‖u‖=1

;
∑

−`n≤k,l≤`n

ukα(tk,n − tl,n; σ + ε)ūl ≥ −2εn

 ≤ Pσ,g

 ∑
1≤k,l≤n0

u0
kα(ζk − ζl; σ + ε)ū0

l

≥ −2εn +
∑

1≤k,l≤n0

u0
k

[
α(ζk − ζl; σ + ε)− α(tφn(k),n − tφn(l),n; σ + ε)

]
ū0

l

 .

We are interested in what occurs in the probability appearing in the right hand side of this inequality. All the
quantities are deterministic. The first one is negative and the second one converges to zero: for n large enough,
the probability of this event is null. So, for n large enough (depending on ε), we have

Pσ,g(σ̂n − σ ≥ ε) ≤ ∆n −→
n→∞ 0.
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We are studying now the probability that σ̂n would be less than or equal to σ − ε for some arbitrary ε > 0.

Pσ,g(σ̂n − σ ≤ −ε)

≤ Pσ,g

∃σn ≤ σ − ε, ∃u ∈ C
2`n , ‖u‖ = 1,

∑
−`n≤k,l≤`n

ukα̂n(tk,n − tl,n; σn)ūl < −εn


≤ Pσ,g

∃σn ≤ σ − ε, ∃u ∈ C
2`n , ‖u‖ = 1,

∑
−`n≤k,l≤`n

ukα(tk,n − tl,n; σn)ūl < 0


+Pσ,g

 sup
τ∈[0;Σ]

sup
u;‖u‖=1

∣∣∣∣∣∣
∑

−`n≤k,l≤`n

uk(α̂n(tk,n − tl,n; τ)− α(tk,n − tl,n; τ))ūl

∣∣∣∣∣∣ > εn

 .

The first term in the right hand side is equal to zero as α(·, σn) is positive definite for σn less or equal to σ − ε.
The second one, ∆n, as we have already seen, tends to zero as n tends to infinity.
In conclusion

∀ε > 0, ∃N ∈ N, ∀n ≥ N, Pσ,g(|σ̂n − σ| ≥ ε) ≤ 2∆n −→
n→∞ 0. (28)

We proved the convergence in probability of our estimator to the true value of the parameter σ. Note that the
convergence in the L2-norm is a consequence of the fact that σ̂n is almost surely bounded. �
Proof of Proposition 3.2. We denote by Ψg the Laplace transform of g: Ψg(t) =

∫
etxg(x)dx. The difference

between σ and its estimator writes

σ̂2
L,n − σ2 =

2
t2n

log

 1
n

n∑
j=1

etnYj−σ2t2n/2


=

2
t2n

log

1 +
1
n

n∑
j=1

(
etnXj

Ψg(tn)
etnεj−σ2t2n/2 − 1

)+
2
t2n

log Ψg(tn)

=
2
t2n

log(1 + Sn) +
2
t2n

log Ψg(tn) (29)

where Sn is the empirical mean of independent, identically distributed centered random variables:

Sn ≡ 1
n

n∑
j=1

(
etnXj Ψg(tn)−1etnεj−σ2t2n/2 − 1

)
≡ 1

n

n∑
j=1

Uj,n. (30)

In (29), the second term in the right hand side is deterministic and converges to zero as n tends to infinity (see
the definition (10) of the set Lv). Moreover

Var(Sn) =
1
n

[
E

(
e2tnX1

Ψg(tn)2
e2tnε1−σ2t2n

)
− 1
]
≤ 1

n
× Ψg(2tn)

Ψg(tn)2
eσ2t2n .

Using the definition of Lv (see (10)), we obtain that for all integer n:

e−t2nv(tn) ≤ Ψg(tn) ≤ et2nv(tn)
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and then

Var(Sn) ≤ 1
n

e(σ2+2v(tn)+4v(2tn))t2n ≤ e2t2nΣ2

n

for sufficiently large n (depending on v), and all σ ≤ Σ.
With our choice of the parameters (tn)n≥0, we get that Sn converges in the L2-norm, and also in probability

(uniformly with respect to σ ∈ [0; Σ] and to g in Lv). Then equality (29) leads to the convergence of σ̂2
L,n to σ2

in P(σ,g)-probability, uniformly in σ in [0; Σ] and in g in Lv,M .
Now we compute its rate of convergence with respect to the L2-norm. We first restrict our attention to the

behaviour of the term log(1 + Sn) appearing in (29). Note that

E[log(1 + Sn)]2 = E

[∫ 1

0

Sn

1 + tSn
dt

]2
≤
∫ 1

0

E

(
S2

n

(1 + tSn)2

)
dt

Using the convexity of the function x 7→ 1/x2 on R
+∗, we get:

1
(1 + tSn)2

=

 1
n

n∑
j=1

(1 + tUj,n)

−2

≤ 1
n

n∑
j=1

1
(1 + tUj,n)2

,

so that:

E

(
S2

n

(1 + tSn)2

)
≤ E

(
S2

n

(1 + tU1,n)2

)
=

1
n2

∑
1≤k,l≤n

E

(
Uk,nUl,n

(1 + tU1,n)2

)
·

Now, if k differs from l and is greater or equal to 2, we have:

E

(
Uk,nUl,n

(1 + tU1,n)2

)
= E(Uk,n)E

(
Ul,n

(1 + tU1,n)2

)
= 0.

So that the sum reduces to:

∑
1≤k,l≤n

E

(
Uk,nUl,n

(1 + tU1,n)2

)
= E

(
U2

1,n

(1 + tU1,n)2

)
+ (n− 1)E(U2

1,n)E
(

1
(1 + tU1,n)2

)
·

Returning to the upper bound on E[log(1 + Sn)]2, we get:

E[log(1 + Sn)]2 ≤
∫ 1

0

[
1
n2

E

(
U2

1,n

(1 + tU1,n)2

)
+

1
n

(
1− 1

n

)
E(U2

1,n)E
(

1
(1 + tU1,n)2

)]
dt

≤ 1
n2

∫ 1

0

E

(
U2

1,n

(1 + tU1,n)2

)
dt +

1
n

(
1− 1

n

)
E(U2

1,n)
∫ 1

0

E

(
1

(1 + tU1,n)2

)
dt. (31)

Remember the definition of the random variable U1,n (see (30)) to get that:

E(U2
1,n) ≤ Ψg(2tn)Ψg(tn)−2 ≤ e2t2nΣ2

. (32)
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Moreover ∫ 1

0

E

(
1

(1 + tU1,n)2

)
dt = E

∫ 1

0

dt

1 + tU1,n

2

= E

[ −1
U1,n(1 + tU1,n)

]1
t=0

= E

(
1

U1,n

)
− E

(
1

U1,n(1 + U1,n)

)
= E

(
1

1 + U1,n

)
= E

(
Ψg(tn)e−tn(X1+ε1)+σ2t2n/2

)
= Ψg(tn)Ψg(−tn)eσ2t2n

≤ e2t2nΣ2
, (33)

for sufficiently large n (depending on v), and all σ ≤ Σ. And at least:

∫ 1

0

E

(
U2

1,n

(1 + tU1,n)2

)
dt = E

[ −U1,n

(1 + tU1,n)

]1
t=0

= E (U1,n)− E

(
U1,n

(1 + U1,n)

)
= −E

(
U1,n

1 + U1,n

)
= E

[
Ψg(tn)e−tn(X1+ε1)+σ2t2n/2

(
1− etnX1+tnε1+σ2t2n/2Ψg(tn)−1

)]
= Ψg(tn)Ψg(−tn)eσ2t2n − eσ2t2n

≤ e2t2nΣ2
, (34)

for sufficiently large n (depending on v), and all σ ≤ Σ. Combining the upper bounds (32, 33) and (34) with
the inequality (31), we get that for sufficiently large n (depending on v), and all σ ≤ Σ:

E[log(1 + Sn)]2 ≤ e2t2nΣ2

n2
+

1
n

(
1− 1

n

)
e4t2nΣ2 ≤ e4t2nΣ2

n
≤ 1

n1−α
·

Returning to the equality (29) and using a Cauchy–Schwarz inequality combined with the preceding result, we
get:

sup
σ∈[0;Σ]

sup
g∈Lv

[
E(σ̂L,n − σ2)2

]1/2 ≤ 2
t2n

[
E(log(1 + Sn))2

]1/2
+ 2v(tn)

≤ 8Σ2

α(log n)n(1−α)/2
+ 2v(tn),

which achieves the proof. �

Proof of Theorem 4.3. In order to simplify notations, we only give the proof for ` = 1 and P : x 7→ x, the same
arguments apply for greater values of `. Note first that the density h of the distribution of the observations Yn

is the convolution product between g and Φσ. Differentiating this expression, we get that

Γx(y0) ,
∫

xg(x)Φσ(x− y0)dx = y0h(y0) + σ2h′(y0).

Now use the same path as in the proof of Proposition 2.1 (with the conventions x0 = 0 and σ0 = 1), assuming
moreover that g0 is continuously differentiable with ‖g′0‖∞ < ∞. The linear functional of interest writes:

Γt(y0) ,
∫

xgt(x)Φσt (x− y0)dx = y0ht(y0) + σ2
t h′t(y0) = y0ht(y0) + (1− t)h′t(y0) , 0 ≤ t ≤ τ2.
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The van Trees inequality gives us:

inf
bΓn

sup
Γ∈GP (g0,τ)

E(Γ̂n − Γ(y0))2 ≥ inf
bΓn

∫ τ2

0

Et(Γ̂n − Γt(y0))2λ(t)dt

≥
[∫

∂

∂t
Γt(y0)λ(t)dt

]2(
nEλ(I) +

J0

τ4

)−1

·

We already computed the denominator of this expression in the proof of Proposition 2.1 and the only thing to
do is to compute the numerator. We have:

∂

∂t
Γt(y0) = y0

∂

∂t
ht(y0)− h′t(y0) + (1− t)

∂

∂t
h′t(y0).

By the continuity of t 7→ (∂ht)/(∂t)(y0) at the point t = 0 (see the proof of Lem. 5.1), we get

∂

∂t
ht(y0) =

Cτe−1/2τ2

2π τ
f0(y0)(1 + o(1)) = O(τ).

The same argument applies to prove that

∂

∂t
h′t(y0) =

Cτ e−1/2τ2

2π τ
f̃0(y0)(1 + o(1)) = O(τ),

where f̃0(y0) =
∫
[1− (v − y0)2]e−(y−v)2/2g′0(v)dv. Using the continuity of t 7→ ht(y0) at t = 0, we have:

h′t(y0) = −g′0 ∗ Φ1(y0) + O(τ).

This enables us to write: ∫
∂

∂t
Γt(y0)λ(t)dt = −g′0 ∗ Φ1(y0) + O(τ).

Return to the van Trees inequality to get that:

inf
bΓn

sup
Γ∈GP (g0,τ)

E(Γ̂n − Γ(y0))2 ≥ (−g′0 ∗ Φ1(y0) + O(τ))2
(

nEλ(I) +
J0

τ4

)−1

≥ (−g′0 ∗ Φ1(y0) + O(τ))2
[
n
C2

τ

4π2

(∫
f0(y)2h0(y)dy

)
τ−2e−1/τ2

(1 + o(1)) +
J0

τ4

]−1

·

Choose τ−1 =
√

log n to obtain the desired result. �

The author is grateful to Elisabeth Gassiat for fruitful discussions and helpful advices.
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