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Abstract

This thesis deals with maximum likelihood estimation in dynamic and spatial extensions
of the stochastic block model (SBM), based respectively on hidden Markov chains and
fields. In the first part, we consider a dynamic version of the stochastic block model,
suited for the observation of networks at multiple time steps. In this dynamic SBM,
the nodes are partitioned into latent classes and the connection between two nodes is
drawn from a Bernoulli distribution depending on the classes of these two nodes. The
temporal evolution of the nodes memberships is modeled through a hidden Markov
chain. We prove the consistency (as the numbers of nodes and time steps increase) of
the maximum likelihood and variational estimators of the model parameters, and obtain
upper bounds on the rates of convergence of these estimators. We also explore the case
where the number of time steps is fixed and the connectivity parameters are allowed to
vary. Besides, we obtain some results regarding parameter identifiability in this dynamic
SBM. In the second part, we introduce a spatial version of the stochastic block model,
suited for the observation of networks at different spatial locations. In this spatial SBM,
as before, the nodes are partitioned into latent classes and the connection is drawn
from a Bernoulli distribution depending on the classes of these two nodes. There, the
spatial evolution of the nodes memberships is modeled through hidden Markov random
fields. We first prove that the model parameter is generically identifiable under certain
conditions. For the estimation of the parameters, we propose an algorithm based on the
simulated field Expectation-Maximisation (EM) algorithm, which is a variation of the
EM algorithm relying on a mean field like approximation thanks to the simulation of
latent configurations.

Keywords: maximum likelihood estimation, dynamic network, dynamic stochastic
block model, variational estimation, temporal network, Markov random field, Potts
model, EM algorithm, spatial data, spatial network, mean field like approximation





Résumé

Cette thèse porte sur le maximum de vraisemblance dans des extensions dynamiques
et spatiales du modèle à blocs stochastiques (SBM), fondées respectivement sur des
chaînes et champs de Markov cachés. Dans une première partie, on considère une version
dynamique du modèle à blocs stochastiques, adaptée à l’observation de réseaux à différents
pas de temps. Dans ce SBM dynamique, les nœuds sont répartis dans des groupes latents
et la connexion entre deux nœuds suit une loi de Bernoulli dont le paramètre dépend du
groupe de ces deux nœuds. L’évolution temporelle des appartenances aux groupes des
nœuds est modélisée par une chaîne de Markov cachée. On prouve la consistance (lorsque
les nombres de nœuds et de pas de temps augmentent) des estimateurs du maximum
de vraisemblance et variationnels des paramètres du modèle, et on obtient des bornes
supérieures pour le taux de convergence de ces estimateurs. On explore aussi le cas où le
nombre de pas de temps est fixé et les paramètres de probabilités de connexion peuvent
varier dans le temps. On obtient également des résultats concernant l’identifiabilité
des paramètres dans ce SBM dynamique. Dans une seconde partie, on introduit une
version spatiale du modèle à blocs stochastiques, adaptée à l’observation de réseaux dans
différentes localisations spatiales. Dans ce SBM spatial, comme précédemment, les nœuds
sont répartis dans des groupes latents et la connexion entre deux nœuds suit une loi de
Bernoulli dont le paramètre dépend du groupe de ces deux nœuds. L’évolution spatiale
des appartenances aux groupes des nœuds est modélisée par des champs de Markov
cachés. On montre d’abord que le paramètre de ce modèle est génériquement identifiable
sous certaines conditions. Pour l’estimation des paramètres, on propose d’adapter à notre
modèle une variante de l’algorithme Espérance-Maximisation (EM) reposant sur une
approximation de type champ moyen grâce à la simulation de configurations latentes.

Keywords: estimation du maximum de vraisemblance, réseau dynamique, modèle à
blocs stochastiques dynamique, estimation variationnelle, champ aléatoire de Markov,
modèle de Potts, algorithme EM, données spatiales, réseau spatial, approximation de
type champ moyen
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Résumé détaillé

Les graphes aléatoires constituent un outil adapté pour représenter et modéliser des
réseaux, composés d’entités intéragissant entre elles. On s’intéresse dans cette thèse
plus particulièrement au modèle à blocs stochastiques (Stochastic Block Model, SBM).
On étudie des versions dynamique et spatiale du SBM, les données disponibles pouvant
être composées de plusieurs graphes dépendant les uns des autres, notamment de façon
temporelle ou spatiale.

On définit un graphe G = (V,E) comme étant un ensemble V de nœuds et un
ensemble E d’arêtes entre ces nœuds. On s’intéresse dans cette thèse à des graphes
binaires, c’est-à-dire dans lesquels une arête est présente ou absente (en opposition aux
graphes valués, dans lesquels les arêtes ont des poids).

Le modèle à blocs stochastiques (SBM) est un modèle de graphe dans lequel n nœuds
sont répartis dans Q groupes, cette répartition étant inconnue. Les appartenances aux
groupes {Zi}1≤i≤n sont des variables aléatoires latentes i.i.d. à valeurs dans {1, . . . , Q},
chaque nœud ayant une probabilité αq d’être dans le groupe q. La distribution des arêtes
est caractérisée par les groupes auxquels appartiennent les deux nœuds. On considère
le cas binaire, dans lequel une arête entre deux nœuds appartenant respectivement aux
groupes q et l est présente avec une probabilité πql. Le graphe observé a donc une
matrice d’adjacence X = (Xij)1≤i,j≤n ∈ {0, 1}n

2 , où Xij représente l’arête entre les
nœuds i et j. Un cas particulier est celui où les nœuds d’un même groupe sont fortement
connectés entre eux, et peu connectés avec les nœuds des autres groupes. Une méthode
d’estimation classique des paramètres du SBM repose sur l’utilisation de l’algorithme
VEM (Variational Expectation-Maximisation), le maximum de vraisemblance ne pouvant
pas être calculé directement, et l’algorithme EM (Expectation-Maximisation) ne pouvant
pas être utilisé en raison de la complexité de la loi des observations X sachant les variables
latentes (Z1, . . . , Zn).

Dans une première partie, présentée dans le Chapitre 2 on étudie une version dy-
namique en temps discret du SBM (Yang et al., 2011; Matias and Miele, 2017). Dans ce
modèle, l’évolution temporelle de l’appartenance à un groupe de chacun des nœuds est
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modélisée par une chaîne de Markov (non observée). À chaque pas de temps, les arêtes
sont modélisées par un SBM binaire. Cela correspond au modèle de Yang et al. (2011).
En se basant sur Celisse et al. (2012), on prouve la consistance (lorsque les nombres de
nœuds et de pas de temps augmentent) de l’estimateur du maximum de vraisemblance
π̂ = {π̂ql}1≤q,l≤Q du paramètre de probabilité de connexion entre groupes sous certaines
hypothèses sur ces paramètres, et de celui de la matrice de probabilité de transition
de la chaîne de Markov cachée avec une hypothèse supplémentaire sur la vitesse de
convergence de π̂. On obtient également une borne pour la vitesse de convergence de
ces estimateurs. En pratique, on ne peut pas calculer les estimateurs du maximum de
vraisemblance, on prouve donc également la consistance (et on obtient des bornes sur la
vitesse comme précédemment) des estimateurs variationnels, approximant le maximum de
vraisemblance grâce à un algorithme VEM (maximisant en fait une borne inférieure de la
vraisemblance). On prouve de même la consistance des estimateurs lorsque le nombre de
nœuds tend vers l’infini (et on obtient des bornes sur la vitesse) dans le cas où le nombre
de pas de temps est fixé et les probabilités de connexions peuvent changer au cours du
temps (correspondant au modèle de Matias and Miele (2017)). On obtient également
des résultats concernant l’identifiabilité des paramètres dans ce SBM dynamique dans la
Section 1.6.1.

Dans une deuxième partie, présentée dans le Chapitre 3, on propose une version
spatiale du SBM. On considère une dépendance spatiale des graphes, modélisée par
des champs de Markov. Pour chaque nœud i, les appartenances aux groupes suivent
un champ de Markov, et plus précisément un modèle de Potts, basé sur un graphe
Gi = (Vi, Ei) sur les L localisations. La loi des variables latentes d’appartenances aux
groupes Zi = (Z1

i , . . . , Z
L
i ) pour un nœud i s’écrit alors

Pψ(Zi) =Pψ(Z1
i , . . . , Z

L
i ) = 1

Si(αi, βi)
exp

 Q∑
q=1

αiq
L∑
l=1

1Zl
i=q + βi

∑
(l,l′)∈Ei

1Zl
i=Zl′

i


avec ψ = (α, β) où α = (αiq)1≤i≤n,1≤q≤Q est le paramètre du champ externe et β =
(βi)1≤i≤n le paramètre d’interaction entre les localisations voisines dans les graphes sur les
localisations, et avec Si(αi, βi) une constante de normalisation (qui n’est pas calculable,
sauf pour un nombre L de localisations très petit). À chaque localisation l, les interactions
suivent un SBM de paramètre de connexion πl = {πlqq′}1≤q,q′≤Q, c’est-à-dire que pour
tout i et j dans {1, . . . , n},

X l
ij | Z l

i , Z
l
j ∼ B(πlZl

iZ
l
j
).



Résumé détaillé xvii

On prouve l’identifiabilité générique des paramètres de ce modèle sous certaines hy-
pothèses, et on explore le cas particulier du modèle d’affiliation1, ce cas étant exclu
par une des hypothèses, et on montre que ses paramètres ne sont pas identifiables sans
hypothèse supplémentaire. On s’intéresse également à l’estimation des paramètres ψ
(du modèle de Potts) et π = {πl}1≤l≤L (probabilités de connexion). L’estimateur du
maximum de vraisemblance n’est pas calculable en raison des constantes de normalisation
inconnue, et car la vraisemblance est une somme sur les QnL configurations latentes
possibles. L’algorithme EM ne peut pas non plus être utilisé, en raison de la complexité
de la loi des variables latentes {Z l

i}1≤i≤n,1≤l≤L sachant les observations {X l
ij}1≤i,j≤n,1≤l≤L

et des constantes de normalisation. On propose d’estimer les paramètres en se basant
sur l’algorithme simulated EM (Celeux et al., 2003), une variante de l’algorithme EM
reposant sur une approximation de type champ moyen grâce à la simulation de configu-
rations latentes. Plus précisément, on approxime la loi des variables latentes sachant les
observations par une loi factorisée en négligeant pour chaque nœud à chaque localisation
les fluctuations des localisations voisines et des autres nœuds à la même localisation, en
les considérant fixées aux valeurs d’une configuration simulée avec un échantillonneur
de Gibbs. Pour résoudre le problème de la constante de normalisation, on approxime
également la loi des variables latentes par une loi factorisée en négligeant pour chaque
localisation les fluctuations des localisations voisines. La méthode est illustrée sur des
jeux de données synthétiques.

1dans lequel le paramètre de connexion prend seulement deux valeurs, qui sont une probabilité de
connexion intra-groupe et une probabilité de connexion inter-groupes
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Chapter 1

Introduction

Random graphs are a suitable and widely used tool to model and describe interactions
in many kinds of network datasets. A few examples are social networks (Facebook,
Twitter, etc.), biological networks (neural networks, protein interaction networks, gene
regulatory networks, etc.), ecological networks (food-webs, competition, interaction such
as plant-pollinator networks, species contact networks), transport networks or computer
networks.

Statistical analysis of random graphs has been intensively studied over the past
decades. This research has focused on various methods, uses and applications, for
example methods for sampling network data, describing characteristics of networks,
inference problems or prediction.

In the real world, the data we observe may be more complex than just a single network.
We often have to deal with multiple networks that are not independent, or graphs with
interactions changing continuously for example, hence a need for statistical analysis
methods and results for these kinds of complex networks. In this work, we are interested
in the kind of complex data formed by a collection of graphs that are dependent, either
over time or space. For example, some well-studied types of time-evolving networks
are that of human proximity networks1 or communication networks2. Regarding space-
evolving networks, we could be interested in the relations between different categories of
people (different socio-economic classes, different animal species) at different geographical
locations.

In this chapter, we are going to give definitions, basic concepts and a brief overview of
methods and results on random graphs. We will focus on the methods of node clustering
and particularly on the Stochastic Block Model (SBM) (Holland et al., 1983; Nowicki and

1recording when two people are close to each other
2such as e-mails or phone calls between people
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Undirected binary graph Directed binary graph Undirected weighted graph

Fig. 1.1 Representation of different types of graphs

Snijders, 2001). Then we will talk about dynamic graphs, and particularly a dynamic
version of the SBM, and finally give some context about Markov random fields in order
to introduce a space dependency between graphs.

1.1 Graphs: definitions and notations

We are first going to give in this section a definition and basic concepts of random graphs,
that will be useful in the following. Let us define a graph G by

G = (V,E)

where V is a set of vertices (also called nodes) and E is a set of edges, of which the
elements are pairs of vertices, representing the connections between these vertices. In
the following, we will consider a vertex set of the form V = {1, . . . , n} with n := |V |
the cardinality of the set V (i.e. the number of nodes). The edges may be directed (or
oriented) or not, and may be binary or weighted. The edges are said to be directed if an
edge (i, j) is different from the edge (j, i) (with i, j ∈ V ), and the considered graph is
then called a directed graph. If the edges are not directed, the graph is called undirected.
A graph is said to be binary if its edges are either present or absent. It is said to be
weighted if the edges e ∈ E have a weight, i.e. a value associated to it (usually in R or
even in Rk). See Figure 1.1 for the representation of three different types of graphs. A
graph can be represented by its adjacency matrix X = (Xij)1≤i,j≤n, which is a n × n
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matrix defined as follows for a binary graph

Xij =
 1 if (i, j) ∈ E

0 otherwise,

and as follows for a weighted graph

Xij =
 wij if (i, j) ∈ E with an associated weight wij

0 if (i, j) /∈ E.

This matrix is symmetric for an undirected graph. Note that in this work, we will
consider graphs with no loops, i.e. no edge (i, i) with i ∈ V (leading to an adjacency
matrix whose diagonal is equal to zero), and with no multiple edges, i.e. no more than
one edge between two nodes. Such graphs are called simple. The graphs we will focus on
will also be binary.

Let us introduce some vocabulary and define a few characteristics of graphs. The
number of nodes n and the number of edges |E| are sometimes called respectively the
order and the size of the graph. Note that a graph with no loops (i.e. no edge (i, i))
has at most n(n− 1)/2 edges if it is undirected and n(n− 1) if it is directed. We can
then define the density ρ of a graph as the proportion of existing edges, i.e. the size
of the graph over the maximum number of edges, that is ρ = |E|/(n(n − 1)/2) in the
undirected case and ρ = |E|/(n(n− 1)) in the directed case. Two vertices i, j ∈ V are
said to be adjacent (or neighbours) if there is an edge between i and j. Two edges are
said to be adjacent if they have an endpoint in common. A vertex i ∈ V is said to be
incident on an edge e ∈ E if i is an endpoint of e.

We define for a binary graph the degree di of a vertex i as the number of edges
incident on this vertex. For directed graphs, we talk about in-degree (dini ) and out-degree
(douti ), respectively counting the number of edges pointing to a vertex and pointing out
from a vertex. Note that we can obtain the degrees by summing rows or columns of the
adjacency matrix of a binary graph as follows

di =
n∑
j=1

Xij =
n∑
j=1

Xji for an undirected graph,

dini =
n∑
j=1

Xji and douti =
n∑
j=1

Xij for a directed graph.

For any i, j ∈ V , we also define a path from i to j as a sequence of edges e1, . . . , eK ∈ E
such that for every 1 ≤ k ≤ K − 1, the edges ek and ek+1 share a common endpoint, and
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Fig. 1.2 Bipartite graph

i (resp. j) is an endpoint of e1 (resp. eK). A cycle is a path from a node i to itself. In
particular, a cycle of size 3 (i.e. with 3 edges) is called a triangle.

Remark 1.1.1. The notion of path defined here does not take into account the direction
of edges in the case of a directed graph. We can naturally define the notion of directed
path in such graphs.

A graph H = (VH , EH) is a subgraph of the graph G = (VG, EG) if it is a graph such
that VH ⊆ EG and VH ⊆ EG.

The connected components of a graph are defined as maximally connected subgraphs
(i.e. such that there is a path between any two nodes of the same connected component,
and there is no path between a node in a connected component and a node outside of
this connected component).

Types of graphs A graph G = (V,E) is said to be complete if all the vertices are
connected one to another, i.e. E = {(i, j)}i,j∈V,i ̸=j. We can then define a clique of a
graph G, that is a complete subgraph of G. Note that a clique of 3 nodes is a triangle,
as defined above. A graph is said to be connected if it contains a unique connected
component, i.e. if there exists a path between any two nodes i, j ∈ V . A graph is said
to be bipartite if the nodes are of one of two types, and they can be connected only to
nodes of the other type, as in Figure 1.2

Regarding the density of a graph, we will talk about dense graphs for graphs with
many edges, when the number of edges is of the order of the maximal number of edges
(typically |E| ∼ cn2 with c a positive constant) and of sparse graphs for graphs with
relatively few edges, in which the number of edges is "much less" than the possible number
of edges, for example is linear with respect to the number of nodes (typically |E| = O(n)).
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We will talk about random graphs when considering a collection of graphs with a
probability distribution on this collection.

In the following, we will present some statistical uses and applications of random
graphs in Section 1.2, some random graph models in Section 1.3, and will then focus on
node clustering techniques in Section 1.4, which is the main interest of this work. See
Kolaczyk (2009) or Kolaczyk (2017) for more details on statistical analysis of graphs.

1.2 Some statistical uses of random graphs

As mentioned before, graphs can be used in many contexts, to tackle various problems
and using many different methods. Their use goes back as far as the late 1930’s with
Moreno and Jennings (1938) in the context of social relationships (sociometry). We give
a few (not exhaustive) examples.

Descriptive analysis One can simply be interested in some structural properties or
characteristics of an observed graph in order to answer questions about it. For example,
to try to answer the question "Do friends (i.e. neighbours in the graph) of a given
individual tend to be friends of one another?", we can compute transitivity measures.
Such measures can be the transitivity coefficient, counting the proportions of triangles
(i.e. sets of three nodes connected by three edges) among connected triplets (i.e. sets
of three nodes connected by at least two edges). A high transitivity coefficient means
that the connected subgraphs of order three tend to form triangles, i.e. "the friend of
your friend tends to be your friend". More generally we can describe the tendency of
the nodes in a network to form cliques or groups of highly connected nodes based on
clustering measures. A clustering coefficient can be defined in many ways, for example
based on a local density measure, defined for any node i as the proportion of present
edges among possible edges between the neighbours of node i. Taking the mean of these
local density measures for every node gives a clustering coefficient. The transitivity
coefficient introduced above can also be used as a clustering coefficient.

Another question can be "How important in the network is a given node?", important
meaning that it has a lot of connections, and this characteristic can be described by
centrality measures. Many centrality measures have been defined, and can be based for
example on the degrees of the nodes or on the distance between a node and all the other
nodes.

Some connectivity measures can also be defined, such as the number of connected
components or their relative order with respect to the whole graph. The average shortest
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path length, answering the question "What is the typical distance between two nodes?",
can in particular determine if the observed network exhibit the small world property.
This property, based on the suggestion of Milgram (1967) that we are separated from any
other person on the planet by at most roughly six other people, refers to the fact that in
some networks (even large ones), the distance between any two nodes is relatively small.
It has been shown to hold for many types of networks by Watts and Strogatz (1998).

For more details on descriptive analysis of graphs, see Kolaczyk (2009).

Comparison to a null model Using generative models of graph, we can assess
network topology. We can compare the observed network with graphs generated from
random models, for some chosen features. The models used can be for example the
simple Erdős-Rényi graph model (see Section 1.3) which assumes that every edge has
the same probability of presence, or a model of random graphs with preserved degree
sequence (see the fixed degree sequence configuration model in Section 1.3). The compared
characteristics can be for example the reciprocity (as in Moreno and Jennings (1938) who
compared the fraction of reciprocated links in their network with a random model), a
clustering coefficient or the importance of occurrence of certain motifs in the graphs (for
example triangles, cliques or cycles of a given size). It is possible to compute empirical
p-values to perform hypothesis testing for the characteristic of interest, with H0 the null
hypothesis corresponding to the null model. See for example Zweig et al. (2016) for more
details and references for the use of null models for random graphs.

Disease transmission In epidemiology, we can use graphs to study the spread of an
infectious disease. In such context, the graph represents the contacts between people or
subpopulations (and thus a possible contamination), that can evolve over time or not.
For example, the SIR (susceptible-infectious-recovered)3 model is widely used for that
purpose. In such a model, if an infectious individual has a contact with a susceptible one,
then the susceptible individual can become infectious, and will cease to be contagious
after a certain period of time and be transferred to the recovered group that are then
immune to the disease. Based on that model, some problematics can be tackled, such
as the prediction of the existence and size of an outbreak. We can also study the effect
of potential control measures on the epidemics. The use of graphs for the study of
transmission dynamics has been applied for example to sexually transmitted infections
(Haraldsdottir et al., 1992; Watts and May, 1992), to the 2009 H1N1 influenza pandemic,

3Other models of that type exist, such as SIS (susceptible-infectious-susceptible) or SEIR (susceptible-
exposed-infected-recovered).
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using a subpopulation network where connections among subpopulations represent the
individual fluxes (Balcan et al., 2009; Bajardi et al., 2009), and more recently to the
Covid-19 (Prasse et al., 2020).

Link prediction The task of predicting the absence or presence of an edge in a network
(see for example Martínez et al. (2016)) is useful for example for recommendation systems,
aiming at predicting probable links between nodes from an existing network, such as
friendship (for example social media/Facebook) or the interest in a product (for example
Amazon). Note that in the latter, i.e. in the case of product recommendation, the
considered graphs are bipartite, the interest being the "interaction" between people and
products, representing the interest in a product or the purchase of a product. The task
of link prediction can be used when wanting to predict future links, or when a portion of
the adjacency matrix is unobserved/missing (for example due to sampling issues). The
methods used for link prediction can be based for example on score functions (that can
be based on similarity measures, distance between the nodes, common neighbourhood...),
by predicting the presence of an edge when the score is above a certain threshold, or on
classification methods (for example based on logistic regression) to predict the missing
values of the adjacency matrix with a classifier built from the observed values.

Node clustering A common interest when considering network data is the recovery
of a clustering, i.e. a partition of the nodes into groups sharing the same connection
behaviours. Indeed, the behaviour of entities (nodes) in a network is usually heterogeneous,
and this approach allows to describe this heterogeneity and to obtain a summary of the
network through groups with different behaviours. A particular case is that of community
detection, when one wants to find groups of nodes that are highly connected between
them, and less connected to nodes from other groups. We will talk about network
clustering later.

Model fitting and testing One can be interested in fitting a model to the observed
network, and testing the goodness of fit of this model. This allows, if the model is
interpretable, to describe some characteristics of the network. Moreover, fitting a model
to different networks can enable us to compare these networks. In this work, we will be
interested in particular in parameter estimation, and will give more details about it later.
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1.3 Random graph models

Many random graph models have been introduced. We present here some of the commonly
used ones. The simplest one is the Erdös-Rényi graph model, assuming a constant
probability of presence for every possible edge. We also present the configuration
model that is based on the degree sequence (either fixed or following a power-law
distribution), the exponential random graph model (ERGM), based on exponential
families of distributions, and the Barabási–Albert model that is based on a preferential
attachment mechanism. We then talk about latent variables graph models, that are the
stochastic block model, the latent block model and the W -graph model.

In this section, we consider graph models for the observation of a single network.

1.3.1 Erdős-Rényi graph model

The simplest graph model is the one introduced by Erdös and Rényi (Erdős and Rényi,
1959; Erdős and Rényi, 1960). Denoted by G(n, p), this is a model of undirected binary
graph with n vertices, where edges are present between pairs of nodes independently
with probability p. The expected number of edges in this model is p

(
n
2

)
= pn(n− 1)/2.

For any node i, its degree Di follows a binomial distribution with parameter (n− 1, p),

P (Di = k) =
(
n− 1
k

)
pk(1− p)n−1−k.

For large n and small p (such that np is approximately constant), each degree Di then
follows approximately a Poisson distribution of parameter (n− 1)p. Note that we can
allow p := pn to vary with the number of edges n (usually to converge to 0 as the number
of nodes increases), otherwise the obtained graphs are dense, whereas most observed
large real-world networks are sparse.

This model is very convenient and easy to manipulate, in particular its parameter
p can be simply estimated by the density of the observed graph, i.e. the proportion of
existing edges (i.e. the number of edges in the graph over the maximum number of edges
n(n− 1)/2). However, a drawback of this model is that it is often unrealistic to assume
that the edges are independent and equally likely. This idea is supported by the fact that,
as we will talk about later, real-world networks usually exhibit degree sequences fitting
a power-law distribution (see Section 1.3.2). Moreover, contrarily to most real-world
networks, Erdős-Rényi graphs do not exhibit much clustering behaviour, the connection
behaviour being too homogeneous among nodes. For example, using the transitivity
coefficient defined in Section 1.2, that takes its values in [0, 1] (a coefficient of 0 meaning
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that the graph contains no triangle and a coefficient of 1 meaning that two adjacent
edges always form a triangle), the expectation of this coefficient in an Erdős-Rényi graph
is equal to p. As mentioned before, most large real-world networks are not dense and we
usually consider p := pn converging to 0 (as the number of nodes increases) to model
them. This leads to a clustering coefficient converging to 0, while the values have been
found to be quite large in real-world networks.

Remark 1. Actually, this model is the version introduced by Gilbert (1959), it was a
slightly different model that was originally introduced by Erdős and Rényi. The original
model G(n,M) is the collection of all the simple undirected graphs of order n and size
M (i.e. with n nodes and M edges), with a uniform distribution on this collection. This
collection contains

(
n(n−1)/2

M

)
different graphs. While these two models are not identical4,

they are equivalent under certain conditions for large n and if M ∼ pn(n − 1)/2 (see
Luczak (1990) or Frieze and Karoński (2016)).

1.3.2 Configuration model

As we just said, the Erdős-Rényi graph model leads to unrealistic graphs, for instance
regarding their degree sequence. One possible way to consider a graph is to consider
directly its degree distribution or degree sequence. We first state the Erdős–Gallai
theorem (Erdős and Gallai (1961), see also Berge (1976)) that gives necessary and
sufficient conditions for a finite sequence of natural numbers to be the degree sequence of
a simple undirected graph.

Theorem (Erdős–Gallai theorem). A sequence of non-negative integers d1 ≥ · · · ≥ dn can
be represented as the degree sequence of a finite simple graph on n vertices if and only if
d1 + · · ·+ dn is even and

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1
min(di, k)

holds for every k in {1, . . . , n}.

Fixed degree sequence We can consider a fixed degree sequence (d1 ≥ · · · ≥ dn) for
the n nodes, and consider the collection of all the graphs of order n with this degree
sequence5, with a uniform probability. Note that not any sequence of nonnegative

4In particular, in G(n,M), we fix the number of edges, whereas in the case of G(n, p), the number of
edges follows a binomial distribution of parameter (n(n− 1)/2, p).

5Note that all such graphs have a fixed number of edges
∑n

i=1 di/2.



10 Introduction

integers can be used for this definition. Indeed, the sequence must satisfy the conditions
stated in Erdős–Gallai theorem above to be the degree sequence of a simple undirected
graph. It is possible to generate graphs from this model with a sequence satisfying the
Erdős–Gallai theorem, for example with a matching or rewiring algorithm (Algorithms 1
and 2 respectively). More efficient algorithms have also been introduced (see for example
Viger and Latapy (2005)). The matching algorithm starts from an empty graph (with no
edges) and adds an edge at each iteration between two nodes whose degrees are not yet
equal to their fixed degrees (in the considered degree sequence). It is not very efficient as
it can create graphs with multiple edges or loops, "forcing" us to start over. The rewiring

Algorithm 1: Matching algorithm
input : A sequence of degrees d = (d1, . . . , dn)
output : A list of edges

1 do
2 Initialise empty node and edge lists V and E;
3 for i = 1 to n do
4 while di ≥ 1 do
5 V ← concatenate(V, i);
6 di ← di − 1 ;
7 end
8 end
9 while V is not empty do

10 Draw i, j uniformly from v without replacement;
11 E ← concatenate(E, {i, j});
12 end
13 while E contains loops or multiple edges;
14 return E

algorithm starts from an initial graph with the considered degree sequence and at each
iteration, replaces an edge with another without changing the degrees (provided that
these new edges do not create multiple edges or loops). It is more efficient than the
matching algorithm, but requires an initial graph with the expected degree sequence.

As mentioned earlier, to assess the significance of topological characteristics of an
observed network, one can use a null model to compare the features of interest. The
fixed degree configuration model is widely used for that, by generating random graphs
with the same degree sequence as the observed one6 and comparing the feature in the
observed and simulated graphs.

6using Algorithm 1 or 2 for example.
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Algorithm 2: Rewiring algorithm
input : A list of edges E of a graph with the considered degree sequence and a

number of iterations T
output : An updated list of edges E

1 for t = 1 to T do
2 Draw e1 = {i1, j1} and e2 = {i2, j2} uniformly from E;
3 if i1 ̸= j2, i2 ̸= j1 and {i1, j2}, {i2, j1} /∈ E then
4 Replace e1 and e2 with {i1, j2} and {i2, j1} in E;
5 end
6 end
7 return E

Power-law degree distribution We can also assume that the degrees D1, . . . , Dn are
i.i.d. random variables following a power-law distribution with some parameter γ > 0,
i.e. such that ∀i ∈ J1, nK

P(Di = d) ∝ d−γ,

where ∝ means "proportional to". To generate a graph from this model, we could start
by drawing a degree sequence from the power-law distribution, and then generate a
graph with this degree sequence, but the drawn degree sequence has no reason to satisfy
the Erdős–Gallai theorem. Such a method could be very inefficient. Britton et al.
(2006) propose for example to circumvent this problem by using the matching algorithm
(Algorithm 1) and removing loops and merging multiple edges into single edges in the
generated graph to obtain a simple graph, thus obtaining a degree distribution slightly
different from the wanted one, but with asymptotically the right degree distribution under
certain conditions on the moments of the degree distribution (thus on the power law
exponent). Some graph models exhibiting a power law degree distributions have however
been introduced, for example generative network growth models have been introduced
(Barabási and Albert, 1999; Kleinberg et al., 1999; Kumar et al., 1999, 2000; Aiello et al.,
2001), mainly for the analysis of the World Wide Web, such as the Barabábasi-Albert
model (that we will describe in Section 1.3.3). The purpose of such models is to obtain
graphs exhibiting a power law degree sequence for a large number of nodes n. Some
other methods were introduced, such as an extension of the Erdős-Rényi graph model
(referred to as the generalised random graph) with random edge probabilities, based
on the introduction of node-specific random variables (Britton et al. (2006), Chapter
6 of Hofstad (2016), Lee et al. (2017)). In particular, Lee et al. (2017) propose to use
Bertoin–Fujita–Roynette–Yor random variables that satisfy the required conditions on the
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node-specific variables to lead to a power law distribution, and they propose a variational
Bayesian inference approach to estimate the parameter.

Regarding the estimation of the exponent γ, different methods are used. A simple
method is to perform linear regression on the logarithm of the observed proportion of
vertices with degree d for any d (i.e. of the empirical degree distribution), with respect
to the logarithm of d. However, such methods have been shown to yield inaccurate
estimators for different reasons (for details, see Goldstein et al. (2004); Bauke (2007) or
Clauset et al. (2009)). Estimation of the exponent can also be based on the maximum
likelihood (Bauke, 2007; Gao and van der Vaart, 2017; Nettasinghe and Krishnamurthy,
2019), based on either discrete or continuous data (see details in Clauset et al. (2009)).
In particular, the widely used Hill estimator introduced by Hill (1975) is equivalent to
the maximum likelihood estimator (MLE) when considering the data as continuous. Such
methods have been proved to be consistent (Gao and van der Vaart, 2017; Wang and
Resnick, 2019) and asymptotically normal (Gao and van der Vaart, 2017).

Other methods exist, for example based on the Kolmogorov-Smirnov statistic that
is used for comparing a sample with a reference probability distribution (Klaus et al.,
2011), or based on mean degrees (Ikeda, 2009). One can see for example Clauset et al.
(2009) for some methods for the estimation of the exponent of power-law distributions.

Note that one could choose other distributions for the degree sequences, but the
power-law is a reasonable choice, as a lot of real networks have been shown to exhibit
such a distribution. Some example are citation networks, some social networks including
the collaboration network, networks in cell biology (Albert, 2005), the World Wide Web,
etc. See Barabási and Albert (1999) for more detailed examples.

However, note that recently the adequacy of the power-law to many real-world
networks has been questioned (Clauset et al., 2009; Latapy et al., 2017; Broido and
Clauset, 2019).

1.3.3 Barabási–Albert model (Preferential Attachment)

As mentioned in the previous section, the Barabási–Albert model, based on a preferential
attachment mechanism, is a generative network growth model, the graph growing at each
step of the algorithm. It was introduced by Barabási and Albert (Barabási and Albert,
1999) and motivated by the growth of the World Wide Web.

The generation of a graph is as follows. We start with an initial graph G0 = (V0, E0).
Then, at each step, a new node of degree m ≥ 1 is added to the network. It is connected
to m existing nodes with a probability that is proportional to the degrees of the existing
nodes.
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m = 1 m = 2 m = 3
Fig. 1.3 Barabási–Albert model for different values of m, all starting from an initial graph
of 5 nodes.

This model illustrates the concept Rich get richer, i.e. a positive feedback phenomenon
in which the more connected a node is, the more likely it is to receive new connections.
This hence tends to increase the difference of degrees between the nodes, and leads to
a few nodes (called hubs) being very highly connected compared to the others. This is
consistent with what we observe in numerous real world networks, including citation
networks, some social networks, or the World Wide Web as mentioned above. Moreover,
both phenomena of growth and preferential attachment are widely observed in real
networks. This is rather rational, as when a new person (or entity) enters the network, it
is more likely to become acquainted with one of the most visible people rather than with
people with few connections.

This model exhibits an important property, which is that as the number of steps
(and then of nodes) increases to infinity, the graphs generated by the Barabási–Albert
model have degree distributions that tend to a power-law, i.e. P(D = d) ∝ d−γ (Barabási
and Albert, 1999), as most large real-world networks have been shown to exhibit, as
mentioned above. Barabási and Albert (1999) also show that in their model, both growth
(of the number of nodes) and preferential attachment are needed to observe this degree
distribution.

In practice, we work with a finite number of time steps/nodes, and the choice of the
parameters can have an influence on the obtained graph. For example, see Figure 1.3 for
the influence of m (nonetheless, note that the visualisation of a graph can be misleading,
as the same graph can be represented in many different ways).

Note that other preferential attachment models exist. For example Gao et al. (2017b)
and Gao and van der Vaart (2017) use a more general model than the Barabási–Albert
model, in which the degree of the new nodes m depends on the time step t, and a new
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node is connected to existing nodes with a probability that is proportional to a function
of the degrees of the existing nodes (i.e. proportional to f(di) with a certain function f

instead of di for each existing node i).

1.3.4 Exponential Random Graph Models (ERGM)

ERGMs, also called p∗ models, (see Strauss and Ikeda (1990); Wasserman and Pattison
(1996); Hunter and Handcock (2006); Snijders et al. (2006), and also Frank and Strauss
(1986) who introduced Markov random graphs, a particular sub-class of exponential
random graph models) are based on exponential families of distributions. For a survey
of this model, one can refer to Robins et al. (2007a); Wasserman and Robins (2005);
Goldenberg et al. (2010), or to van der Pol (2019) for a more recent reference. This
model assumes that the probability of a graph (i.e. of its adjacency matrix X) can be
explained by a statistic S(X) as follows

Pθ(X) = 1
c(θ) exp

(
θ⊤S(X)

)
,

where c(θ) is a normalising constant, that we generally cannot compute in practice.
ERGMs are flexible models in the sense that they can be based on different types of
statistics, according to the type of pattern or behaviour we are interested in. For example
S can be or can include density-related statistics (for example the number of edges),
degree-based statistics, number of triangles or cycles, etc. These models are in particular
widely used in social networks (Robins et al., 2007a,b; Lusher et al., 2013). Indeed,
an important feature of ERGMs is that the edges are dependent, which is appropriate
to model social networks, in which it is not reasonable to assume independence of the
relations. Note that such a model can be defined for both directed and undirected graphs.

Note that an advantage of the ERGM is that it allows the inclusion of covariates
(on the nodes), also called actor attributes (Robins et al., 2001), influencing the nodes
connection behaviour. It is also possible to add covariates on pairs of nodes. An extended
version of the ERGM can also be defined for weighted graphs (Robins et al., 1999;
Desmarais and Cranmer, 2012; Krivitsky, 2012), and for multigraphs (Pattison and
Wasserman, 1999).

When interested in the estimation of the parameter for the ERGM, it can be done
by approximating the maximum likelihood, but there is a number of issues with this
method, namely degeneracy (or near degeneracy) issues (Handcock, 2003; Handcock
et al., 2003; Hunter et al., 2008; Rinaldo et al., 2009; Schweinberger, 2011; Chatterjee
et al., 2013). Handcock et al. (2003) defines this issue as occurring when only a few
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graphs do not have a very low probability, these graphs often being the full graph and
the empty graph. Then, such models are not interesting for modeling real networks, and
in addition, degeneracy is often associated with poor properties of estimation methods
based on the likelihood, such as Markov chain Monte Carlo (MCMC) procedures.

An approximation of the maximum likelihood is required, because it is not tractable in
this model. Some methods have been introduced, such as the use of the pseudolikelihood
(Besag, 1975; Strauss and Ikeda, 1990) where the joint distribution is replaced by the
product of the conditional distributions, but this method has been shown to not behave
well, depending on the network (Wasserman and Robins, 2005; Robins et al., 2007b;
Van Duijn et al., 2009).

Another type of methods for this purpose, perhaps more used, is the use of MCMC
techniques (Snijders, 2002; Hunter and Handcock, 2006; Handcock, 2003) in order to
approximate the maximum likelihood estimator, for example by estimating likelihood
ratios, using a Metropolis-Hastings algorithm to generate a sample of networks simulated
from the ERGM. As mentioned earlier, such methods can behave badly, converging to
degenerate graphs7 or failing to converge. New faster sampling techniques have been
introduced (Stivala et al., 2020), allowing to perform these MCMC procedures more
efficiently and on larger networks. Other methods for large graphs include computing
estimators on snowball samples (Goodman, 1961) from the network (Pattison et al., 2013;
Stivala et al., 2016).

Some methods have been introduced to tackle the difficulties due to degeneracy, for
example the use of curved ERGMs (Hunter and Handcock, 2006; Hunter, 2007) which
generalises the ERGM (see Efron (1975, 1978)). In particular Snijders et al. (2006)
introduced a particular specification of ERGMs for the analysis of social networks, with
new statistics to represent structural properties such as transitivity and heterogeneity
of degrees, and which solves some of the problems of degeneracy. Caimo and Friel
(2011) propose a MCMC algorithm in a Bayesian framework and give empirical evidence
that the method quickly converges. Schweinberger and Handcock (2015), Schweinberger
and Stewart (2020) and Schweinberger (2020) propose ERGMs with local dependence,
adding an additional structure to the network by assuming that the graph nodes can be
partitioned into subgraphs, and that dependence exists within subgraphs but not between
subgraphs. They obtained consistency results in that context. Some other theoretical
results have been obtained, such as Mukherjee (2020) who obtained a sufficient criterion
for non-degeneracy for ERGMs on sparse graphs.

7either complete or empty
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1.3.5 Stochastic Block Model (SBM)

1.3.5.1 Definition

We will focus on the Stochastic Block Model (SBM) (Holland et al., 1983; Frank and
Harary, 1982; Nowicki and Snijders, 2001), a widely used latent variables model. In this
model, the vertices are partitioned into Q groups (or classes), the group memberships
being represented by latent variables Z = (Z1, . . . , Zn), and the connection between
two nodes is drawn from a distribution depending on the classes of these two nodes.
The latent variables are independent and identically distributed (i.i.d.) in {1, . . . , Q},
following the distribution α = (α1, . . . , αQ) with αq ∈ (0, 1) for every q ∈ {1, . . . , Q}. We
distinguish two types of SBM, the binary SBM and the weighted SBM, which has been
introduced later (Jiang et al., 2009; Mariadassou et al., 2010). In the binary SBM (which
will be our interest), conditional on the latent groups {Zi}1≤i≤n, the edges {Xij}1≤i,j≤n

are independent Bernoulli random variables

Xij | Zi = q, Zj = l ∼ B(πql),

where π = (πql)1≤q,l≤Q ∈ [0, 1]Q2 is the connectivity parameter. Note that the matrix π is
symmetric if we consider undirected graphs. In the weighted case, the weight associated
with an edge follows a given parametric probability distribution, for example a Poisson
or Gaussian distribution. We will denote by θ = (α, π) the parameter of the SBM.

The SBM allows to directly model the heterogeneity of the connection behaviours
of the nodes. It is flexible in the sense that it can model any type of network that
is characterised by the connection behaviours of groups of nodes, encompassing very
different structures of networks. In particular, it can model networks with a community
structure, i.e. composed of groups of nodes that are highly connected between them and
less connected to nodes from other groups, as on the left of Figure 1.4. This kind of
network exhibiting a community structure can be modeled by the affiliation model that
is a particular case of the SBM, and that is described in the next paragraph. Other types
of graphs that can be modeled by the SBM are graphs with hubs and peripheral nodes as
in the middle of Figure 1.4 or graphs with groups of nodes interacting mainly with nodes
from other groups (and in particular bipartite graphs) as on the right of Figure 1.4. It
can model more generally any network structure with groups of nodes sharing a similar
connection behaviour towards other nodes (in the same class or in any other class). We
will talk in Section 1.4.4 about the use of SBM for clustering purposes, and we will talk
in the same section and in the introduction of Chapter 2 about the estimation of the
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Fig. 1.4 Community structure on the left, hubs and peripheral nodes in the middle and
groups interacting mainly with other groups on the right

parameters in the SBM, and particularly about the variational EM algorithm (VEM),
which will be the interest of our work.

Particular case: the affiliation model A particular case of the SBM is the affiliation
model, in which the connection parameter {πql}1≤q,l≤Q only takes two different values,
that are the between-groups and the within-group connection probabilities. We then
have, for any q, l ∈ {1, . . . , Q},

πql =
 πin if q = l

πout if q ̸= l.

In particular, assuming that πin is large and πout is small, the graphs generated by
the affiliation model exhibit a community structure, such as the graph on the left in
Figure 1.4. Inversely, assuming that we have πin small and larger πout, we obtain graphs
such as the one on the right in Figure 1.4.

Weighted SBM Let us give more details about the weighted version of the SBM. It
consists in replacing the Bernoulli distribution for the distribution of Xij | Zi, Zj by any
parametric distribution with a parameter depending on Zi, Zj. To control the density
of the graph8, we use a zero-inflated distribution, i.e. the values taken by the edges are
defined as a mixture of a Dirac mass at zero and the considered probability distribution.
Explicitly, defining the model parameter θ = ({αq}1≤q≤Q, {ηql}1≤q,l≤Q, {πql}1≤q,l≤Q), we

8For example, if the considered distribution is absolutely continuous with respect to the Lebesgue
measure, all the edges are present in the graph, which may not be appropriate.
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write Xij | Zi = q, Zj = l ∼ F (·; ηql, πql) with

F (x; ηql, πql) = (1− πql)δ0(x) + πqlG(x; ηql),

where G(·; ηql) is the conditional distribution of Xij given Zi = q and Zj = l and given
the presence of the edge, and δ0 denotes the Dirac distribution. We assume that G has
no point mass at zero for identifiability purposes. If the considered distribution initially
has some mass at zero, we then use its zero-truncated version. The distribution G can be
for example a zero-truncated Poisson distribution for discrete weights, or a Gaussian or
Laplace distribution for continuous weights. Note that the πql are density parameters of
the graphs. For parsimony purposes, we can assume that these parameters are constant,
i.e. πql := π for every q, l, meaning that the density is homogeneous between groups.

1.3.5.2 Identifiability

Identifiability results have been obtained for the SBM (Allman et al., 2009, 2011; Celisse
et al., 2012). We will give more details about the work of Allman et al. (2009) and
Allman et al. (2011), as one of our result will be based on it.

Allman et al. (2009) and later Allman et al. (2011) proved some identifiability results
for latent structure models, including the SBM, in the context of undirected graphs. The
proofs of their results are based on an application of a theorem by Kruskal (Kruskal
(1976, 1977) or see for example Rhodes (2010) or Theorem 16 in Allman et al. (2011))
that states the identifiability (up to label swapping) of the parameters of a latent variable
model with three observed discrete random variables, under some conditions based on the
notion of Kruskal rank of matrices, and assuming in particular that the three observed
random variables are independent given the latent one. This result is applied with an
appropriate decomposition into three pairwise disjoint subsets of the complete set of
edges, these three variables then being conditionally independent (and with each matrix
having full row rank, implying full Kruskal rank). In Allman et al. (2009), they prove
that the binary SBM with two groups has identifiable parameters as long as the three
connection parameters are distinct, and for a number of nodes n ≥ 16. In Allman et al.
(2011), they prove the following main result for identifiability of the binary SBM. This
result states the generic identifiability only, meaning that the nonidentifiable parameters
form a set of Lebesgue measure zero. The form of the subspace of non identifiable
parameters is not specified in this result, and it is important to keep in mind that when
we impose a constraint on the parameter reducing the parameter space to a subspace of
smaller dimension, parameter identifiability is no longer guaranteed.
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Theorem 1.3.1 (Allman et al. (2011)). The group proportion parameters αq and the con-
nection parameters πql for q, l ∈ J1, QK are generically identifiable up to label permutation
from the distribution of X when Q ≥ 3 and n ≥ m2, with m ≥ Q− 1 +

(
Q+2

2

)2
if Q is even,

m ≥ Q− 1 + (Q+1)(Q+3)
4 if Q is odd.

Moreover, the result remains valid when the group proportions αq are fixed.

As we said before, the constraints on the parameter leading to non identifiability are
not specified in this result. However, the generic part of the proof of this result concerns
only the connection parameters πql. In particular, in this proof, these parameters need to
be distinct, so this result does not apply to the affiliation model. Some results have been
derived in Allman et al. (2011) for this particular model. The proofs of these results are
based on arguments on moments of the distribution, as these moments may be obtained
explicitly in terms of model parameters for a small number of nodes. They obtain an
identifiability result for Q = 2.

Corollary 1.3.1 (Allman et al. (2011)). The group proportion parameters (α1, α2 =
1−α1), up to label swapping, and the parameters (πin, πout) of the random graph affiliation
mixture model with Q = 2 groups and binary edge state variables are strictly identifiable
from the distribution of X if n ≥ 3 and provided πin ̸= πout.

Other partial results are obtained in this case. When the group proportions are
fixed and in (0, 1), they prove that πin and πout are identifiable from the distribution
of X if n ≥ 3. They also state that it is necessary that n ≥ Q to identify the group
proportion parameters and πin and πout. Finally, they state that if the group proportions
are uniform (αq = 1/Q for every q), the parameters πin, πout and the number of groups
Q are identifiable from the distribution of X if n ≥ 4.

We will discuss the estimation of these parameters in the binary SBM in Section 1.4.4.1.
Now, let us talk about identifiability in the weighted SBM. Allman et al. (2011) prove

the identifiability of the parameters of the weighted SBM (up to label swapping) from
the distribution of X if n ≥ 3, as long as

• The Q(Q+ 1)/2 parameters {ηql}1≤q≤l≤Q are distinct

• G(·; η) has no point mass at zero for any η

• The parameters of finite mixtures of measures in {G(·; η)}η are identifiable, up to
label swapping.
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Note that most of the classical parametric distributions have been shown to satisfy the
assumptions on G. In particular, the truncated Poisson and Gaussian distributions satisfy
these assumptions.

The authors also give results for the weighted affiliation model and for a weighted
SBM where the edges can take a finite number of values.

Celisse et al. (2012) obtained the identifiability of the SBM, in the case of directed or
undirected graphs, as long as n ≥ 2Q and the coordinates of πα are distinct. They show
that this applies to the affiliation model as long as the group proportions are different.
They also obtain an identifiability with weaker assumptions for n = 4 and Q = 2.

1.3.5.3 Extensions of the SBM

Some extensions of the SBM have been introduced. We will briefly talk about three
well-know extensions, that are the degree-corrected SBM, the mixed membership SBM
and the inclusion of covariates in the SBM.

Degree-corrected SBM (DCSBM) The degree-corrected SBM (DCSBM) (Karrer
and Newman, 2011) is a more flexible extension of the SBM, allowing nodes in the same
groups to have different degree distribution, hence better fitting real world networks
which often exhibit degree heterogeneity within a same group. The principle of the
DCSBM is to introduce additional parameters for degree-correction ζ = (ζ1, . . . , ζn) that
are integrated in the distribution of the adjacency matrix X given the latent variables.
In Karrer and Newman (2011), in a weighted graph context (with edges taking integer
values), the distribution of X given the latent variables is given by a Poisson distribution

Xij | Zi, Zj ∼ P(ζiζjπZiZj
).

A binary version of the degree-corrected SBM is also used (see for example Gao et al.
(2018)), where the distribution of the adjacency matrix X given the latent variables is
given by a Bernoulli distribution

Xij | Zi, Zj ∼ B(ζiζjπZiZj
).

Mixed membership SBM (MMSBM) The mixed membership SBM (MMSBM)
(Airoldi et al., 2008) allows partial membership to different groups, in the sense that each
node have a membership distribution over the classes instead of a membership to a single
class. It is a model of interest when performing clustering of nodes with overlapping
groups, i.e. in the context where a single node can play more than one role in the network,
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depending on the node it is interacting (or not) with. Airoldi et al. (2008) define the
MMSBM as follows. Each node i has a mixed membership vector mi = (mi,1, . . . ,mi,Q)
following a Dirichlet distribution with parameter α = (α1, . . . , αQ), where αq > 0 for all
q ∈ J1, QK. Then for each pair of nodes i ̸= j, the roles Zi→j and Zj→i of these two nodes
corresponding to that particular interaction are drawn from multinomial distributions
with parameter respectively mi and mj. The value Xij of the edge from i to j then
follows a Bernoulli distribution

Xij | Zi→j, Zj→i ∼ B(πZi→jZj→i
).

Note that other extensions of the SBM have been introduced for the analysis of graphs
with overlapping classes, such as the overlapping SBM of Latouche et al. (2011), in which
each node may belong to any number of groups at the same time.

SBM with covariates Another possibility to extend the SBM is to introduce covariates
(Tallberg, 2004; Mariadassou et al., 2010; Choi et al., 2012), allowing to take into account
the information we may have on the nodes or pair of nodes. The considered covariates
we introduce in the SBM can then be node-specific covariates (for example age, gender,
income) or edge-specific covariates (for example a distance between the two considered
nodes). For example, in Tallberg (2004), the distribution of the group membership of a
node depends on its covariate. In Mariadassou et al. (2010), the covariates are taken
into account in the distribution of the edges Xij via a regression model, in the context of
weighted graphs.

1.3.6 Latent Block Model (LBM)

The Latent Block Model (LBM) (Govaert (2003), see also Govaert and Nadif (2013) or
Brault and Mariadassou (2015)) is a co-clustering model, i.e. we consider an array data
structure with n observations (n rows) of m variables (m columns) and it is assumed
that there exists a partition of the rows and of the columns.

We assume that Z = (Zi)1≤i≤n and W = (Wj)1≤j≤m are two independent latent
variables defining a partition on the rows and columns respectively. The Zi are i.i.d.
random variables, following a multinomial distribution, and so do the Wj. We observe
X = (Xij)1≤i≤n,1≤j≤m, these variables being independent conditional on Z and W and
such that each Xij conditional on Z,W follows the same parametric distribution, with a
parameter πZiWj

depending on the column and row groups. Note that this formulation
is quite similar to that of the SBM. The difference lies in the fact that there are two
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distinct partitions for the rows and columns in the LBM, whereas it is the same for the
SBM. In fact, Mariadassou and Matias (2015) proposed a unified framework for studying
both these models.

In a graph context, it can be used to model bipartite graphs (where the nodes are
of one of two types, and they can be connected only to nodes of the other type, as in
Figure 1.2). We thus assume that we have a clustering of nodes for each of the two types.

1.3.7 Latent Position Model (LPM)

.
The latent position model (LPM) was introduced by Hoff et al. (2002) in the context

of social networks. In this model, the latent variables on the nodes are i.i.d. random
variables taking their values in a social space in Rd (and not in J1, QK) and the probability
of connection between two nodes is determined by their distance in the latent space.
Precisely, the edges are independent given the positions in the latent space, and the
probability of an edge Xij to be present is based on the logistic regression

logit(P(Xij = 1 |Zi, Zj, yij)) := log
(

P(Xij = 1 | Zi, Zj, yij)
1− P(Xij = 1 | Zi, Zj, yij)

)
= α+ tβyij−∥Zi−Zj∥2

where yij is a vector of covariates on the pair of nodes (i, j) (if we have covariates at our
disposal), (α, β) is the model parameter and ∥ · ∥2 is the Euclidean norm9.

Later, Handcock et al. (2007) introduced the latent position cluster model, extending
the model of Hoff et al. (2002) for clustering purposes, in which the nodes positions in
the latent social space come from a mixture of multivariate Gaussian distributions, the
components of the mixture corresponding to the clusters.

1.3.8 Graphon and W -graph model

1.3.8.1 Definition

The W -graph model is a general binary graph model satisfying the exchangeability
property. The exchangeability property is the fact that any permutation on the nodes
labels (i.e. of the nodes and columns of the adjacency matrix) leads to the same
distribution, i.e. (Xσ(i)σ(j))1≤i,j≤n ∼ (Xij)1≤i,j≤n with σ any permutation on J1, nK. This
means that the nodes labels have no relevance. This model is based on the definition of
graphon. Formally introduced by Lovász and Szegedy (2006) in the context of graph

9Note that any other distance can be used.
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limits, a graphon is defined as a symmetric measurable function W : [0, 1]2 → [0, 1]. It
defines a graph as follows:

• First, assign independently a value ui from the random variable Ui ∼ U([0, 1]) to
each node i ∈ {1, . . . , n}.

• Then the edges are independent given (u1, . . . , , un), each edge Xij following a
Bernoulli distribution of parameter W (ui, uj).

Such a graph is called a W -random graph. If W is a constant function equal to p, the
associated W -random graph model is an Erdős-Rényi graph model of parameter p. Note
that a SBM is a particular case of a W -graph, where the graphon function is block-wise
constant with rectangular blocks of size αq×αl and value πql, as represented in Figure 1.5.
In that sense, the graphon is in fact a continuous extension of the SBM.

This model has been introduced in Lovász and Szegedy (2006) (see also Lovász (2012);
Borgs et al. (2008)) in the study of large graphs, as the limit object of a sequence of
dense graphs (see Borgs et al. (2019) for sparse graphs).

This is related to the Aldous-Hoover theorem (Aldous (1981); Hoover (1979), see
also Kallenberg (2006)), that is a two-dimensional version of De Finetti’s theorem (see
for example Diaconis and Janson (2008)). It states (using a formulation similar to that
in Orbanz and Roy (2014)) that an array X = (Xij)1≤i,j≤n (with Xij in some space
A) is exchangeable if and only if there is a random function F : [0, 1]3 → A such that
Xij is equal in distribution to F (Ui, Uj, Uij), where (Ui)1≤i≤n and (Uij)1≤i<j≤n are i.i.d.
random variables following a uniform distribution on [0, 1], and Uji = Uij . In our context
of binary undirected graphs, i.e. with A = {0, 1}, this can be expressed in terms of
the graphon function, with Xij following a B(W (Ui, Uj)) (see Orbanz and Roy (2014)
for more details). One can refer to Diaconis and Janson (2008) for more details on the
connection between the work on exchangeable arrays and the work on graph limits. Note
that this theorem has been used by Hoff (2008), Bickel and Chen (2009) and Bickel et al.
(2011) in the context of graph modeling.

An issue with the graphon is that it is not identifiable. Indeed, if ψ : [0, 1]→ [0, 1] is a
measure preserving function, then the graphon W (ψ(·), ψ(·)) leads to the same probability
distribution on the graph as W (·, ·). To tackle this issue, Bickel and Chen (2009) propose
to impose monotonicity on the function g defined by g(ui) =

∫
W (ui, ui)duj (see also

Yang et al. (2014); Chan and Airoldi (2014)).
As far as estimation (of the underlying graphon function of an observed graph) is

concerned, most of the techniques are based on the approximation of the W -graph by a
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Fig. 1.5 Link between the graphon and SBM. Note that this is symmetric.

SBM (Airoldi et al., 2013; Gao et al., 2015; Latouche and Robin, 2016; Klopp et al., 2017),
by computing group averages after finding groups of nodes, thus obtaining a block-wise
constant graphon, and usually performing a smoothing step afterwards. For example, to
obtain the grouping of nodes, Latouche and Robin (2016) use a Variational Bayes EM
algorithm, and obtain an estimator of the graphon function by averaging stochastic block
models with increasing number of blocks.

Some methods (Chatterjee, 2015; Yang et al., 2014) are based on a spectral method,
the universal singular value thresholding (USVT) algorithm (Chatterjee, 2015).

Chan and Airoldi (2014) proposed an algorithm relying on the ordering of the nodes
based on the observed degrees and on the smoothing of the histogram obtained from the
sorted graph. Other methods have been introduced, see for example Zhang et al. (2017b)
or Lloyd et al. (2012).

1.4 Node clustering techniques

In this section, we will review some techniques used to cluster vertices in a graph into
groups of nodes with similar connection behaviour, and give some theoretical or empirical
results for these techniques. Node clustering in networks has been intensively studied
and we will not be able to be exhaustive, but will present some of the widely used
methods. In particular, a lot of work has been done on community detection, i.e. when
considering groups of vertices that have a high within-group connectivity and a low
between-group connectivity, as on the left of Figure 1.4. Some methods can identify
a more general structure with groups of nodes sharing a similar connection behaviour
towards other nodes (in the same class or in any other class). For example, as in the
middle of Figure 1.4, where we observe two classes, a group of two hubs and a class
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of peripheral nodes, or as in the right of Figure 1.4 where we observe groups of nodes
interacting mainly with nodes from other groups. Note that the term community is often
used to talk about these more general classes, but we will stick to the strict definition
of a community in this work. We will then refer to community detection when doing
clustering for community structures and simply to clustering for the clustering of more
general structures.

1.4.1 Spectral clustering

A commonly used technique in community detection is the spectral clustering, i.e.
algorithms that cluster points using eigenvectors of matrices derived from the data. See
Von Luxburg (2007) for more details on the spectral clustering.

The matrix we rely on in spectral clustering is a Laplacian matrix (or sometimes
directly the adjacency matrix) (Chung and Graham, 1997). There are different definitions
of such matrices, hence leading to different versions of the spectral clustering.

The use of graph Laplacians instead of the adjacency matrix is justified by its good
properties that we will state right after, and enables a better detection of the clusters.
In particular, using the normalised versions of the Laplacian allows to regularise the
degree distribution and gives better results when the degree distribution is heterogeneous
(Von Luxburg, 2007).

To describe this technique, let us first introduce a definition of the graph Laplacian
matrix. We need to define the degree matrix D of a graph, that is the diagonal matrix
with the weighted degrees d1, . . . , dn on its diagonal, i.e. di = ∑n

j=1 Xij = ∑n
j=1 Xji

10.
We then define the (unnormalised) Laplacian matrix for a graph of adjacency matrix X
and degree matrix D as

L = D −X. (1.4.1)

This matrix is symmetric, and satisfies for any u ∈ Rn

u⊤Lu = u⊤Du− u⊤Xu = 1
2

∑
1≤i,j≤n

Xij(ui − uj)2.

It is then positive semi-definite, and its eigenvalues, denoted by λ1 ≤ λ2 ≤ . . . ≤ λn,
are nonnegative. Moreover, since di = ∑n

j=1 Xij for every i ∈ J1, nK, we have that 0
is an eigenvalue with associated eigenvector (1, . . . , 1). An important result about the
Laplacian graph is that the multiplicity of this eigenvalue is equal to the number of

10The spectral clustering method is defined for undirected graphs.



26 Introduction

connected components in the graph and the corresponding eigenspace is spanned by the
indicator vectors of the components.

Note that in the case where we have k connected components in the graphs, the
Laplacian matrix (as the adjacency matrix) has a block diagonal form (up to a reordering of
the nodes). The principle of spectral clustering is that when we want to find communities,
that we can see as "almost" connected components, we want to identify the "almost"
block diagonal structure of the graph.

To partition the graph into Q clusters, the algorithm then consists of selecting the Q
eigenvectors corresponding to the smallest nonzero eigenvalues11 of the Laplacian matrix
and performing a k-means clustering with Q groups on the lines of the n × Q matrix
formed by these eigenvectors (see Algorithm 3).

Algorithm 3: Spectral clustering
input : An adjacency matrix X, a number of clusters Q
output :Q clusters C1, . . . , CQ forming a partition of {1 . . . , n}

1 Compute the Laplacian matrix L as in (1.4.1);
2 Compute the Q eigenvectors u1, . . . , uQ associated with the Q smallest

eigenvalues of L;
3 Let U ∈ Rn×Q be the matrix containing the vectors u1, . . . , uQ as columns;
4 Cluster the n lines of U with the k-means algorithm into clusters C1, . . . , CQ ;
5 return C1, . . . , CQ

Other common versions of the spectral clustering algorithm use normalised Laplacian
matrices, that are defined as

Lsym = D−1/2LD−1/2 = I − D−1/2XD−1/2 or Lrw = D−1L = I − D−1X. It is
mentioned in Von Luxburg (2007) that for regular graphs where most vertices have
approximately the same degree, the different Laplacians are similar, and using any of
them lead to similar clustering results, but that it is not the case if the degrees in the
graph are very heterogeneous. Von Luxburg (2007) recommends using normalised rather
than unnormalised spectral clustering, and in the normalised case to use the eigenvectors
of Lrw rather than those of Lsym .

This technique is mainly used for community detection, but Rohe et al. (2011)
introduced the absolute spectral clustering, based on a different definition of the Laplacian
matrix that can have negative eigenvalues, and which then uses the absolute values of
the eigenvalues, selecting the largest (in absolute value) positive and negative eigenvalues.
This allows to recover structures more complex than communities, for example groups

11In practice, we apply spectral clustering on connected graphs, or on the connected components of a
graph separately.
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that are more likely to interact with each other than with themselves, or a mix of these
two.

1.4.2 Modularity

An approach in community detection is the optimisation of a measure known as modularity
(Newman and Girvan, 2004). This measure is proportional to the number of edges within
groups minus the expected number in an equivalent network with random edges. It was
first used in Newman and Girvan (2004) to evaluate the division obtained by a clustering
algorithm, i.e. check that the considered clustering divides the nodes into communities
by checking that the modularity is high enough. Considering a partition of the network
in Q communities, the modularity is defined in Newman and Girvan (2004) as

Q =
∑

1≤q≤Q
(eqq − a2

q),

where E = (eqq′)1≤q,q′≤Q is the matrix of fractions of edges in the network that link
vertices in community q to vertices in community q′, and aq = ∑Q

q′=1 eqq′ is the sum of
the row (or column) q of E, representing the fraction of edges that connect to vertices
in community q. Large values of the modularity are then supposed to indicate that
the network has a community structure. Newman (2004) then proposed to optimise
the modularity to find communities. Unfortunately, it is too costly to optimise directly
this quantity by computing it for every possible division of the network (an exhaustive
search of all possible divisions would take at least an amount of time exponential in the
number of nodes). So in order to obtain a result in reasonable time, one must use some
approximate optimisation strategy. For example, Newman (2004) proposed a greedy
algorithm running in O((m + n)n) (m being the number of edges) that starts with a
state in which each vertex form a community and repeatedly chooses communities to
join together in pairs leading to the greatest increase (or smallest decrease) in Q. They
then obtain a dendrogram and can select the best cut by looking for the maximal value
of Q. Clauset et al. (2004) improved the running time by making use of suitable data
structures to O(n log2 n) for a sparse graph. A rather similar approach is the Louvain
algorithm (Blondel et al., 2008), which starts by assigning a different community to each
node of the network, and repeats the following two steps. The first step is the repetition
of a node reassignment to another community (among the communities of the neighbours
of this node), according to the greatest increase in the modularity, until there is no
reassignment increasing the modularity left. The second step consists in building a new
network whose nodes are the communities from the first step, by summing the weights of
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the nodes between every two communities. The algorithm stops when there are no more
changes. They obtain good results in terms of modularity value in shorter time. Traag
(2015) proposed a faster version of the Louvain algorithm, in which in the first step of
the algorithm, each node is moved to a random neighbour community, instead of the
best neighbour community.

Simulated annealing can also be used (see Guimera and Amaral (2005b,a); Medus
et al. (2005) among others) and gives good results, the main disadvantage of this approach
being that it is slow. The optimisation of the modularity can also be based on the genetic
algorithm (for example Li et al. (2010)) that is a heuristic inspired by the process of
natural selection. Newman (2006) gives a reformulation of the modularity in terms of
eigenvectors of a characteristic matrix for the network (the modularity matrix), leading to
a spectral algorithm for community detection to divide the networks into two communities,
and then repeat the algorithm in the case of more than two communities. A lot of other
techniques have been introduced but we will not describe them all (for example see Duch
and Arenas (2005),Wakita and Tsurumi (2007), He et al. (2016)). For more details see
Danon et al. (2005) who performed a test comparing the performance of a large number
of different community detection algorithms. Bickel and Chen (2009) defined a new
modularity called the likelihood modularity and showed that modularities allow to recover
the groups with probability tending to one, under some conditions on these modularities.

Even though this method has been widely used, it suffers from several limitations.
It admits a resolution limit, i.e. the method fails to recover small communities in large
networks (Fortunato and Barthélemy, 2007; Good et al., 2010), a degeneracy problem, i.e.
there are at least an exponential (in n) number of distinct partitions whose modularity
values are very close to the global maximum (Good et al., 2010). See for example
Lancichinetti and Fortunato (2011) for some details about the limits of the method of
modularity maximisation.

Research is still done to tackle this problem, see Chakraborty et al. (2017) for a
review, or more recent articles Chen et al. (2018); Long (2019); Haq et al. (2019).

1.4.3 Other community detection methods

Another way to identify communities in a graph is to run dynamical processes on the
graph, usually random walks. That method is based on the idea that if there are a lot of
connections inside each community and only a few edges connect different communities
together, a random walk is going be trapped in each community for some time before
finding a way out and moving to another community. For example, Pons and Latapy
(2005) obtain a hierarchical community structure by computing a measure of similarities
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between nodes that is based on random walks on the graph (and that can be computed
efficiently).

More algorithms for community detection have been introduced (see for example
Nascimento and De Carvalho (2011); Yang et al. (2016); Hajek et al. (2016)).

Note that there also has been a lot of research on overlapping community detection,
i.e. when one assumes that the groups may not form a partition of the nodes, the nodes
being allowed to belong to more than one community (see for example Xie et al. (2013);
Devi and Poovammal (2016)).

One can refer to Fortunato and Hric (2016) for a review of community detection in
networks.

1.4.4 Model-based clustering

1.4.4.1 Maximum likelihood estimation in the SBM with a Variational EM
algorithm

In the SBM, we can be interested in estimating the parameters of the model in order to
describe our network. We can obtain them by using a modified version of the Expectation-
Maximisation (EM) algorithm based on a variational approximation of the distribution
of the latent variables given the observations. If we also want to obtain a clustering, we
can then obtain the latent groups by using a maximum a posteriori estimation.

In this model, we cannot compute the Maximum Likelihood Estimator (MLE) except
for very small values of n, because it involves a summation over all the Qn possible latent
configurations. Indeed, the log-likelihood is

ℓ(θ) := logPθ(X) = log
 ∑
z∈J1,QKn

Pθ(X,Z = z)
 = log

 ∑
z∈J1,QKn

elog Pθ(X,Z=z)


where

logPθ(X,Z = z) = logPθ(X | Z = z) + logPθ(Z = z)
=

∑
1≤q,l≤Q

∑
1≤i<j≤n

ZiqZjl [Xij log πql + (1−Xij) log(1− πql)]

+
Q∑
q=1

n∑
i=1

Ziq logαq, (1.4.2)

defining Ziq = 1Zi=q for every i and q. We neither can use the EM algorithm (often
used in latent variables models) to approximate it because it involves the computation
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of the conditional distribution of the latent variables given the observations which is
not tractable. A common solution is to use the Variational Expectation-Maximisation
(VEM) algorithm that optimises a lower bound of the log-likelihood (see for example
Daudin et al. (2008)).

EM algorithm Let us first describe briefly the EM algorithm in a general case. This
is an iterative algorithm introduced by Dempster et al. (1977), used to approximate
maximum likelihood estimates of parameters in statistical models, where the model
depends on unobserved latent variables. Assume that we observe the variable X =
(X1, . . . , Xn), that Z = (Z1, . . . , Zn) is a set of latent (i.e. unobserved) variables taking
their values in a finite set and that θ is a vector of unknown parameters. We want to
maximise the log-likelihood

ℓ(θ) = log
∑
z

Pθ(X,Z = z)

= logPθ(X,Z)− logPθ(Z |X). (1.4.3)

This quantity is often intractable due to the sum on all the possible configurations z.
We start the algorithm with some initial value of the parameter θ(0). Each iteration t of
the EM algorithm is composed of two consecutive steps (E step and M step) and the
algorithm stops when the relative difference between the estimates at two consecutive
steps is small enough, or when a maximum number of iterations is reached.

E step: The E (Expectation) step consists of computing the quantity

Q(θ|θ(t−1)) =Eθ(t−1) [logPθ (Z,X) |X] (1.4.4)
=Eθ(t−1) [logPθ (X | Z) |X] + Eθ(t−1) [logPθ (Z) |X] .

M step: the M (Maximisation) step consists of maximising the quantity Q(θ|θ(t−1))
with respect to θ to obtain θ(t) the estimate at step t,

θ(t) = arg max
θ

Q(θ|θ(t−1)).

It is proven that the log-likelihood increases at each iteration (Dempster et al., 1977).
However, it can converge to a local maximum, and it is then common to run the algorithm
multiple times with different initial values in order to obtain the global maximum.
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Variational EM (VEM) algorithm In the SBM, the EM algorithm as described
before is still intractable since we cannot compute the distribution of the latent variables
given the observations because it is not factorised, so the computation of Q in (1.4.4) is
out of reach. We will then rely on a variational approximation of this distribution. First,
for any distribution Q on the latent variables Z, let us introduce two quantities, H(Q)
the entropy of Q, and KL(Q,Pθ(· |X)) the Kullback-Leibler divergence from Pθ(· |X) to
Q

H(Q) = −EQ [logQ(Z)] = −
∑
z

Q(z) logQ(z) (1.4.5)

KL(Q,Pθ(· |X)) = EQ

[
log Q(Z)

Pθ(Z |X)

]
=
∑
z

Q(z) log Q(z)
Pθ(z |X) .

We can then rewrite the log-likelihood in (1.4.3) as follows, by taking the expectation
with respect to Q on both sides of the equation,

ℓ(θ) = EQ [logPθ(X,Z)]− EQ [logPθ(Z |X)]
= EQ [logPθ(X,Z)] +H(Q) + KL(Q,Pθ(· |X)).

The idea of this algorithm is to find the distribution Q in a set of factorised distri-
butions which minimises the quantity KL(Q,Pθ(t−1)(· | X))12 and then to maximise
EQ [logPθ(t−1)(X,Z)]+H(Q) in θ, this step now being tractable thanks to factorised form
of Q, approximating Pθ(t−1)(· |X). We call the estimator obtained with this algorithm
variational estimator. The quantity we optimise (in Q and θ) in the VEM algorithm is
then

J (Q, θ) = ℓ(θ)−KL(Q,Pθ(·|X)) = EQ [logPθ(X,Z)] +H(Q), (1.4.6)

i.e. a lower bound of the log-likelihood, the Kullback-Leibler divergence being nonnegative.
In the case of the SBM, we consider the factorised distributions of the form

Q(Z) =
n∏
i=1

Q(Zi) =
n∏
i=1

Q∏
q=1

τ
Ziq

iq ,

with τiq = Q(Zi = q) = EQ[Ziq] (with Ziq = 1Zi=q) such that ∑Q
q=1 τiq = 1 for any i.

The algorithm is then tractable for the SBM, and simple expressions can be obtained
12That is equivalent to maximising EQ [logPθ(t−1)(X,Z)] +H(Q) with respect to Q. Note that the

distribution minimising this quantity over the set of all distributions is Pθ(t−1)(· | X) leading to a
Kullback-Leibler divergence equal to zero.
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as follows. The quantity to optimise (1.4.6) is written (see Equation (1.4.2) and the
definition of the entropy (1.4.5))

J (Q, θ) =EQ [logPθ(X,Z)] +H(Q)

=
∑

1≤q,l≤Q

∑
1≤i<j≤n

τiqτjl [Xij log πql + (1−Xij) log(1− πql)] +
Q∑
q=1

n∑
i=1

τiq log αq
τiq
.

Maximising this quantity in τiq gives that τ̂ = (τ̂iq)i,q satisfies a fixed-point equation

τ̂iq ∝ αq
n∏

j=i+1

Q∏
l=1

[
π
Xij

ql (1− πql)1−Xij

]τ̂jl
.

Then maximising it with respect to θ = (α, π) gives the closed-form expressions

α̂q = 1
n

n∑
i=1

τiq

π̂ql =
∑

1≤i<j≤n τiqτjlXij∑
1≤i<j≤n τiqτjl

.

If we want to obtain an estimation of the class memberships, we can then take the
maximum a posteriori, i.e.

∀i ∈ J1, nK, Ẑi = arg max
q∈J1,QK

τiq.

We recall that this method allows to recover a node clustering in a more general
context than community structure. We described it for the binary SBM, but it can also
be used for weighted SBM (Mariadassou et al., 2010).

Note that Gunawardana and Byrne (2005) obtained that in the general case, the VEM
algorithm does not converge to local maxima of the likelihood, except for degenerate
models but gives good results in practice for the SBM (Gazal et al., 2012), and we will
also give some theoretical results later for the variational estimators in the SBM.

1.4.4.2 Other methods

Many other model-based clustering methods have been introduced, and we present briefly
some of them.

A Bayesian version of the variational EM (Attias, 1999; Beal and Ghahramani, 2003)
can also be used for the estimation of parameters in the SBM (Latouche et al., 2010, 2012;
Aicher et al., 2013), based on an approximation of the joint probability distribution of
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the latent variables Z and the parameters (α, π) given the observations X by a factorised
distribution.

Still in the SBM, Channarond et al. (2012) proposed an algorithm to recover the
clustering (and estimate the parameters), relying only on the degrees of the observed
graph, called Largest Gaps algorithm. They obtained the consistency of this method.

Node clustering for bipartite graphs can be obtained based on the latent block model.
In this model, the estimation can be based on variational EM, classification EM (inserting
a classification step in which we find a partition) (see Govaert and Nadif (2008), Chapter
2 of Govaert and Nadif (2013)), stochastic EM with Gibbs sampling (Keribin et al., 2010,
2012), or Bayesian inference (Keribin et al., 2015; Wyse and Friel, 2012). Brault and
Channarond (2016) introduce an adaptation of the Largest Gaps algorithm of Channarond
et al. (2012) for the LBM. Concerning theoretical results, Mariadassou and Matias (2015)
give sufficient conditions for the groups posterior distribution to converge to a Dirac
mass located at the actual groups configuration, for every parameter in a neighborhood
of the true one. Consistency and asymptotic normality results have been obtained for
the maximum likelihood estimators and variational estimators in the LBM in Brault
et al. (2020).

Clustering can also be performed based on the ERGM. For example, Salter-Townshend
and Murphy (2015); Wang et al. (2019) introduce mixture models of ERGMs. The model
of Salter-Townshend and Murphy (2015) is based on ego-networks, i.e. for each node,
the network composed of the considered node and its neighbours, and all the edges
between thoses nodes. The inference of these two models is based on the EM algorithm.
Wang et al. (2019) use an online variant of the EM, alternatively assigning the nodes to
groups and updating the parameter. Vu et al. (2013) propose a model for large networks.
They assume dyad independence given the groups, and estimation is based on a VEM
combined with a minorisation-maximisation algorithm (Hunter and Lange, 2004). See
also Agarwal and Xue (2019) for clustering in weighted ERGMs.

Clustering can also be performed based on the latent position cluster model of
Handcock et al. (2007), who propose two methods for estimation of parameters in this
model. The first method is a two-stage maximum likelihood estimation, the first step
consisting of assigning positions in the latent space based on a maximisation of the
likelihood, and the second step consisting in finding a maximum likelihood estimator of
the mixture model parameter conditionally on the latent positions from the first step,
thanks to an EM procedure. The second method is a Bayesian approach using MCMC
sampling.
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1.4.5 Choice of the number of classes

In the models we considered in the previous section, we assume that the number of
classes (i.e. the number of values taken by the latent variable representing the group
membership) is known. However, in practice, we usually do not have this information.
We then introduce briefly some of the existing criteria for the choice of a number of
classes in a general context, and more generally for model selection, and we will then
present two criteria for the special case of the SBM. For more details about information
criteria, see Konishi and Kitagawa (2008).

1.4.5.1 General case

The AIC (Akaike Information Criterion) Introduced by Hirotugu Akaike (Akaike,
1973, 1974), the AIC relies on an asymptotic approximation of the Kullback-Leibler
divergence of the estimated distribution from the unknown true distribution. It provides
a tool for evaluating models in which the parameters are estimated by the maximum
likelihood method. For this criterion, the Kullback-Leibler divergence is estimated using
the empirical distribution of the observations, and the correction term for the bias of
this estimator (induced by the fact that the same data is used both in the estimation
of the model parameter and in the estimation of the expected log-likelihood in the
Kullback-Leibler divergence) is approximated by the number of free parameters. For any
considered model, the criterion is then defined as

AIC = −2 logL(θ̂) + 2k,

with k the number of free parameters in the considered model and L(θ̂) the maximum
of the likelihood of the model. To choose the "best" model from a set of candidate
models, we take the one minimising the AIC. It has been shown that the AIC tends to
overestimate the number of groups in the case of mixture models.

The BIC (Bayesian Information Criterion) Introduced by Schwarz et al. (1978),
the BIC is an evaluation criterion for models defined in terms of their posterior probability.
As for the AIC, it is adapted for the evaluation of models estimated by using the
maximum likelihood method. This criterion is based on an approximation of the marginal
distribution of the observations x, that is given for any considered model with parameter
θ by

p(x) =
∫
p(x | θ)π(θ) dθ,
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with π a prior distribution on θ. By using Laplace approximation method for the integral
above, based on the idea that for a large enough number of observations, the integrand
is concentrated in a neighborhood of the maximum likelihood estimator θ̂ and that the
value of the integral depends on the behaviour of the function in this neighborhood, the
criterion is then defined as the following approximation of −2 log p(x)

BIC = −2 logL(θ̂) + k log(n),

where k is the number of free parameters of the model, L(θ̂) the maximum of the
likelihood of the model and n the number of observations. As for the AIC, we choose the
model minimising the BIC13. This criterion has some limitations. First, as for the AIC,
n must be large enough for the approximation to be valid. Moreover, it has additional
limitations in a model-based clustering context, as mentioned in Biernacki et al. (2000),
when assessing the number of clusters. Indeed, for the approximation to be valid, the
estimated vector parameter must be within the parameter space, which is not the case
when the true model has a smaller number of components that the model we consider.
They also raise the fact that, as for the AIC, this criterion does not take into account
the clustering purpose, and that it tends to overestimate the number of components in
the case of mixture models when the true distribution is not in the considered family of
distributions.

The ICL (Integrated Classification Likelihood) The ICL is a criterion introduced
by Biernacki et al. (1998) in order to circumvent the limitations of the BIC in a clustering
context. Contrary to the previously introduced AIC and BIC, which were designed
in a density estimation purpose, the ICL criterion has been derived in a clustering
purpose. Indeed, this criterion is based on the complete (log-)likelihood, thus taking into
account the clustering (i.e. the discrete latent variable z). They consider the integrated
complete likelihood (also called integrated classification likelihood) that is given by the
following expression for any considered model with parameter θ = (m, a) with m the
mixing proportions parameter and a the parameter of the conditional distribution of the
observations given the latent classes

p(x, z) =
∫
p(x, z | θ)π(θ) dθ,

13Note that maximising the marginal distribution p(x) of the observations (with respect to the model)
is equivalent to maximising the posterior probability of the model (given the observations), assuming
than the models are a priori equally probable.
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with π a prior distribution on θ.
Assuming that π(θ) = π(a)π(m), they show that

log p(x, z) = log
(∫

p(x | z, a)π(a) da
)

+ log
(∫

p(z |m)π(m) dm
)

and then apply the BIC approximation that is valid for the first term
∫
p(x | z, a)π(a) da,

obtaining
log

∫
p(x | z, a)π(a) da ≈ max

a
log p(x | z, a)− λ

2 log n

with λ the number of free components in a. Then, calculating the second term
log(

∫
p(z | m)π(m) dm) by choosing a Jeffrey’s noninformative prior for the propor-

tions m, and replacing the latent data z with the maximum a posteriori (MAP) z̃, they
propose the criterion

ICL = max
a

log p(x | z̃, a)− λ

2 log n

+ log Γ
(
Q

2

)
+

Q∑
q=1

log Γ
(
ñq + 1

2

)
−Q log Γ

(1
2

)
− Γ

(
n+ Q

2

)

with ñq the number of z̃i equal to q and Γ the Gamma function. Moreover, when the
ñqs are large, using the approximation of the Gamma function with the Stirling formula,
they obtain

ICL = max
a

log p(x | z̃, a) + max
m

log p(z̃ |m)− λ

2 log n− Q− 1
2 log n

= max
θ

log p(x, z̃ | θ)− k

2 log n (1.4.7)

with k = λ + Q − 1 the number of free parameters in the model. This quantity can
be maximised to select the most probable model. Note that considering the complete
log-likelihood instead of the log-likelihood yields two penalisations in the first formulation
of the ICL in (1.4.7), accounting for the distribution of the observations given the latent
variables and for the distribution of the latent variables respectively. Even though it
leads to a single penalisation (k/2) log n that is similar to that of BIC in this context, we
will see why it is interesting when presenting an ICL for the SBM in the next section.

Note that in Biernacki et al. (2000), a second version of Biernacki et al. (1998), the
authors derive a criterion in a slightly different way and obtain the following ICL that is
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based on θ̂ the maximum likelihood estimator of θ

ICL = log p(x, z̃ | θ̂)− k

2 log n.

1.4.5.2 For the Stochastic Block Model

For the Stochastic Block Model, the AIC and BIC cannot be used because their com-
putation involves the intractable log-likelihood of the observations. We present some
criteria that were introduced in that context.

ICL criterion for the SBM An ICL criterion has been derived by Daudin et al.
(2008) for model selection in the special case of the SBM, using the same technique as
Biernacki et al. (1998) applied to the SBM, and based on the estimated z̃ (obtained from
a VEM). They obtain

ICL = max
θ

log p(x, z̃ | θ)− 1
2
Q(Q+ 1)

2 log n(n− 1)
2 − Q− 1

2 log n,

where Q(Q+ 1)/2 is the number of free connectivity parameters (i.e. free parameters
of the distribution of the observations given the latent variables), and Q − 1 is the
number of free proportion parameters (i.e. free parameters of the distribution of the
latent variables), and n(n− 1)/2 is the number of observations while n is the number of
latent variables.

Note that the first part of the penalty comes from the approximation of the conditional
log-likelihood of the observations given the latent variables (i.e. the part associated with
the parameter π, whose dimension is Q(Q+ 1)/2, and the number of random variables is
n(n− 1)/2), and the second part of it comes from the approximation of the log-likelihood
of the latent variables (i.e. the part associated with the parameter α, of dimension Q− 1,
and n group memberships random variables).

ILvb (Integrated Likelihood Variational Bayes) Later, Latouche et al. (2012)
introduced another criterion, the ILvb, that is based on the log-likelihood, unlike the ICL.
This quantity being intractable, they compute it using the variational approximation of
the joint distribution of the latent variables and model parameters given the observations,
the marginal log-likelihood then being approximated by the lower bound in the VEM
algorithm. They then obtain a non asymptotic approximation (unlike the ICL again)
through the variational Bayes EM algorithm (with Dirichlet and Beta prior on the group
proportions and connectivity parameter). After convergence of the algorithm, the lower
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bound of the log-likelihood is used to approximate this log-likelihood, and gives a criterion
named ILvb, depending on the posterior probabilities and the normalising constants of
the Dirichlet and beta distributions. Q is then chosen as the value maximising the ILvb.

Exact ICL Côme and Latouche (2015) introduced the exact ICL, obtaining an ana-
lytical expression of log p(x, z |Q), and proposed an algorithm for the maximisation of
this quantity. Their algorithm allows to recover the clusters and number of classes at
the same time, starting from an upper bound of Q, and allowing clusters to disappear.
They prove that, setting respectively a Dirichlet and Beta priors for the distribution
of Z and of X given Z, we obtain an exact ICL, depending only on X,Z,Q and the
prior parameters. The best Z and Q could then be obtained by finding the maximum
of this quantity. However, it cannot be maximised directly, as for each Q, the number
of possible configurations is Qn, hence the need for an algorithm to find the maximum.
They introduce a greedy algorithm, starting with a SBM with the upper bound of number
of classes. At each step, a single node is moved to another group if it increases the exact
ICL (going to the group with maximal increase of the ICL). When a group is empty, it is
removed. It stops when no swapping leads to an increase14.

Criterion based on the empirical degrees As mentioned before, Channarond et al.
(2012) proposed an algorithm to recover the clustering and estimate the parameters, and
they propose in addition a selection criterion for the number of classes, relying only on
the degrees of the observed graph. This criterion is based on the gaps between the mean
degrees of the groups given by their algorithm.

1.4.6 Theoretical results

A lot of theoretical results have been obtained for the SBM, as for instance parameter
estimator consistency or asymptotic normality results, or results on clustering error rate.
We will mention a few of these results. Some theoretical results are presented in the
introduction of Chapter 2 regarding parameter estimation, so we will focus here on other
results on clustering.

We are interested in the misclassification proportion, i.e. the proportion of vertices
classified in a wrong class by the considered algorithm (up to a permutation). If Z is the
true configuration and Ẑ the configuration obtained with the considered algorithm, the

14Note that a local maximum is obtained, and a common strategy is then to run the algorithm with
multiple initialisations.
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misclassification proportion is

r(Z, Ẑ) = min
σ∈SQ

1
n
∥Z − σ(Ẑ)∥0 := min

σ∈SQ

1
n

n∑
i=1

1Zi ̸=σ(Ẑi)

with SQ the set of permutations on J1, QK.

Minimax risk for the misclassification proportion Zhang and Zhou (2016) ob-
tained a minimax risk decreasing exponentially with the number of nodes for the misclas-
sification proportion for community detection (when the within-community probabilities
are assumed to be larger than the between-communities probabilities). They work in a
SBM framework but in which we assume that the true configuration z is a parameter
of the model. Their result includes dense and sparse networks, equal and nonequal
community orders and finite and growing number of communities. For example, to
study sparse or dense networks, the connection probabilities can be as small as O(1/n)
and as large as a constant. Regarding the number of communities, it can be as large
as n/ log n. The parameter space Θ(n,Q, a, b, β) contains the assignments z and the
connection probabilities π such that the number of nodes in each of the communities
is in [n/(βQ), βn/Q] and πqq ≥ a/n for any q and πqq′ ≤ b/n for any q ̸= q′, with β > 1
and bounded and with 0 < b < a < (1− c0) for some positive constant c0. Defining I
the Rényi divergence of order 1/2 between two Bernoulli distributions of parameter a/n
and b/n respectively, i.e.

I = D1/2

(
Ber

(
a

n

) ∥∥∥∥Ber
(
b

n

))
= −2 log

√a

n

b

n
+
√

1− a

n

√
1− b

n

 ,
their main result is as follows.

Theorem 1.4.1 (Zhang and Zhou (2016)). Assume nI/(Q logQ)→∞, then

inf
ẑ

sup
Θ(n,Q,a,b,β)

E[r(z, ẑ)] =
 exp

(
−(1 + o(1))nI2

)
if Q = 2

exp
(
−(1 + o(1)) nI

βQ

)
if Q ≥ 3

where 1+εn ≤ β ≤
√

5/3 for some εn = CQ/n with constant C large enough. In addition,
if nI/Q = O(1), there are at least a constant proportion of nodes mis-clustered, that is,
inf ẑ supΘ(n,Q,a,b,β) E[r(z, ẑ)] ≥ c, for some constant c > 0.

They then derive thresholds on parameters to distinguish settings for which strong
consistency (when the minimax rate is o(1/n)) or weak consistency (when the minimax
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rate is o(1)) can be attained. They give a penalised likelihood procedure that achieves
the minimax bound, which is however not tractable. Gao et al. (2017a) proposed an
algorithm of community detection that achieves this optimal misclassification proportion
under some regularity conditions, and that computes in polynomial time. This algorithm
consists of applying an existing community detection algorithm that satisfies a certain
weak consistency condition (for example spectral clustering) and then refining the result
by optimising a local penalised likelihood for each node separately.

Resolution limit in the planted partition In the case of the affiliation model, it is
obvious that the more the between-groups and the within-group connection probabilities
are close, the more difficult it is to recover the clustering. Many results have been
obtained on this, in particular in the case of planted partition, i.e. with two balanced
groups, and with the within-group connection probability larger than the between-groups
one. For example a conjecture by Decelle et al. (2011) which was proved later (see Mossel
et al. (2012, 2015); Massoulié (2014); Mossel et al. (2018)) gives conditions for weak
recovery (or detection, meaning that the obtained partition of the nodes is positively
correlated with the true partition with probability converging to one as the number of
nodes increases). When πin = a/n and πout = b/n with a and b constants (in a sparse
case), it states that

• If (a − b)2 > 2(a + b), it is possible to cluster in a way correlated with the true
partition.

• If (a− b)2 < 2(a+ b), it is impossible to cluster in a way correlated with the true
partition.

Abbe et al. (2016) obtained threshold for exact recovery (i.e. zero misclassification
proportion with probability converging to one as the number of nodes increases). More
precisely, if πin = a log(n)/n and πout = b log(n)/n, then

• If (a+ b/2)−
√
ab > 1, it is possible to recover the true partition with probability

tending to one

• If (a+ b/2)−
√
ab < 1, it is possible to recover the true partition with probability

tending to one.

For more details, see for example Abbe (2018).
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Some other results Regarding the spectral clustering method (and particularly the
absolute spectral clustering), Rohe et al. (2011) give asymptotic results on the normalised
graph Laplacian and its eigenvectors, allowing the number of clusters to grow with
the number of nodes. They also provide bounds on the number of misclustered nodes,
requiring an assumption on the degree distribution. Lei and Rinaldo (2015) prove
consistency for the recovery of communities in the spectral clustering on the adjacency
matrix, with milder conditions on the degrees, and also extend this result to degree
corrected stochastic block models.

We recall that Bickel and Chen (2009) gave conditions on the modularity under which
it allows to recover the communities with probability tending to one (exact recovery).
Zhao et al. (2011) propose a method to "extract" communities one at a time and obtain
the consistency (exact recovery) of their procedure under certain conditions. Zhao et al.
(2012) introduce a framework for studying the consistency of community detection under
the degree-corrected SBM based on different criteria (generalising Bickel and Chen
(2009)).

1.5 Time-evolving networks

The first part of this work is devoted to dynamic (or time-evolving) networks, where the
role or behaviour of the nodes in the network and the relationships between them are
allowed to change over time. See Holme (2015) for an introduction to dynamic networks.
These types of networks arise in many domains. Some obvious examples of dynamic
networks are human contacts or proximity networks (obtained by recording when two
people are close to each other) (Barrat and Cattuto, 2013), communication networks (such
as e-mails or phone calls between people) (Saramäki and Moro, 2015; Ebel et al., 2002)
or social networks (such as friendship networks). Another example is the transportation
networks (for instance based on airlines connection or public transportation). Such
networks also arise in neuroscience (for example networks representing the temporal
correlations between brain regions based on functional magnetic resonance imaging
(fMRI) data) (Sizemore and Bassett, 2018) or more generally in biology.

Such types of networks have been widely studied and can take many different forms.
For example, we can consider discrete or continuous time, the interactions can be
instantaneous or have a duration, we can assume that the nodes are present the entire
observation time (and only the edges are evolving) or not, etc. We describe such networks
in the following, distinguishing two main types, discrete-time (which will be our interest
in this work) and continuous-time networks. We also present briefly some existing models
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Fig. 1.6 Representation of a discrete-time dynamic network: in this network, the edges
change over time and nodes can enter or exit the network

for dynamic networks. The model we are interested in, that is a discrete dynamic version
of the SBM, will be described in Section 1.6, and some more discrete dynamic graph
models based on the (static) SBM are presented in the introduction of Chapter 2. One
can also refer to Kim et al. (2018) for a review of latent variables dynamic network
models.

1.5.1 Discrete-time dynamic networks

A possibility when studying dynamic networks is to work in discrete time, i.e. to look at
snapshots, or aggregated relational data over time ranges, in order to get a sequence of
graphs. The data can be aggregated by splitting the observation period into T intervals
and considering that an edge is present in the interval t ∈ J1, T K if it is present at any
time in this interval to obtain a sequence of binary graphs. We can also consider a
sequence of weighted graphs by doing as follows. In the case of instantaneous interactions
between nodes, the edge between two nodes in the interval t ∈ J1, T K can represent the
number of interactions observed in this interval. In the case of interactions of variable
lengths, the edge between two nodes in the interval t ∈ J1, T K can represent the time of
the interaction observed in this interval. Aggregating data obviously leads to a loss of
information, and is not adapted to any kind of network.

An adapted representation of discrete-time dynamic networks is a sequence of graphs,
as in Figure 1.6. See also Figure 1.7 for some representations of real world dynamic
networks.

It is obviously important to take into account the evolutionary behaviour of the
graphs, instead of just studying separate snapshots as unique graphs, the graphs being
dependent over time.

A lot of models for discrete-time dynamic networks have been introduced. A common
approach is to define dynamic extensions of existing (static) models. As mentioned before,
discrete dynamic graph models based on the (static) SBM are introduced in Section 1.6
and in the introduction of Chapter 2. Note that some variants of the static SBM have also
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(a)

(b)

(c)

Fig. 1.7 Three discrete representations of dynamic networks: network (a) is from Sizemore
and Bassett (2018) and networks (b) and (c) are from Lee et al. (2020). (a) represents
functional connectivity between brain regions based on functional magnetic resonance
imaging (fMRI) data (collected while the individual was learning to play a sequence of
finger movements), (b) represents yearly international trade networks at four different
years, and (c) represents yearly collaboration networks at a large research university at
four different years. Note that the colors of the nodes in these graphs represent groups
of nodes, which is not our interest for the moment.
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been extended to the dynamic case, for example the MMSBM (see for instance Xing et al.
(2010)). Such models can be used for node clustering, as their static versions. Extensions
of the ERGM have also been introduced for dynamic networks. For example, Hanneke and
Xing (2007); Hanneke et al. (2010) introduce the Temporal Exponential Random Graph
Model (TERGM), for the purposes of studying social network evolution. In the TERGM,
a Markov assumption is made on the evolution of the network, assuming that the graph
at time t given the graph at time t − 1 follows an ERGM, the statistic S(X t, X t−1)
involving X t and X t−1, the adjacency matrices at times t and t − 1. The statistics
involving both X t and X t−1 can include stability15, reciprocity16 or transitivity17, these
measures being particularly relevant in the context of social networks. See also Krivitsky
and Handcock (2014), who introduced the Separable Temporal Exponential Random
Graph Model (STERGM), adding an assumption of separability between the formation
and duration of edges, obtaining a more convenient model. These models can be used
for clustering (for example Lee et al. (2020) introduce a model-based clustering method
for time-evolving networks based on a finite mixture of discrete time exponential-family
random graph models).

Dynamic extensions of the LPM have also been introduced (Sarkar and Moore, 2006;
Sewell and Chen, 2015; Friel et al., 2016; Sewell and Chen, 2016). For example, the
model of Sarkar and Moore (2006) assumes that the nodes can move in the latent space
between two time steps, with a Markov assumption on the movement of the nodes, and
assuming that the observed graphs are independent given the locations of the nodes.
Friel et al. (2016) introduce a model for the analysis of bipartite networks, extending
the model of Sarkar and Moore (2006) by adding temporal evolution through Markovian
dependence on the model parameters and on the edges (the edges are not conditionally
independent anymore). Sewell and Chen (2016) extends the LPM for dynamic weighted
graphs.

Note that the preferential attachment models (see Section 1.3.3) such as the Barabási–
Albert model are generative discrete-time graph models, with a graph growing at each
step of the algorithm.

15the tendency of an edge to stay present or absent between the two time steps
16the tendency of an edge from i to j to result in an edge from j to i at the next time step
17the tendency of an edge from i to j and from j to k to result in an edge from i to k at the next

time step
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Fig. 1.8 Representation of two types of continuous time dynamic networks: (a) represents
instantaneous contacts between the nodes and (b) represents a network in which edges
are added (red lines) or suppressed (dotted lines) at time points t1, . . . , t5 ∈ R.

1.5.2 Continuous-time dynamic networks

We talked in the previous section about discrete-time graphs. They can be used to
describe temporal evolution in graphs with low temporal resolution. However they may
not be adapted to networks with high temporal resolution, such as e-mail networks.

There are different kinds of continuous-time dynamic graphs. For example, if we
consider data of e-mails being sent between individuals, the interactions are instantaneous
and can occur at any time. Another example would be phone calls between individuals,
in which the interactions can occur at any time and have a continuous-time duration.
The dynamics of the graph can also be defined by the addition or suppression of edges at
time points. Different representations of such graphs can be used, depending on their
form (see for example Figure 1.8).

A formalism has been introduced by Latapy et al. (2018) to represent and analyse
continuous dynamic networks, defining the notions of stream graphs and link streams. A
stream graph is defined by S = (T, V,W,E) with V a finite set of nodes, T a set of time
instants, W ⊆ T × V a set of temporal nodes (indicating the presence of the nodes over
time) and E ⊆ T × V ⊗ V a set of links (a link being allowed to be present only if the
two involved nodes are present). In the case where all nodes are present all the time (i.e.
there is no dynamics on nodes, but only on edges), then S is called a link stream and is
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Fig. 1.9 A stream graph on the left, and a link stream on the right, both with 4 nodes
{a, b, c, d} (picture from Latapy et al. (2018))

denoted by L = (T, V,E). See Figure 1.9 for a representation of these definitions (from
Latapy et al. (2018)).

Number of models in that context are based on stochastic point processes. The use of
such methods go way back in the analysis of dynamic networks, as Holland and Leinhardt
(1977) introduced a continuous time Markov process to model changes in social relations
(see also Wasserman (1980)). More recently, the stochastic actor-oriented model has been
introduced by Snijders (1996, 2001), in which opportunities of a single edge modification
happen, the time between two opportunities following an exponential distribution and
one of the two nodes or the two nodes (called actors) involved have the "choice" (hence
the name actor-oriented) of modifying or not the edge. Some approaches are based on
doubly stochastic Poisson processes which are Poisson processes with random intensities
(Butts, 2008). In particular, extensions of the SBM for interactions in continuous time
based on such processes have been introduced (DuBois et al., 2013; Corneli et al., 2016;
Matias et al., 2018). In such models, the interactions between two nodes given their latent
groups follow an inhomogeneous Poisson process with intensity depending on the groups.
Self-exciting Hawkes processes have been used (Blundell et al., 2012; Masuda et al.,
2013; Junuthula et al., 2019), for which occurrence of events increases the probability
of additional events in the future and then leading to some "concentration" of events in
time, which is observed in some types of real-world networks.

See also Durante et al. (2016) who extend the LPM for continuous-time evolving
networks.
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1.6 Dynamic SBM with Markov membership evo-
lution

In this work, we study the dynamic SBM as described in Yang et al. (2011) and Matias
and Miele (2017), based on Markov chains modeling the temporal evolution of the group
memberships over time, and on the (static) SBM.

More precisely, we consider a set of n vertices, split into Q latent classes, with Zt
i

the label of the i-th vertex at time t. Letting Zi = (Z1
i , . . . , Z

T
i ), the {Zi}1≤i≤n are

independent and identically distributed and each Zi is a homogeneous aperiodic and
stationary Markov chain with transition matrix Γ = (γql)1≤q,l≤Q.

At each time t, we observe a binary graph of adjacency matrix X t = {X t
ij}1≤i,j≤n,

following a stochastic block model so that, conditional on the latent groups {Zt
i}1≤i≤n,

the {X t
ij}1≤i,j≤n are independent Bernoulli random variables , i.e.

X t
ij | Zt

i = q, Zt
j = l ∼ B(πtql)

where (πtql)1≤q,l≤Q,1≤t≤T ∈ [0, 1]Q2T are the connectivity parameters. The model is thus
parameterised by θ = (Γ, π), with Γ = (γql)1≤q,l≤Q and π = (πt)1≤t≤T with πt =
(πtql)1≤q,l≤Q. Note that we will consider both this model and the one where the connection
probability parameter is fixed over time, i.e. where for every t, t′ ∈ J1, T K, we have
πt = πt

′ := π (this is the model in Yang et al. (2011)) See Figure 1.10 for a representation
of the temporal evolution in the model.

Note that we will assume that each Markov chain starts from an initial distribution
α = (α1, . . . , αQ), that is its stationary distribution.

1.6.1 Label switching and identifiability in the dynamic SBM

An important issue arising when considering multiple graphs separately is label switching.
Indeed, for the classical (static) SBM, identifiability can only be obtained up to label
switching. This is not surprising, as this just means that the name or number attributed
to each group is arbitrary and have no relevance. Then, when considering multiple
graphs without any assumptions on their dependency, one may identify groups and/or
connection and class membership parameters for each graph, but there is no simple way
to identify the different groups across time or space. Some results have been obtained for
the previously introduced dynamic SBM with Markov membership evolution (Matias and
Miele, 2017; Becker and Holzmann, 2018). First, note that as mentioned in Matias and
Miele (2017), imposing a Markov structure on the nodes labels is not sufficient to be able
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Fig. 1.10 Temporal evolution of the dynamic SBM. Γ is the transition matrix of the
Markov chains (each Markov chain models the evolution of the group membership of a
single node) and π is the connection probability matrix of the SBM.

to identify the parameters and some constraints have to be imposed on the parameters
too. To give some intuition about this, see Figure 1.11 inspired from Matias and Miele
(2017). This is a toy example, representing a stochastic block model at two time steps
and composed of three groups, that are are a hub (node 6), peripheral nodes (nodes 7 to
10 at time t and nodes 1 to 5 at time t+ 1), and a community (nodes 1 to 5 at time t
and nodes 7 to 10 at time t+ 1). Recall that we do not observe the groups, represented
by the different colours in the figure. Two interpretations of this evolution could be done
in the context of clustering with Q = 3 groups, leading to very different parameters
for the dynamic SBM. The first one, at the top of Figure 1.11, is to consider that the
groups are stable (i.e. that the nodes stayed in their original group), but the connection
behaviour of these groups changed between the two time steps, the purple group going
from a community behaviour to a peripheral one, and the green one, inversely, going from
a peripheral behaviour to a community one. The second interpretation, at the bottom of
Figure 1.11, is to consider that the three groups have a stable connectivity behaviour
(the purple one being a community, the yellow one a hub, and the green one peripheral
nodes), and that the nodes 1 to 5 changed groups from the purple one to the green one,
and inversely the nodes 7 to 10 changed groups from the green one to the purple one
(while node 6 stayed in the yellow group). The first interpretation corresponds to the
case where the connectivity parameter π is very different between the two time steps
(leading to groups behaving differently between these two time steps) and the transition
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Fig. 1.11 Illustration of the label switching, graphs at time t (left) and t+ 1 (right)

matrix has large diagonal elements (leading to nodes staying in the same group with high
probability). The second one corresponds to the case where the connectivity parameter
is similar between two time steps (leading to a similar connection behaviour for each
groups between these two time steps) and the transition matrix has high values for the
transition from the purple to the green group and inversely (leading to nodes going from
the purple to green group, and inversely). For the estimation to be feasible, Matias and
Miele (2017) choose the second interpretation by imposing some constraint of stability
over time to the connectivity parameter (this is also the choice made in Becker and
Holzmann (2018)), and point out that this is a suitable choice for the analysis of social
networks or contact data.

Identifiability in this dynamic SBM has been studied both for the binary and weighted
graphs, but we focus here on the binary case. In Matias and Miele (2017), they obtain
that the model is generically identifiable (up to global label switching, i.e. with the
same permutation acting on the groups for every time step) from the distribution of
the observed graphs, for n large enough, under the assumption that the within-group
connectivity parameters are stable over time, i.e. that for every t, t′ ∈ J1, T K and every
q ∈ J1, QK, we have πtqq = πt

′
qq := πqq. Their identifiability result is generic, and the

generic part concerns only the connectivity parameter π. This generic constraint arises
in the proof of Theorem 2 in Allman et al. (2011) which requires among others in the
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static case that the connection probabilities (πqq′)1≤q≤q′≤Q are distinct. This assumption
may not be necessary, however there are supplementary necessary assumptions to impose
as without further assumptions, some cases may lead to non identifiability. We can refer
to Matias and Miele (2017) for some intuition on the non identifiability in the affiliation
case, and empirical evidence for the label switching between time steps.

We formulate and prove in the following two results, of non identifiability in a
particular case, and of a necessary condition for the identifiability of the parameter.

Proposition 1.6.1. If the parameter (Γ, π1:T ) of a dynamic SBM is such that there
exists 1 ≤ q1 ̸= q2 ≤ Q such that

• γq1q1 = γq2q2 and γq1q2 = γq2q1,

• (γq1q)q∈J1,QK\{q1,q2} = (γq2q)q∈J1,QK\{q1,q2} and (γqq1)q∈J1,QK\{q1,q2} = (γqq2)q∈J1,QK\{q1,q2},

• πq1q1 = πq2q2,

then it cannot be identified (up to global label switching).

Proof. To prove that the parameter cannot be identified, we exhibit a different parameter
(different up to global label switching) leading to the same distribution for X1:L. For
any parameter (Γ, π1:T ), we define a parameter (Γ̃, π̃1:T ) such that π̃t = πt if t is odd
and π̃t = (πtσ(q)σ(q′))1≤q,q′≤Q if t is even with σ the permutation on J1, QK permuting q1

and q2 only18, and such that γ̃q1q1 = γ̃q2q2 = γq1q2 , γ̃q1q2 = γ̃q2q1 = γq1q1 , and γ̃qq′ = γqq′ if
q /∈ {q1, q2} or q′ /∈ {q1, q2}. Let us also denote z̃1:T the transformation of any configuration
z1:T such that z̃t = zt at odd t values and z̃t := (z̃t1, . . . , z̃tn) = (σ(zt1), . . . , σ(ztn)) at even t
values. The proof that (Γ, π1:T ) and (Γ̃, π̃1:T ) induce the same distribution on X1:T then
relies on the fact that for any t ∈ J1, T K and i ∈ J1, nK, γzt

iz
t+1
i

= γ̃z̃t
i z̃

t+1
i

, and αz̃1
i

= αz1
i
. We

should also note that α is also the stationary distribution of the Markov chain of transition
matrix Γ̃. Indeed, the assumptions on Γ implies that αq1 = αq2 . To see this, notice that
for any transition matrix P with stationary distribution p = (p1, . . . , pQ), permuting the
rows q1 and q2 and the columns q1 and q2 of P is equivalent to a relabeling of the states
(by permuting states q1 and q2) and then the corresponding stationary distribution is
the same distribution p with permuted coordinates q1 and q2, i.e. (pσ(1),...,σ(Q))19. Then
noticing that with our assumptions, Γσ := (γσ(q)σ(q′))1≤q,q′≤Q = Γ, we have the equality of
the stationary distributions (α1, . . . , αQ) = (ασ(1), . . . , ασ(Q)), i.e. αq1 = αq2 . Then it is
easily seen that α is also the stationary distribution of Γ̃20.

18i.e. σ(q1) = q2, σ(q2) = q1 and σ(q) = q for every q ∈ J1, QK \ {q1, q2}
19This can easily be written formally with the property pP = p of the stationary distribution.
20by noticing that αΓ = α implies αΓ̃ = α
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We can then write the probability distribution of X1:T under the parameter (Γ, π) as
follows

Pθ(X1:T ) =
∑

z1:T ∈J1,QKnT

T∏
t=1

∏
1≤i<j≤n

(πtzt
iz

t
j
)Xt

ij (1− πtzt
iz

t
j
)1−Xt

ij

n∏
i=1

αz1
i

T−1∏
t=1

γzt
iz

t+1
i

=
∑

z1:T ∈J1,QKnT

T∏
t=1

∏
1≤i<j≤n

(π̃tz̃t
i z̃

t
j
)Xt

ij (1− π̃tz̃t
i z̃

t
j
)1−Xt

ij

n∏
i=1

αz̃1
i

T−1∏
t=1

γ̃z̃t
i z̃

t+1
i

=
∑

z1:T ∈J1,QKnT

T∏
t=1

∏
1≤i<j≤n

(π̃tzt
iz

t
j
)Xt

ij (1− π̃tzt
iz

t
j
)1−Xt

ij

n∏
i=1

αz1
i

T−1∏
t=1

γ̃zt
iz

t+1
i
,

the last inequality being true because it is equivalent to sum over the z1:T in J1, QKnT

or over the z̃1:T in J1, QKnT . This proves that the parameter (Γ̃, π̃) leads to the same
distribution of X1:T , even though it is not equal to (Γ, π) up to global label switching of
the groups.

For the case where the connectivity parameter is fixed over time (πt = π), it is
necessary (as it is well known in the static case) that there are no two equal rows
in the connectivity matrix in order to distinguish the groups. Indeed, if it is not
satisfied, i.e. ∃q1 ̸= q2 ∈ J1, QK such that πq1� = πq2� (where πq� denotes the qth row
of π for any q ∈ J1, QK), we can prove that for example, the parameter (Γσ, π) with
Γσ := (γσ(q)σ(q′))1≤q,q′≤Q (where σ is the permutation on J1, QK permuting q1 and q2 only)
leads to the same distribution for X1:T than (Γ, π)21.

In the case where the connectivity parameter varies over time, however, it may not
be necessary that the matrix πt has all its rows distinct for every t. Indeed, it may be
possible to identify the different groups even if some groups have the same behaviour at
some (but not all) time steps, thanks to the transition matrix that is homogeneous over
time. We formulate nonetheless a necessary assumption on this parameter.

Proposition 1.6.2. In the dynamic SBM with varying connectivity parameter, it is
necessary that ∀q ̸= q′ ∈ J1, QK, ∃t ∈ J1, T K such that πtq� ≠ πtq′� for the parameters (Γ, π)
to be identifiable, where πtq� = (πtqq′)1≤q′≤Q.

Proof. If the assumption is not satisfied, i.e. ∃q1 ̸= q2 ∈ J1, QK such that ∀t ∈ J1, T K,
πtq1� = πtq2� (implying that πt�q1 = πt�q2 , where πt�q denotes the qth column of πt for any
q ∈ J1, QK), we cannot differentiate groups q1 and q2, these groups having the same
connection behaviour. We can exhibit a specific parameter different from the true

21The proof is similar to that of Proposition 1.6.2 below.
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parameter (up to global label switching) that leads to the same distribution of X1:T .
Indeed, we have, denoting by σ the permutation on J1, QK permuting only q1 and q2, that
πσ := (πσ(q)σ(q′)) = π. Then, the distribution of X1:T under the true parameter (Γ, π) can
be written as

Pθ(X1:T ) =
∑

z1:T ∈J1,QKnT

T∏
t=1

∏
1≤i<j≤n

(πtσ(zt
i )σ(zt

j))X
t
ij (1− πtσ(zt

i )σ(zt
j))1−Xt

ij
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i
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γzt
iz
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i
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j
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ασ(z1
i )

T−1∏
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γσ(zt
i )σ(zt+1

i ),

noticing that it is equivalent to sum over the z1:T in J1, QKnT or over the σ(z) =
(σ(zti))1≤i≤n,1≤t≤T in J1, QKnT . Noticing that (ασ(1), . . . , ασ(Q)) is the stationary distribu-
tion associated with the transition matrix Γσ := (γσ(q)σ(q′))1≤q,q′≤Q, this proves that the
parameter (Γσ, π) leads to the same distribution of X1:T .

1.6.2 Estimation

As for the static SBM, we cannot compute the MLE except for very small values of n
and T , and we neither can use the Expectation-Maximisation (EM) algorithm because it
involves the computation of the intractable conditional distribution of the latent variables
given the observations. Estimation can then be performed thanks to a VEM algorithm
in that case too. The distribution of the latent variables given the observations is then
replaced by a distribution that is factorised over the nodes (but not over time) (see
Matias and Miele (2017)).

Let us denote Zt
iq = 1Zt

i =q for every t, i and q. Using the same approach as in
Matias and Miele (2017) for the VEM algorithm in the dynamic SBM, we consider a
variational approximation of the conditional distribution of the latent variable Z1:T given
the observed variable X1:T in the class of probability distributions parameterised by
χ = (τ, η) =

(
{τ tiq}t,i,q, {ηtiql}t,i,q,l

)
of the form

Qχ(Z1:T ) =
n∏
i=1

Qχ(Z1
i )

T∏
t=2

Qχ(Zt
i | Zt−1

i ) =
n∏
i=1


 Q∏
q=1

(τ 1
iq)Z

1
iq

 T−1∏
t=1

∏
1≤q,l≤Q

(
ηtiql
τ tiq

)Zt
iqZ

t+1
il

 ,
i.e. with Qχ such that EQχ

[
Zt
iqZ

t+1
il

]
= ηtiql and EQχ

[
Zt
iq

]
= τ tiq. The quantity to optimise

in the VEM algorithm is then

J (χ, θ) = ℓ(θ)−KL(Qχ,Pθ(·|X1:T )) = EQχ

[
logPθ(X1:T , Z1:T )

]
+H(Qχ),
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with ℓ(θ) the log-likelihood.

1.6.3 Contributions in the dynamic SBM

In Chapter 2, we study the consistency of the maximum likelihood and variational
estimators in the model described above. We prove the consistency (as the number of
nodes and time steps increase) of the maximum likelihood and variational estimators of
the model parameters, and obtain upper bounds on the rates of convergence of these
estimators. We also explore the particular case where the number of time steps is fixed
and connectivity parameters are allowed to vary. The assumption we make are that there
are no two equal rows in the connection probability matrix22 (that there are no two equal
rows in any connection probability matrices for the finite time case), that the transition
and connection probabilities are bounded away from 0 and 1 (excluding the sparse case),
and for the finite time case, that the diagonal of the connection probability matrix is
fixed over time and that its values are distinct.

The consistency of the transition matrix estimators requires an additional assumption
that the connection parameter estimator converges at a rate that is o(

√
log(nT )/n),

which we did not prove. Indeed, we only proved that the rate is faster than rn,T/n1/4 with
{rn,T}n,T≥1 any sequence increasing to infinity. This is however a reasonable assumption,
based on the convergence rates obtained in Bickel et al. (2013) for the estimators in
the case of the static SBM, as they obtain a rate of n−1 in a non sparse case (when
ρ := P(Xij = 1) is constant) for the connection parameter estimator.

Chapter 2 is the reproduction of the article "Consistency of the maximum likelihood
and variational estimators in a dynamic stochastic block model" published in Electronic
Journal of Statistics (Longepierre and Matias, 2019).

1.7 Markov Random Fields (MRF)

The second part of this work, considering space-evolving networks, relies on Markov
random fields. We will then give some definitions and results in this section. For a
detailed introduction to Markov random fields (MRF), see for example Brémaud (2013) or
Stoehr (2017). A MRF is a set of random variables having a Markov property described
by an undirected graph. This is used in various fields like ferromagnetism, image analysis,
epidemiology or geography.

22which is a necessary assumption for the classical SBM
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1.7.1 Definition

Consider an undirected graph G = (V,E) and a set of random variables Z = (Z l)l∈V :=
Z1:L indexed by V = {1, . . . , L} (the elements of V being called locations or sites) and
each Z l taking their values in a finite space Λl. Two locations forming an edge in G are
said to be neighbours. Let us introduce some notation. For a subset A of V , let us denote
by ZA the set of random variables on A, and identically for any configuration z (realisation
of the random variable Z) by zA the restriction of this configuration to A. Let us denote
by −A the complement of A in V . Then, for any location l, we denote by Z−l the set of
random variables at every location but l, i.e. Z−l = {Z1, . . . , Z l−1, Z l+1, . . . , ZL}, and
identically z−l = {z1, . . . , zl−1, zl+1, . . . , zL}. We define N (l) the neighbourhood of a
location l as the set of locations that are adjacent to l in the graph G, i.e. the set of
neighbours of l in G.

The set Z of random variables forms a Markov random field with respect to G if it
satisfies the following (local) Markov property:

For any configuration z = (zl)l∈V and any location l,

P(Z l = zl | Z−l = z−l) = P(Z l = zl | ZN (l) = zN (l)).

This means that the distribution of the random variable at a location l is independent
of other locations conditional on the random variables at the neighbouring locations.
Markov random fields have been especially studied with regular graphs G, such as lattices,
for example for image analysis or in ferromagnetism with the well known Ising model
(modeling interacting spins).

At this point, a Markov random field is then described only by the different condi-
tional probabilities at each location given their neighbours, which is not convenient to
manipulate, and may not even imply the existence of a joint probability distribution. A
fundamental result for MRF is the Hammersley-Clifford theorem, which states that the
joint distribution of a MRF is factorised over the set of cliques of G, when P(Z = z) > 0
for every configuration z (see for example Besag (1974) or Clifford (1990)). More precisely,
it states that under this positivity condition (i.e. if P(Z = z) > 0 for every z), the
Markov random field Z introduced before follows a Gibbs distribution of the form

Pψ,G(Z = z) = 1
S(ψ,G) exp [−H(z, ψ,G)] (1.7.1)
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for some parameter ψ and some energy function H which decomposes into potential
functions Vc associated to each clique c ∈ C (defining C the set of cliques of G)

H(z, ψ,G) =
∑
c∈C

Vc(zc, ψ)

and with S(ψ,G) a normalising constant (also called partition function). In the following,
for simplicity of notation, we will drop G from the notation, since there will be no
ambiguity.

Note that reciprocally, if Z1:L follows a Gibbs distribution with potential functions
{Vc}c∈C relative to a neighbourhood system G23, then Z1:L is a Markov random field with
the neighbourhood graph G. Moreover, its local specification is given by the formula

Pψ,G(Z l = zl | ZN (l) = zN (l)) =
exp

(
−∑c∈C;l∈c Vc(zc, ψ)

)
∑
λ∈Λl

exp
(
−∑c∈C;l∈c Vc(zc(l,λ), ψ)

)
where z(l,λ) = (zl′(l,λ))l′∈V is defined as the configuration such that zl(l,λ) = λ and zl′(l,λ) = zl

′

for l′ ̸= l, and with ∑
c∈C;l∈c the summation over the cliques of G containing l. Unlike

the Hammersley-Clifford theorem, this result is quite straightforward (see for example
Theorem 2.1 in Brémaud (2013)).

1.7.2 Autologistic model and Potts model

We present two classical MRF models that are the autologistic model (for binary data)
and the Potts model (with variables taking their values in a finite set). We will focus
in this work on the Potts model. These models have been used for instance in image
analysis, solid-state physics and ferromagnetism.

We saw earlier with the Hammersley-Clifford theorem that under the positivity
condition, the joint distribution of a MRF is a Gibbs distribution which factorises over
cliques, decomposing into potential functions. We may assume that it is not necessary to
consider the potentials on large cliques to correctly model the spatial dependency. Then,
in the autologistic model introduced by Besag (1972) for binary data, we only consider
the cliques of one and two nodes, i.e. potentials at one location, and interactions between
two locations, and the potential functions associated with larger cliques are set to zero.

23i.e. such that C is the set of cliques of G
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The energy function then writes

H(z, ψ,G) =
∑
l∈V

Vl(zl, α) +
∑

(l,l′)∈E
Vll′(zl, zl

′
, β),

with α the parameter on locations and β the parameter on pairs of neighbours, the
parameter of this model being ψ = (α, β). Note that ∑(l,l′)∈E is the sum over the edges
of the undirected graph G, and we consider each edge only once, i.e. as (l′, l) is the same
edge as (l, l′) for any l, l′ ∈ J1, LK, we do not consider both (l, l′) and (l′, l).

More precisely, the energy function in the autologistic model can be written as

H(z, ψ,G) = α
∑
l∈V

zl +
∑

(l,l′)∈E
βll′z

lzl
′
.

where originally zl ∈ {0, 1} for every l ∈ V . However, nowadays we preferably use
this model with zl taking their values in {−1, 1} instead of {0, 1}. As mentioned in
Pettitt et al. (2003), this parameterisation has the advantage of avoiding problems of
non-invariance when states 0 and 1 are interchanged. In particular, the widely used
Ising model (Ising, 1925) is an autologistic model with the random variables zl taking
their values in {−1, 1}. With this formulation, the autologistic model is a particular case
(when Q = 2) of the Potts model introduced right after.

Potts model In the Potts model (Potts, 1952), contrary to the autologistic model, the
variables of the random field take their values in a finite set {1, . . . , Q}, and the energy
function can be written as follows

H(z, ψ,G) =
Q∑
q=1

αq
∑
l∈V

1zl=q + β
∑

(l,l′)∈E
1zl=zl′ . (1.7.2)

Note that a more general version of this model exists, when the parameter α (respectively
β) can have different values at different locations (respectively at different pairs of
neighbour locations), i.e.

H(z, ψ,G) =
Q∑
q=1

∑
l∈V

αlq1zl=q +
∑

(l,l′)∈E
βll

′
1zl=zl′ .

However, in this version of the model, the number of parameters is at least of the order
of the number of random variables L. In this work, we will then consider the definition
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of the Potts model in (1.7.2), as we will be interested in parameter estimation (based on
a single realisation of a Potts model).

The parameter α = (αq)1≤q≤Q is the parameter of the external field, i.e. the latent
variables are more likely to take values associated with large values of the parameter α.
In particular, if αq = 0 for all q ∈ J1, QK, all the Q states are equally probable (a priori).
The parameter β determines the strength of interaction between two neighbour locations.
If β is positive, the model encourages latent variables at neighbour locations to have
the same value, and on the contrary, a negative β encourages the random variables at
neighbour locations to have different values.

A constraint can be imposed on the external field parameter for identifiability purposes,
since adding the same constant to each component of α leads to the same distribution.
Then, one could for example impose that ∑Q

q=1 αq = 0. We will give more details about
identifiability of the Potts model in Section 3.3.

Note that for any l, the conditional probability of Z l given the value z̃−l (or identically
given the values z̃N (l) of its neighbours) simply writes as follow

Pψ(Z l | Z−l = z̃−l) = Pψ(Z l | ZN (l) = z̃N (l)) =
exp

(
αZl + β

∑
l′∈N (l) 1Zl=z̃l′

)
∑Q
q=1 exp(αq + β

∑
l′∈N (l) 1q=z̃l′ )

. (1.7.3)

This quantity can be computed easily.

1.7.3 Strength of interaction and phase transition

The parameter β of the Potts model controls the strength of association between neighbour
locations. If β is equal to 0, the locations are independent, and the bigger the β, the
higher the probability that the variables at neighbour locations are equal. A particularity
of the Potts model is that it exhibits a phenomenon known as phase transition (between
a disordered phase and an ordered phase), if β becomes "too" large (exceeds a critical
value), large parts of the random field (if not the whole field) are equal to the same
value. This phenomenon has been widely studied (in physics for example). In particular,
critical values for β have been obtained on lattices for Ising and Potts models. Note that
these critical values depend on the graph G and tend to increase with the number of
neighbours (degrees of the nodes). For example, the critical value is higher for a second
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First order lattice Second order lattice
Fig. 1.12 Two different location graphs, that are first order and second order lattices

order lattice24 than for a first order lattice25 (see Figure 1.12). See Figure 1.13 illustrating
the phenomenon for the Ising model on a first order lattice.

We do not give more details on phase transition here but one can refer to Georgii
(2011); Duminil-Copin (2015).

In practice, when working on synthetic data in Chapter 3 we will visually check that
we are not in a case where the strength of interaction is so strong that the configuration
is "frozen".

1.7.4 Simulation with a Gibbs sampler

An important question is the sampling from a Gibbs distribution. This is not straightfor-
ward to draw realisations of this joint distribution because of its complexity. For this task,
we can use a Gibbs sampler (Geman and Geman, 1984), which is an algorithm used to
generate realisations of a joint distribution by starting from an initial configuration and
updating the components one at a time, using the conditional probability distributions
(see Algorithm 4).

Note that this Gibbs sampler is sometimes called systematic scan (or deterministic
or sequential scan) Gibbs sampler, meaning that a fixed order is selected (in this case
1, . . . , L) and the components zl are updated in that specific order. A random scan Gibbs
sampler can also be used, in which the component to update is selected randomly (from
a uniform distribution) at each iteration.

It has been established that the Gibbs sampler converges to the wanted distribution
(Geman and Geman, 1984). However, this convergence can be slow, especially for large β

24where each location (except those on the boundary) has for neighbours the 8 closest locations
25where each location (except those on the boundary) has for neighbours the 4 closest locations
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β = −2 β = −1 β = −0.5 β = 0

β = 0.5 β = 0.8 β = 1.5 β = 2

Fig. 1.13 Ising model for different values of β, on a first order lattice, with no external
field (i.e. αiq = 0 for every i, q). The phase transition phenomenon can be observed for
large values of β, leading to large parts of the lattices with the same value. Inversely, for
negative values of β with large absolute value, neighbours tend to have different values,
leading to a check pattern.

(for example when β is above the critical value of the phase transition). Other methods
have been introduced, that can speed up the simulation, such as the modified random
scan Gibbs sampler of Liu (1996), or the Swendsen-Wang algorithm introduced by
Swendsen and Wang (1987), allowing updates of large parts of the field simultaneously,
by incorporating auxiliary "bond" variables on pair of neighbours in G.

Note that Friel and Rue (2007) proposed an exact sampling method for Markov
random fields on small enough lattices. This is based on the recursive algorithm of Reeves
and Pettitt (2004) which was introduced for the computation of the normalising constant,
and is based on an appropriate factorisation of the unnormalised joint probability (due
to the Markov property) reducing the complexity of the summation and giving an exact
computation of the normalising constant for lattices up to about 20 rows.

1.7.5 Likelihood estimation and approximations

When studying the likelihood of such a model, for example for computing maximum
likelihood estimates, one faces the problem of intractability of the normalising constant,
this constant requiring a summation over QL configuration. Some methods have been
introduced in order to circumvent this problem, mainly approximations neglecting some
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Algorithm 4: Gibbs sampler
input : A number of iterations M , a parameter ψ
output : A realisation of the random variable Z ∼ Pψ

1 Initialise an arbitrary configuration z(0) = (z(0)1, . . . , z(0)L);
2 for m = 1 to M do
3 for l = 1 to L do
4 Draw z(m)l from the conditional distribution

Pψ(Z l | z(m)1, . . . , z(m)l−1, z(m−1)l+1, . . . , z(m−1)L) (see (1.7.3));
5 end
6 end
7 return z(M)

dependencies between the random variables. We will especially be interested in mean
field and mean field like approaches.

1.7.5.1 Mean field approximation

The mean field approximation originated in statistical mechanics (see for example
Chandler (1987)) where it was used to approximate the mean of a MRF. It consists of
approximating the intractable Gibbs distribution by a simpler distribution, that can
be factorised over locations, which will resolve the intractability of the normalising
constant. This approximation consists of neglecting the fluctuations of the neighbours
of each location by setting their values to their mean values. Before writing this
approximation, let us introduce a new (equivalent) notation for the MRF Z1:L. Let us
denote Zl = (Z l

q)1≤q≤Q := (1Zl=q)1≤q≤Q ∈ [0, 1]Q for every l ∈ J1, LK and Z1:L = (Zl)1≤l≤L.
Let us also introduce an equivalent definition of the energy function in the Potts model

H(z1:L, ψ,G) =
Q∑
q=1

αq
L∑
l=1

zlq + β
∑

(l,l′)∈E

Q∑
q=1

zlqz
l′

q .

The mean-field approximation of the Gibbs distribution of Z1:L then writes as follows

PMF
ψ (Z1:L = z1:L) =

L∏
l=1

Pψ(Zl = zl | Z−l = m−l) =
L∏
l=1

Pψ(Zl = zl | ZN (l) = mN (l)),

(1.7.4)
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where m1:L = (m1, . . . ,mL)26 are the mean values of the variables Z1:L, and where

Pψ(Zl = zl | ZN (l) = mN (l)) =
exp(∑Q

q=1 αqz
l
q + β

∑
l′∈N (l)

∑Q
q=1 z

l
qm

l′
q )∑Q

q=1 exp(αq + β
∑
l′∈N (l) ml′

q )
. (1.7.5)

Now remains the question of the computation of these unknown means, which was
originally the purpose of this method. To obtain an approximation of these means
that we will denote by z̄1:L = (z̄1, . . . , z̄L), as mentioned in Celeux et al. (2003), we
rely on the self consistency condition, stating that the mean obtained based on the
mean field approximation must be equal to the mean used to define this approximation.
This means that for any location l, when fixing the other values at their mean z̄−l =
(z̄1, . . . , z̄l−1, z̄l+1, . . . , z̄L)27, the expectation of Zl = (Z l

q)1≤q≤Q must be equal to z̄l, i.e.
z̄lq = EMF

ψ [Z l
q] = Eψ[Z l

q |ZN (l) = z̄N (l)] for every q and l, i.e. z̄ must satisfy the fixed point
equation

z̄ := (z̄1, . . . , z̄L) =


Eψ[Z1 | ZN (1) = z̄N (1)]
...
Eψ[ZL | ZN (L) = z̄N (L)].

Conditions for the existence have been discussed for example in Wu and Doerschuk
(1995). When the solution exists, it can be computed iteratively.

Note that the mean-field approximation is equivalently the minimiser of the Kullback-
Leibler divergence from the true distribution over the set of probability distributions
that factorise over locations (see for example Chandler (1987); Peyrard (2001); Vignes
(2007); Blei et al. (2017)), i.e. z̄ is the minimiser of KL(Qτ ,Pθ(·)) with respect to τ ,
where Qτ is defined as the factorised (over the locations) distribution for Z1:L such that
Qτ (Z l = q) := EQτ [Z l

q] = τ lq. Indeed, we can see that computing the derivatives of
the Kullback-Leibler divergence with respect to the components of τ and setting these
derivatives equal to zero leads to the same fixed point equation as above. The mean-field
approximation of the Gibbs distribution is then a variational approximation as described
above in the VEM algorithm.

1.7.5.2 Mean field like approximation

The mean field approximation method has then been extended to mean field like ap-
proximations, in which we still neglect the fluctuations of the neighbours, their values

26with ml = (ml
1, . . . ,m

l
Q) for every l ∈ J1, LK

27with z̄l = (z̄l
q)1≤q≤Q for every l
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being fixed to a value, as in (1.7.4), but not necessarily to the mean. These values can
be the mode or a realisation of the random variable (Celeux et al., 2003). This will be
our interest in Chapter 3 where it will be described more thoroughly.

1.7.5.3 Other methods

Pseudolikelihood The first method (apart from the coding technique (Besag, 1974,
1975), that have not been used much) is the pseudolikelihood, introduced by Besag (1975),
which approximates the joint probability distribution by the product of the conditional
distributions at each location, given all the other locations (thus given the neighbours).
The pseudolikelihood is written

PL(Z1:L) =
L∏
l=1

Pψ(Z l | Z−l) =
L∏
l=1

Pψ(Z l | ZN (l)),

where each term of the product can be computed easily (see Equation (1.7.3)). An
estimator of the distribution parameter can then be obtained by maximising the pseu-
dolikelihood. Note that this is not a valid probability distribution (unless the Z ls are
independent). Contrarily to the mean field like approaches, the neighbours are not fixed
to constants, but are still random. This method is convenient because the estimator is
easy to compute, and consistency and asymptotic results have been obtained (Gidas,
1988; Comets, 1992; Guyon and Künsch, 1992), but it has been shown that it does not
always lead to good estimates, namely when the interaction is strong (see for example
Geyer (1991) and Friel and Pettitt (2004)).

Some variations of the pseudolikelihood have been introduced to tackle its issues,
such as the generalised pseudolikelihood (Huang and Ogata, 2002) or second order
pseudolikelihood (Mase, 1995). See also Huang and Ogata (1999), who carry out a single
Newton-Raphson step starting from the maximum pseudo-likehood.

Composite likelihood The composite likelihood (Lindsay, 1988) extends the pseu-
dolikelihood by approximating the joint distribution by the product of tractable joint
distributions of variables of a small number of locations. See Varin et al. (2011) for a
review of composite likelihood methods in a general context. The composite likelihood
can be defined as (Asuncion et al., 2010)

CL(Z1:L) =
M∏
m=1

Pψ(ZAm | ZBm),
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where M is an integer smaller than L and {Am}1≤m≤M and {Bm}1≤m≤M are sets of
subsets of J1, LK, such that Am ̸= ∅ and Am ∩ Bm = ∅. In particular, when M = 1,
A1 = J1, LK and B1 = ∅, this gives the likelihood and when M = L, Am = {m} and
Bm = J1, LK \ {m} (or identically Bm = N (m)) for every m ∈ J1, LK, the composite
likelihood is the pseudolikelihood. When Bm = ∅ for every m ∈ J1,MK, the composite
likelihood is a product of marginal distributions and is usually called marginal composite
likelihood. On the contrary, when for every m ∈ J1,MK, Bm = J1, LK \Am, the composite
likelihood is called conditional composite likelihood. Note that in the case of spatial lattice
processes (and a fortiori on a general spatial graph) such as the Potts model we consider,
no marginal distributions can be computed, but conditional composite likelihood can be
used (Okabayashi et al., 2011; Friel, 2012; Stoehr and Friel, 2015).

Okabayashi et al. (2011) show that composite likelihood gives better results than
the pseudolikelihood approach, but in certain situations gives less satisfying results than
maximum likelihood approximated using Markov chain Monte Carlo (MCMC) (see next
paragraph).

Markov chains Monte Carlo methods Rather than replacing the likelihood with
another tractable criterion as before, some methods have focused on the approximation
of the maximum likelihood using Markov Chain Monte Carlo methods.

For example, Younes (1988) proposes to compute an approximate maximum likelihood
estimator using a stochastic gradient algorithm. At each iteration, a small step is taken
in the direction of the approximated gradient (based on a Gibbs sampler). Geyer and
Thompson (1992) propose an algorithm to approximate the maximum likelihood based
on a direct approximation of the likelihood from a MCMC sample (using a Metropolis
algorithm or a Gibbs sampler) and its maximisation. Their procedure is iterative,
and at each step, the approximated likelihood (based on a MCMC sample from the
distribution with the current parameter) is maximised in a fixed neighbourhood of the
current parameter. This is because the approximation of the likelihood is not good for
parameters far from the one used for sampling (for a sample of reasonable size), so the
maximisation cannot be done on the whole parameter space from a sample based on a
single parameter. Descombes et al. (1999) introduce a MCMC algorithm based on the
conjugate gradient principle, introducing a heuristic criterion to define a neighbourhood
of the current parameter in which the MCMC approximation is robust.

Note that such methods may require a lot of computation time.
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Other methods Other methods have been introduced to circumvent the difficulties
caused by the intractability of the distribution. See the introduction of Chapter 3 for some
existing methods. We also talk briefly about methods based on posterior distributions
computations and not maximum likelihood, which is also problematic for the same
reasons.

1.7.6 Hidden Markov random field

In this work, we will consider hidden Markov random field, in the sense that we do not
observe the value of the Markov field, but that of a random variable X1:L = (X1, . . . , XL),
the {X l}1≤l≤L being independent given Z1:L, and X l | Z l following a distribution of a
given form, with a (usually) unknown parameter π. The conditional distribution of X1:L

given Z1:L then factorises as follows

Pπ(X1:L | Z1:L) =
L∏
l=1

Pπ(X l | Z l).

The usual stakes in this situation are the recovery of the latent variables, and the
estimation of the parameters of the Gibbs distribution, denoted by ψ, and/or of π the
parameter of the emission distribution, i.e. the distribution of X1:L given Z1:L. We
will denote by θ the whole parameter, i.e. θ = (ψ, π), where ψ = (α, β). In the case
of a hidden Markov random field, the problem of parameter estimation is even more
complicated than in the case of an observed field. We will talk about some methods, and
particularly the mean field and mean field like EM algorithm.

1.7.7 EM with mean field or mean field like approximation

In this work, the method we are interested in is the EM algorithm combined with a mean
field (Zhang, 1992) or a mean field like approximation (Celeux et al., 2003) in order to
approximate the MLE in a hidden MRF. First of all, we should point out the fact that
we cannot maximise the likelihood directly because the computation of this quantity
involves a summation over all the QL possible latent configurations, in addition to the
normalising constant of the Gibbs distribution of the latent variables being intractable.
We neither can use the EM algorithm to approximate it because the quantity to optimise
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in this algorithm

Q(θ|θ(t−1)) =Eθ(t−1)

[
logPπ

(
X1:L | Z1:L

)∣∣∣X1:L
]

+ Eθ(t−1)

[
logPψ

(
Z1:L

)∣∣∣X1:L
]

:=Q1(π|θ(t−1)) +Q2(α, β|θ(t−1)). (1.7.6)

involves the computation of the conditional distribution of the latent variables Z1:L given
the observations X1:L (appearing both in Q1 and Q2 in (1.7.6)) which is not tractable,
and of the intractable normalising constant in the distribution of Z1:L (appearing in Q2

in (1.7.6)).
The quantities Q1(π|θ(t−1)) and Q2(α, β|θ(t−1)) can be written respectively as

Q1(π|θ(t−1)) =
L∑
l=1

∑
zl

logPπ
(
X l | Z l = zl

)
Pθ(t−1)

(
Z l = zl|X1:L

)
(1.7.7)

and

Q2(α, β|θ(t−1)) =− logS(ψ) +
Q∑
q=1

αq
L∑
l=1

Pθ(t−1)

(
Z l = q

∣∣∣X1:L
)

+ β
∑

(l,l′)∈E
Pθ(t−1)

(
Z l = Z l′

∣∣∣X1:L
)
. (1.7.8)

It is important to remember that S(ψ) depends on α and β and we cannot ignore it
when maximising Q2(α, β|θ(t−1)) with respect to α and β.

A variation of the EM algorithm has then been introduced to circumvent the problems
of intractable distributions, relying on a mean field or mean field like approximation
(described in Section 1.7.5) for both the distribution of the latent variables and of the latent
variables given the observations. In such methods, at each step of the EM algorithm,
we compute the mean (or mode or we simulate a configuration) of the conditional
distribution of the latent variables given the observations. Then, in criterion (1.7.6), both
intractable distributions (of the latent variables given the observations, and of the latent
variables) are replaced by their mean field (resp. mean field like) approximations based
on this expectation (resp. mode or simulated configuration). This allows to compute the
conditional expectation and to get rid of the intractable normalising constant.

As pointed out in Celeux et al. (2003), if we want the approximate distributions (of the
latent variables, and of the latent variables given the observations) to satisfy the Bayes rule,
these two approximations must be based on the same simulated configuration (or mean
or mode). The authors mention that it is more reasonable to base the approximation on
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the conditional distribution (of the latent variables given the observations) Pθ(Z1:L |X1:L)
rather than on the distribution of the latent variables Pψ(Z1:L), as it takes the observations
directly into account. See also the appendix of Celeux et al. (2001) for reasons dissuading
from using the mean field approximation based on the distribution of Z1:L.

We present here the algorithm when using the approximation based on a simulated
configuration (that is called simulated field EM or simulated EM), but it can be defined
similarly using the mean or mode. At each step t of the algorithm, we simulate a
configuration z̃1:L from the conditional distribution of the latent variables given the
observations Pθ(t−1)(Z1:L |X1:L), under the parameter θ(t−1) = (ψ(t−1), π(t−1)) obtained
at step t − 1. This simulation can be obtained using a Gibbs sampler (Algorithm 4),
such that at each iteration m ∈ J1,MK, for each l ∈ J1, LK, z(m)l is simulated from the
distribution

Pθ(t−1)(Z l |X l, z(m)1, . . . , z(m)l−1, z(m−1)l+1, . . . , z(m−1)L)
∝Pπ(t−1)(X l | Z l)Pψ(t−1)(Z l | z(m)1, . . . , z(m)l−1, z(m−1)l+1, . . . , z(m−1)L).

Then an EM step is performed, with approximate distributions (of the latent variables,
and of the latent variables given the observations). More precisely, the distribution of
Z1:L appearing in Q2 is approximated by the following distribution

Pz̃ψ(Z1:L = z1:L) :=
L∏
l=1

Pψ(Z l = zl|Z−l = z̃−l) =
L∏
l=1

Pψ(Z l = zl|ZN (l) = z̃N (l)) (1.7.9)

where Pψ(Z l = zl | ZN (l) = z̃N (l)) is given by the formula in (1.7.3), and the distribution
of the latent variable Z1:L given the observations X1:L (that appears in the expectation
in both Q1 and Q2) is approximated by (using the Bayes formula and (1.7.9))

Pz̃θ(t−1)(Z1:L = z1:L |X1:L) =
Pπ(t−1)(X1:L | Z1:L = z1:L)Pz̃

ψ(t−1)(Z1:L = z1:L)∑
z1:L Pπ(t−1)(X1:L | Z1:L = z1:L)Pz̃

ψ(t−1)(Z1:L = z1:L)

=
L∏
l=1

Pπ(t−1)(X l | Z l = zl)Pψ(t−1)(Z l = zl | ZN (l) = z̃N (l))∑
zl Pπ(t−1)(X l | Z l = zl)Pψ(t−1)(Z l = zl | ZN (l) = z̃N (l))

=
L∏
l=1

Pθ(t−1)(Z l = zl | ZN (l) = z̃N (l), X l)

=
L∏
l=1

Pz̃θ(t−1)(Z l = zl |X l).
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Then, we perform an EM iteration using these approximate distributions. The quantities
we want to maximise are now Q̃1(π|θ(t−1)) and Q̃2(α, β|θ(t−1)), that are the approximations
(using the approximate distributions) of Q1(π|θ(t−1)) and Q2(α, β|θ(t−1)) respectively, that
are given by

Q̃1(π|θ(t−1)) =
L∑
l=1

∑
zl

logPπ
(
X l | Z l = zl

)
Pz̃θ(t−1)

(
Z l = zl|X l

)

and

Q̃2(α, β|θ(t−1)) =
L∑
l=1

∑
zl

logPψ
(
Z l = zl | ZN (l) = z̃N (l)

)
Pz̃θ(t−1)

(
Z l = zl|X l

)
.

These quantities are tractable, and we can then update the parameter by maximising
them thanks to numerical approximations if needed with respect to π and to α and β

θ(t) = (arg max
α,β

Q̃2(α, β|θ(t−1)), arg max
π

Q̃1(π|θ(t−1))).

1.7.8 Other methods

Other methods have been introduced to estimate the parameters and/or the classification
in hidden Markov random fields, that can be based for example on Monte Carlo techniques,
EM algorithm, pseudolikelihood, composite likelihood... See the introduction of Chapter 3
for the introduction to some of these methods.

1.7.9 Choice of the number of classes for hidden MRF

In the context of HMRF, the classical criteria for the choice of the number of classes
(i.e. the number of states of the latent variable Z) such as the BIC or ICL introduced in
Section 1.4.5 cannot be computed as it relies on intractable quantities (the maximised log
likelihood or maximised complete log likelihood). Some methods have been introduced
for choosing the number of classes in this context, for example by approximating these
criteria.

We will focus here on approximations of the BIC, based either on mean field like
approximations (Forbes and Peyrard, 2003) or on an approximation of the intractable
likelihood by a distribution factorising on blocks (Stoehr et al., 2016). One can also see
Stanford and Raftery (2002); Cucala and Marin (2013) and Stoehr et al. (2015).
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Approximation of the BIC using a mean field-like approximation Forbes and
Peyrard (2003) proposed to estimate the BIC of Schwarz et al. (1978) using the mean
field like approximation.

Let us denote by z̃1:L and θ̃ respectively the outputted configuration and estimator
of θ (i.e. the approximation of the MLE) obtained from the mean-field like (more
specifically simulated) EM algorithm. An approximation of the BIC under the mean
field-like approximation based on these quantities is

BICz̃1:L(θ̃) = 2 logPz̃,θ̃(X1:L)− d log n

with d the number of free parameters in the model, and with the distribution of the
observations under the mean-field like approximation and the approximation of the MLE

Pz̃,θ̃(X1:L) =
∑
z1:L

Pz̃,θ̃(X1:L | z1:L)Pz̃,θ̃(z1:L) =
L∏
l=1

∑
zl

Pθ̃(X l | zl)Pθ̃(zl | z−l).

The authors obtained unstable results for the choice of the number of classes on
simulations for Potts model.

Other choices for z̃1:L and θ̃ can be made. For example, Forbes and Peyrard (2003)
mention that using for z̃1:L and θ̃ the values obtained by the use of the Iterated Conditional
Modes of Besag (1986) leads to the Pseudo-Likelihood Information Criterion (PLIC)28

(Stanford, 1999; Stanford and Raftery, 2002).

Approximation of the BIC based on the partition functions Forbes and Peyrard
(2003) also propose a selection criterion based on an approximation of the partition
function (using the mean-field approximation). They express the BIC in terms of the
partition functions of the conditional and marginal field (i.e. of the distribution of Z1:L

and of the distribution of Z1:L given the observations X1:L). Recall that S(ψ) is the
partition function for the Gibbs distribution of Z1:L, and let us denote by S(X1:L, θ) the
partition function for the conditional field (i.e. distribution of Z1:L given X1:L), i.e.

S(X1:L, θ) =
∑
z1:L

exp
[
−H(z1:L |X1:L, θ)

]
28also denoted BICPL
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where

H(z1:L |X1:L, θ) = H(z1:L, ψ)−
L∑
l=1

logPθ(X l | zl). (1.7.10)

Then the likelihood can be written as follows in terms of the partition functions

Pθ(X1:L) =Pθ(X1:L | Z1:L)Pθ(Z1:L)
Pθ(Z1:L |X1:L) = Pθ(X1:L | Z1:L) exp(−H(Z1:L, ψ))

exp(−H(Z1:L |X1:L, θ))
S(X1:L, θ)
S(ψ)

=S(X1:L, θ)
S(ψ)

using the expression in (1.7.10). The BIC can then be expressed as

BIC = 2 logS(X1:L, θ̂)− 2 logS(ψ̂)− d log n,

where θ̂ and ψ̂ are the maximum likelihood estimators of θ and ψ respectively. The
partition functions could then be approximated using Monte Carlo techniques (see for
example Potamianos and Goutsias (1997) for the approximation of the partition function,
in a different context), but these methods can be slow. Forbes and Peyrard (2003) propose
to use an approximation of the partition function based on the mean field approximation,
and moreover to replace the unknown maximum likelihood estimators by the estimation
θ̃ of θ outputted by the simulated EM algorithm. Their approximation of the partition
functions uses both facts that the mean field approximation is the minimiser of the
Kullback-Leibler divergence from the true distribution, and the nonnegativity of this
divergence. Indeed, the mean field approximation of the distribution of Z1:L can be
written as (see (1.7.4) and (1.7.5))

PMF
ψ (Z1:L) = SMF(ψ)−1 exp(−HMF(Z1:L, ψ))

with SMF(ψ) and HMF(Z1:L, ψ) denoting respectively the partition function and energy
function of the mean field approximation of the distribution of Z1:L29. Then, the positivity
of the Kullback-Leibler divergence (from the true Gibbs distribution of Z1:L to its mean
field approximation) gives that

S(ψ) ≥ SMF(ψ) exp(EMF[H(Z1:L, ψ)−HMF(Z1:L, ψ)]). (1.7.11)
29Note that the normalising constant SMF(ψ) can be computed thanks to the factorised form of

the mean field approximation. Indeed, it is the product (over l ∈ J1, LK) of the tractable normalising
constants appearing in (1.7.5).
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Note that this inequality still holds for any other approximation of the distribution of the
form Papprox

ψ (Z1:L) = Sapprox(ψ)−1 exp(−Happrox(Z1:L, ψ)) instead of the mean field one.
However, as the mean field approximation is optimal in the sense of the Kullback-Leibler
minimisation among the distributions factorising over locations, the lower bound in
(1.7.11) is optimal among such approximations. They then define an approximation of
the BIC, using this lower bound as an approximation for the partition function, both
for the marginal and conditional fields (defining SMF(X1:L, θ) and HMF(Z1:L |X1:L, θ)
similarly as for the marginal field). This leads to the following BICGBF criterion30

BICGBF =2 logSMF(X1:L, θ̃)− 2EMF
[
H(Z1:L |X1:L, θ̃)−HMF(Z1:L |X1:L, θ̃) |X1:L

]
− 2 logSMF(ψ̃) + 2EMF

[
H(Z1:L, ψ̃)−HMF(Z1:L, ψ̃)

]
− d log n.

The authors show that this criterion is more satisfactory than the previously introduced
approximation of the criterion BICz̃1:L(θ̃), both from a theoretical and empirical point of
view.

Block Likelihood Information Criterion (BLIC) Stoehr et al. (2016) introduced
a selection criterion, the Block Likelihood Information Criterion (BLIC), approximating
the BIC by replacing the intractable likelihood with a product distribution on independent
blocks of the lattice, and using the method of Reeves and Pettitt (2004) to obtain an exact
computation of the normalising constant for small enough blocks. The approximation
BICz̃1:L(θ̃) of the BIC and the PLIC introduced above can be seen as particular cases of
the BLIC with locations as blocks.

This criterion shows good results (compared to other criteria) for the choice of the
number of classes on simulated data.

1.8 Space-evolving networks

We will focus in Chapter 3 on space-evolving networks, i.e. we assume that we observe a
network at different locations and we want a global statistical analysis of these networks
rather than considering them separately. This is motivated by the observation of
ecological networks, i.e. the observation of the interactions between species in their
environment. Edges in ecological networks can be of several types, such as predation,

30The bound in (1.7.11) is known as the Gibbs-Bogoliubov-Feynman (GBF) bound.
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Fig. 1.14 Location graph for a species. This graph depends on the geography and
environment. We assume here that the species is not present at high altitude (on the
mountain) and cannot cross the lake.

parasitism, mutualism31 or commensalism32. See for example Delmas et al. (2019) for
more information on the analysis of ecological networks. Nonetheless, our model can
be applied to different types of space-evolving networks, for example to the study of
relations between different socio-economic classes at different geographical regions, or
the collaboration of researchers from different domains in different universities.

In the model we consider, we model the correlation over space using a known graph
over the locations (that we will call location graph). In such a graph, an edge exists
when two locations are linked, meaning that the status of an individual (towards the
interaction graph) at these two locations are correlated. For example, for the ecological
application, this graph is based on the geography and environment, i.e. an edge exists
between two locations if they are nearby and if there are no natural barrier between them
that cannot be crossed by the species, such as mountains or rivers (see Figure 1.14).
Note that we talk about space-evolving network, but this could apply to other types of
dependencies between graphs, for example a dynamic graph including a seasonality effect,
as in Figure 1.15. The field of application is then larger than space-evolving networks.

1.8.1 Contributions in the spatial SBM

In this work, we choose to consider a dependency based on Markov random fields for
graphs observed at different locations. In short, we will assume that we observe the
interaction graphs of n species at L locations. These n species are divided into Q

(unobserved) classes, and for each species, its class membership will be distributed
according to a Markov random field. At each location, we observe a binary interaction

31ecological interaction between two or more species where each species has a benefit, such as flowering
plants being pollinated by animals

32interaction which is beneficial for a species and neutral for the other
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Fig. 1.15 A location graph modeling seasonality effects. Nodes A, B, C, D represent
the four seasons, indexed by year of measurement (three years in total). The solid lines
represent the dependency between two consecutive seasons, and the dotted lines represent
the dependency between same seasons of different years.

graph between the species, which is assumed to follow a SBM so that, conditional on the
latent classes, the connections between the species are independent Bernoulli random
variables with parameter depending on the classes of the two considered species. See
Figure 1.16 for a representation of our model. The model is described in details in
Chapter 3. In this chapter, we propose an algorithm based on the simulated EM of
Celeux et al. (2003) (see Section 1.7.7) to estimate the parameters of our model (which
are the parameters of the MRF and the connectivity parameters of the SBM), and prove
the generic identifiability of these parameters under certain conditions. This algorithm
involves an additional approximation to solve intractability issues due to the dependencies
in the conditional distribution of the latent variables given the observations induced by
the SBM. We illustrate our results through synthetic datasets.

Let us recall that generic identifiability means that the nonidentifiable parameters
form a set of Lebesgue measure zero. We do not specify the form of the subspace of non
identifiable parameters in this work, and it is important to keep in mind that when we
impose a constraint on the parameter reducing the parameter space to a subspace of
smaller dimension33, parameter identifiability is no longer guaranteed.

33for example by setting one component of the parameter to a fixed value or adding polynomial
constraints on this parameter
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Fig. 1.16 Example of representation of the model for Q = 2, L = 4 and n = 3. On the
left, the three layers represent the graphs on locations of the three species (i.e. the three
location graphs), and for each location (A, B, C and D), the dotted edges between layers
represent the connection between species at that location. On the right are the observed
interaction graphs between the 3 species at each of the four locations. Note that the
representation on the right only contains the interactions graphs at each location, and
not the space dependency between these locations. The Q classes are represented by
colors on the nodes (green and purple).





Chapter 2

Consistency of the maximum
likelihood and variational estimators
in a dynamic stochastic block model

2.1 Introduction

Random graphs are a suitable tool to model and describe interactions in many kinds of
datasets such as biological, ecological, social or transport networks. Here we are interested
in time-evolving networks, which is a powerful tool for modeling real-world phenomena,
where the role or behaviour of the nodes in the network and the relationships between
them are allowed to change over time. Indeed, it is important to take into account the
evolutionary behaviour of the graphs, instead of just studying separate snapshots as
static graphs. We focus on graphs evolving in discrete time and refer to Holme (2015)
for an introduction to dynamic networks.

A myriad of dynamic graph models has been introduced in the past few years, see
for instance Zhang et al. (2017a). We focus here on those which are based on the
(static) stochastic block model (SBM, Holland et al., 1983) in which the nodes are
partitioned into classes. In the SBM, class memberships of the nodes are represented
by latent variables and the connection between two nodes is drawn from a distribution
depending on the classes of these two nodes (a Bernoulli distribution in the case of binary
graphs). A first dynamic version of the SBM with discrete time is proposed in Yang et al.
(2011). There, the nodes are partitioned into Q classes and the graphs are binary or
weighted. The nodes are allowed to change membership over time, and these changes are
governed by independent Markov chains with values in the Q classes, while the connection
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probabilities are constant over time. Xu and Hero (2014) introduce a state-space model
on the logit of the connection probabilities for dynamic (binary) networks with connection
probabilities and group memberships varying over time. Unfortunately, their model
presents parameter identifiability issues (Matias and Miele, 2017). Xu (2015) proposes a
stochastic block transition model in which the presence or absence of an edge between
two nodes at a particular time affects the presence or absence of such an edge at a future
time. There, the nodes can change classes over time, new nodes can enter the network,
and the connection probabilities are allowed to vary over time. The model in Matias
and Miele (2017) and in Becker and Holzmann (2018) is quite similar to that of Yang
et al. (2011) except that it allows the connection probabilities to vary and the latter is
moreover nonparametric. Bartolucci et al. (2018) extend the model of Yang et al. (2011)
to deal with different forms of reciprocity in directed graphs, by directly modeling dyadic
relations and with the assumption that the dyads are conditionally independent given
the latent variables. Paul and Chen (2016) and Han et al. (2015) study multi-graph
SBM, arising in settings including dynamic networks and multi-layer networks where
each layer corresponds to a type of edge. In these two models, the nodes memberships
stay constant over the layers. Pensky (2019); Pensky et al. (2019) study a dynamic
SBM for undirected and binary edges where both connection probabilities and group
memberships vary over time, assuming that the connection probabilities between groups
are a smooth function of time. Xing et al. (2010) and Ho et al. (2011) introduce dynamic
versions of the mixed-membership stochastic block model, allowing each actor to carry
out different roles when interacting with different peers. Zreik et al. (2016) introduce
the dynamic random subgraph model, given a known decomposition of the graph into
subgraphs, in which the latent class membership depends on the subgraph membership
and the edges are categorical variables, their types being sampled from a distribution
depending on the latent classes of the two nodes. There, a state-space model is used to
characterize the temporal evolution of the latent classes proportions.

As far as estimation is concerned, different methods of inference are proposed to
estimate groups and model parameters. The maximum likelihood estimator (MLE) is
not tractable in the SBM, thus neither in its dynamic versions. Variational methods
are rather popular to approximate that MLE (Xing et al., 2010; Ho et al., 2011; Han
et al., 2015; Paul and Chen, 2016; Zreik et al., 2016; Matias and Miele, 2017; Bartolucci
et al., 2018). Yang et al. (2011) rely on Gibbs sampling and simulated annealing. Pensky
et al. (2019) propose an estimator of the connection probabilities matrix at each time
step by a discrete kernel-type method and obtain a clustering of the nodes thanks to
spectral clustering on this estimated matrix. They also give an estimator for the number
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of clusters. Spectral clustering algorithms are also used by Han et al. (2015) on the
mean graph over time and by Liu et al. (2018) who use eigenvector smoothing to get
some similarity across time periods (and allow the number of classes to be unknown and
possibly varying over time).

Some theoretical results on the convergence of the procedures have been proven,
mainly for static graphs. In the static SBM, Celisse et al. (2012) prove the consistency
of the MLE and variational estimates as the number of nodes increases1, and Bickel
et al. (2013) establish their asymptotic normality. Mariadassou and Matias (2015) have
a different approach and give sufficient conditions for the groups posterior distribution to
converge to a Dirac mass located at the actual groups configuration, for every parameter
in a neighborhood of the true one. Rohe et al. (2011) give asymptotic results on the
normalized graph Laplacian and its eigenvectors for the spectral clustering algorithm,
allowing the number of clusters to grow with the number of nodes. They also provide
bounds on the number of misclustered nodes, requiring an assumption on the degree
distribution. Lei and Rinaldo (2015) prove consistency for the recovery of communities
in the spectral clustering on the adjacency matrix, with milder conditions on the degrees,
and also extend this result to degree corrected stochastic block models. Klopp et al.
(2017) derive oracle inequalities for the connection probabilities estimator and obtain
minimax estimation rates, including the sparse case where the density of edges converges
to zero as the number of nodes increase thus extending previous results of Gao et al.
(2015). Gaucher and Klopp (2019) propose a bound on the risk of the maximum likelihood
estimator of network connection probabilities, and show that it is minimax optimal in
the sparse graphon model.

In the dynamic setting, fewer theoretical results have been established. Pensky (2019)
derives a penalized least squares estimator of the connection probabilities adaptive to
the number of blocks and which does not require knowledge of the number of classes Q.
She shows that it satisfies an oracle inequality. Under the additional assumption that at
most n0 nodes change groups between two time steps, this estimator attains minimax
lower bounds for the risk. She also introduces a dynamic graphon model and shows that
the estimators (that do not require knowledge of a degree of smoothness of the graphon
function) are minimax optimal within a logarithmic factor of the number of time steps.
Based on the same dynamic SBM with at most n0 nodes changing groups between two
time steps, Pensky et al. (2019) give an upper bound for the (non asymptotic) error of
their estimators of the connection probabilities matrix and group memberships (and also

1the consistency results for the estimators of the parameter of the latent groups distribution requiring
an assumption on the rate of convergence of the connection parameter estimators
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an estimator for the number of clusters). Han et al. (2015) show consistency (as the
number of time steps increases but the number of nodes is fixed) of two estimators of the
class memberships for dynamic SBM (and more generally multi-graph SBM) in which the
nodes memberships are constant over time but the connection probabilities are allowed to
vary and the considered graphs are binary and symmetric. They show that the spectral
clustering (on the mean graph over time) estimator of the class memberships is consistent
under some stationarity and ergodicity conditions on the connection probabilities. They
also prove that the MLE of the class memberships is consistent (i.e. that the fraction
of misclustered nodes converges to 0) in the general case (without any structure on the
connection probabilities), provided certain sufficient conditions are satisfied. In their
multi-layer model, Paul and Chen (2016) give minimax rates of misclassification under
certain conditions on the growth of the types of relations, number of nodes and number
of classes, extending the result of Han et al. (2015).

Here, we consider a dynamic version of the binary SBM as in Yang et al. (2011),
where each node is allowed to change group membership at each time step according
to a Markov chain, independently of other nodes. We prove the consistency of the
connectivity parameter MLE and, under some additional conditions, of the transition
matrix MLE, when the number of nodes and of time steps are increasing. We also give
upper bounds on the rates of convergence of these estimators. While these upper bounds
are known to be non optimal in the static case where asymptotic normality is obtained
with classical parametric rates of convergence (Bickel et al., 2013), these are the first to
be established in a dynamic setting for the MLE. As already mentioned, the log-likelihood
is intractable (except for very small values of the number of nodes n and the number of
time steps T ), as it requires to sum over QnT terms. Thus, while its consistency remains
an important result, the estimator cannot be computed. A possible alternative is to rely
on a variational estimator to approximate the MLE (see for instance Matias and Miele,
2017). We also establish the consistency of the variational estimator of the connectivity
parameter and under some additional assumptions, that of the variational estimator of
the transition matrix and obtain the same upper bounds on the rates of convergence as
for the MLE. In the particular case where the number of time steps T is fixed, we also
consider the model of Matias and Miele (2017), in which the connection probabilities are
allowed to vary over time and generalise these results with only the number of nodes
increasing. When T = 1, we not only recover the results of Celisse et al. (2012) but
extend these by giving rates of convergence. Unlike the model studied in Han et al.
(2015) and Paul and Chen (2016), the node memberships in our model evolve over time.
Our context is different from Pensky (2019) that focuses on least squares estimate.



2.2 Model and notation 79

This article is organized as follows. Section 2.2 introduces our model and notation.
More precisely, Section 2.2.1 describes the dynamic stochastic block model as introduced in
Yang et al. (2011), Section 2.2.2 gives the assumptions we make on the model parameters,
Section 2.2.3 describes the dynamic stochastic block model as in Matias and Miele (2017)
for the finite time case and Section 2.2.4 states the expression of the likelihood of this
model to define the MLE. Section 2.3 establishes the consistency and upper bounds of
the rates of convergence for the MLE of the connection probabilities in Section 2.3.1
and of the transition matrix in Section 2.3.2. Section 2.4 is dedicated to variational
estimators: Section 2.4.1 and 2.4.2 establish the consistency of the variational estimators
of the connection probabilities and transition matrix, respectively, along with upper
bounds of the associated rates of convergence. All the proofs of the main results are
postponed to Section 2.5, except those for the fixed T case that are in Appendix A.1,
while the more technical proofs are deferred to Appendix A.2.

2.2 Model and notation

2.2.1 Dynamic stochastic block model

We consider a set of n vertices, forming a sequence of binary undirected graphs with
no self-loops at each time t = 1, . . . , T . The case of a set of directed graphs, with
or without self-loops, may be handled similarly. These vertices are assumed to be
split into Q latent classes, and we denote by Zt

i the label of the i-th vertex at time t.
Letting Zi = (Z1

i , . . . , Z
T
i ), we assume that the {Zi}1≤i≤n are independent and identically

distributed (iid) and each Zi is a homogeneous and stationary Markov chain with
transition probabilities

P(Zt+1
i = l | Zt

i = q) = γql, ∀1 ≤ q, l ≤ Q

where Γ = (γql)1≤q,l≤Q is a stochastic matrix, i.e. with nonnegative coefficients and with
each row summing to one. We let α = (α1, . . . , αQ) the stationary distribution of the
Markov chain. For any i ∈ J1, nK, the probability distribution of Zi is then

Pθ(Zi) = αZ1
i

T−1∏
t=1

γZt
iZ

t+1
i
.

We will also denote Zt = (Zt
1, . . . , Z

t
n) and Z1:T = (Z1, . . . , ZT ) = (Zt

i )1≤t≤T,1≤i≤n.
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Consider X t = {X t
ij}1≤i,j≤n the symmetric binary adjacency matrix of the graph at

time t such that for every nodes 1 ≤ i, j ≤ n, we have X t
ii = 0 and X t

ij = X t
ji. Each X t

follows a stochastic block model so that, conditional on the latent groups {Zt
i}1≤i≤n, the

{X t
ij}1≤i,j≤n are independent Bernoulli random variables

X t
ij | Zt

i = q, Zt
j = l ∼ B(πql)

where (πql)1≤q,l≤Q ∈ [0, 1]Q2 are the connectivity parameters. More precisely, conditional
on the whole sequence of latent groups {Zt

i}1≤t≤T,1≤i≤n, the graphs X1:T = X1, . . . , XT

are assumed to be independent, each X t having a distribution depending only on
{Zt

i}1≤i≤n. The model is thus parameterized by θ = (Γ, π), with Γ = (γql)1≤q,l≤Q and
π = (πql)1≤q,l≤Q. Note that π is a symmetric matrix in the undirected setup. We denote
by Pθ (resp. Eθ) the probability distribution (resp. expectation) of all the random
variables {Zt

i , X
t
ij}t≥1;i,j≥1, under the parameter value θ. In the following, we assume that

we observe {X t
ij}1≤i,j,≤n, 1≤t≤T and we denote by θ∗ = (Γ∗, π∗) = ((γ∗

ql)1≤q,l≤Q, (π∗
ql)1≤q,l≤Q)

the true parameter value, with corresponding probability distribution Pθ∗ and expectation
Eθ∗ , and by α∗ = (α∗

q)1≤q≤Q the (true) stationary distribution corresponding to the
transition matrix Γ∗. We also let 1A denote the indicator function of the set A and Ac the
complementary set of A in the ambient set. For any integer M ≥ 1, the set J1,MK is the
set of integers between 1 and M . For any finite set A, let |A| denote its cardinality. For
any configuration z1:T , we denote Nq(zt) (resp. Nql(z1:T )) the number of nodes assigned
to class q by the configuration zt (resp. the number of transitions from class q to class l
in configuration z1:T ), that is

Nq(zt) = |{i ∈ J1, nK; zti = q}| and Nql(z1:T ) =
T−1∑
t=1

n∑
i=1

1zt
i =q,zt+1

i =l. (2.2.1)

We also define for any two parameters θ = (Γ, π) and θ′ = (Γ′, π′) the following distances

∥π − π′∥∞ = max
1≤q,l≤Q

|πql − π′
ql| and ∥Γ− Γ′∥∞ = max

1≤q,l≤Q
|γql − γ′

ql|.

2.2.2 Assumptions

The assumptions we make on the model parameters are the following.

1. For every 1 ≤ q ̸= q′ ≤ Q, there exists some l ∈ J1, QK such that πql ̸= πq′l.

2. There exists some 0 < δ < 1/Q such that for any (q, l) ∈ J1, QK2, we have
γql ∈ [δ, 1− δ].
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3. There exists some ζ > 0 such that for any (q, l) ∈ J1, QK2, we have πql ∈ [ζ, 1− ζ].

Assumption 1 is necessary for identifiability of the model. Indeed, if it does not hold,
we cannot distinguish between classes q and q′. Assumption 2 ensures that each Markov
chain Zi is irreducible, aperiodic and recurrent. This assumption could be weakened at
the cost of technicalities. In particular, it implies that the stationary distribution α exists.
Moreover, Assumption 2 also implies that for any q ∈ J1, QK, we have αq ∈ [δ, 1 − δ].
Note that this can be seen as an equivalent of Assumption 2 in Celisse et al. (2012) (on
the probability distribution of the class memberships) in the dynamic case. Celisse et al.
(2012) however also have an additional assumption that is an empirical version of this
assumption (which states that the observed class proportions are bounded away from 0)
that is true with high probability. We do not make such an assumption and use the fact
that the probability of this event converges to 1. Assumption 3 is technical and could
also be weakened with additional technicalities. For example, Celisse et al. (2012) also
consider the case πql ∈ {0, 1} (i.e. πql ∈ {0, 1} ∪ [ζ, 1− ζ]) whereas we do not. The whole
parameter set defined by these constraints is denoted by Θ. In the following, we assume
that θ∗ ∈ Θ.

In what follows, we work up to label permutation on the groups. Indeed, as in any
latent group model, the parameters can only be recovered up to label switching on the
latent groups. We then define the following notation for any permutation σ ∈ SQ with
SQ the set of permutations on J1, QK

θσ = (Γσ, πσ) =
(
(γσ(q)σ(l))1≤q,l≤Q, (πσ(q)σ(l))1≤q,l≤Q

)
.

2.2.3 Finite time case

If the number of time steps T is fixed, it is possible to let the connection probabilities
vary over time. We then consider this case, the connection parameter now being
π1:T = (π1, . . . , πT ) with πt = (πtql)1≤q,l≤Q for every t ∈ J1, T K and πtql = Pθ(X t

ij = 1 |Zt
i =

q, Zt
j = l) for any (t, q, l) ∈ J1, T K× J1, QK2. Note that this is the more general model of

Matias and Miele (2017), in which the model parameter is θ = (Γ, π1:T ). Moreover, we
introduce the following Assumptions 1’ and 3’ that are alternate versions of Assumptions 1
and 3 respectively for the finite time case.

1’. For every t ∈ J1, T K, for every 1 ≤ q ̸= q′ ≤ Q, there exists some l ∈ J1, QK such
that πtql ̸= πtq′l.

3’. There exists some ζ > 0 such that for every t ∈ J1, T K, for any (q, l) ∈ J1, QK2, we
have πtql ∈ [ζ, 1− ζ].
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Assumption 1’ (resp. Assumption 3’) expresses that for every t ∈ J1, T K, πt satisfies As-
sumption 1 (resp. Assumption 3). We also introduce the following additional assumption,
which ensures (together with Assumption 1’) that the model is identifiable (up to a label
permutation). See Matias and Miele (2017).

4. For every q ∈ J1, QK, for every t1, t2 ∈ J1, T K, πt1qq = πt2qq := πqq and {πqq; q ∈ J1, QK}
are Q distinct values.

Assumption 4 states that the diagonal of π does not change over time, and that its values
are distinct. We denote by ΘT the set of parameters satisfying Assumptions 1’, 2, 3’
and 4. As before, we assume in the following that θ∗ ∈ ΘT in the fixed T case. We also
define as before for any π1:T and π′1:T the distance

∥π1:T − π′1:T∥∞ = max
(q,l,t)∈J1,QK2×J1,T K

|πtql − π′t
ql|.

2.2.4 Likelihood

The conditional log-likelihood and the log-likelihood write

ℓc(θ;Z1:T ) = logPθ(X1:T | Z1:T ) =
T∑
t=1

logPθ(X t | Zt)

=
T∑
t=1

∑
1≤i<j≤n

X t
ij log πZt

iZ
t
j

+ (1−X t
ij) log(1− πZt

iZ
t
j
)

and ℓ(θ) = logPθ(X1:T ) = log
 ∑
z1:T ∈J1,QKnT

eℓc(θ;z1:T )Pθ(Z1:T = z1:T )
 , (2.2.2)

respectively. We then denote the maximum likelihood estimator (MLE) by

θ̂ = (Γ̂, π̂) = arg max
θ∈Θ

ℓ(θ).

In the next section, we study separately the consistency of the connectivity parameter
estimator π̂ and that of the transition matrix estimator Γ̂.
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2.3 Consistency of the maximum likelihood estima-
tor

2.3.1 Connectivity parameter

We first prove the consistency of the maximum likelihood estimator of the connectivity
parameter π = (πql)1≤q,l≤Q when the number of nodes and time steps increase. We denote
the normalized log-likelihood by

Mn,T (Γ, π) = 2
n(n− 1)T ℓ(θ) = 2

n(n− 1)T logPθ(X1:T )

and introduce the quantities, for any A = (aql)1≤q,l≤Q ∈ A the set of Q×Q stochastic
matrices,

M(π,A) =
∑

1≤q,l≤Q
α∗
qα

∗
l

∑
1≤q′,l′≤Q

aqq′all′ [π∗
ql log πq′l′ + (1− π∗

ql) log(1− πq′l′)]

and M(π) = sup
A∈A

M(π,A) = M(π, Āπ), (2.3.1)

where Āπ = arg maxA∈A M(π,A). It is worth noticing that M(π), which will be the
limiting value for Mn,T (Γ, π) when n and T increase (see below), does not depend on Γ.

Theorem 2.3.1. For any sequence {rn,T}n,T≥1 increasing to infinity, if log(T ) = o(n),
we have for all ϵ > 0

Pθ∗

(
sup

(Γ,π)∈Θ
|Mn,T (Γ, π)−M(π)| > ϵrn,T√

n

)
−−−−−→
n,T→+∞

0.

We then conclude on the consistency of the maximum likelihood estimator of the
connection probabilities with the following corollary. Note that we also obtain an upper
bound of the rate of convergence of this estimator.

Corollary 2.3.1. For any sequence {rn,T}n,T≥1 increasing to infinity such that rn,T =
o(n1/4) and if log(T ) = o(n), we have for every ϵ > 0

Pθ∗

(
min
σ∈SQ

∥π∗ − π̂σ∥∞ >
ϵrn,T
n1/4

)
−−−−→
n,T→∞

0.

We want to get equivalent consistency results if the number of time steps T is fixed
and only the number of nodes n increases. In that case, denoting by θ̂ = (Γ̂, π̂1:T ) the
MLE of θ, we have the following Corollary that is the equivalent of Corollary 2.3.1.
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Corollary 2.3.2. If the number of time steps T is fixed, we have for every ϵ > 0 and
for any sequence {rn}n≥1 increasing to infinity such that rn = o(n1/4)

Pθ∗

(
min
σ∈SQ

∥π∗1:T − π̂1:T
σ ∥∞ >

ϵrn
n1/4

)
−−−→
n→∞

0,

denoting π̂1:T
σ = (π̂tσ)t∈J1,T K.

This result states that minσ∈SQ
∥π∗1:T − π̂1:T

σ ∥∞ converges to 0 in Pθ∗-probability as n
increases, i.e. the MLE of the connection probabilities is consistent up to label switching,
and gives an upper bound of the rate of convergence of the MLE of the connection
probabilities. The particular case when T = 1 is then a stronger result than that of
Celisse et al. (2012) where no rate of convergence is given.

Remark 2.3.1. Note that in Corollaries 2.3.1 and 2.3.2, the results still hold for any
sequences rn,T and rn increasing to infinity, respectively. However, we are interested in
sequences increasing slowly to infinity, giving the strongest results, namely the smallest
lower bounds. Indeed, whenever these assumptions are not satisfied, the lower bounds
appearing in the inequalities are larger, and the results may even become trivial.

2.3.2 Latent transition matrix

We now prove that the MLE for the transition matrix Γ is consistent when the number
of nodes and time steps increase.

Lemma 2.3.1. Any critical point θ̆ = (Γ̆, π̆) of the likelihood function ℓ(·) is such that Γ̆
satisfies the fixed point equation

∀(q, l) ∈ J1, QK2, γ̆ql =
∑T−1
t=1

∑n
i=1 Pθ̆

(
Zt
i = q, Zt+1

i = l |X1:T
)

∑T−1
t=1

∑n
i=1 Pθ̆ (Zt

i = q |X1:T )
. (2.3.2)

There are two different possible cases for the MLE θ̂

• Either θ̂ is a critical point of the likelihood function. Then Γ̂ satisfies equa-
tion (2.3.2).

• Or θ̂ is not a critical point (this can happen if it belongs to the boundary of
Θ) and we assume that there exists Γ̆ such that (Γ̆, π̂) ∈ Θ and (Γ̆, π̂) satisfies
equation (2.3.2) (at least for n and T large enough). We then choose as our
estimator (Γ̆, π̂). By an abuse of notation, we will denote this estimator θ̂ = (Γ̂, π̂)
and call it MLE in the following.
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In what follows, for any fixed configuration z1:T , any θ ∈ Θ and any ϵ > 0, we consider
the event

E(z1:T , θ, ϵ) :=
{
Pθ(Z1:T ̸= z1:T |X1:T )
Pθ(Z1:T = z1:T |X1:T ) > ϵ

}
.

The following result establishes that asymptotically, any estimator that correctly estimates
the transition probability matrix π also recovers the group memberships. This result is
similar to Theorem 1 in Mariadassou and Matias (2015).

Theorem 2.3.2. For any estimator θ̆ ∈ Θ (at least for n and T large enough), if
log(T ) = o(n), there exist some positive constants C,C1, C2, C3, C4 such that for any
ϵ > 0, for any positive sequence {yn,T}n,T≥1 such that log(1/yn,T ) = o(n), any η ∈ (0, δ)
and for n and T large enough, we have

Pθ∗

(
E(Z1:T , θ̆, ϵyn,T )

)
≤QT exp(−2η2n) + Pθ∗ (∥π̆ − π∗∥∞ > vn,T )

+ CnT

 exp
− (δ − η)2C1n+ C2 log(nT )− C4 log(ϵyn,T )


+ exp

− C3
(log(nT ))2

nv2
n,T

+ 3n log(nT )
,

whenever {vn,T}n,T≥1 is a sequence decreasing to 0 such that vn,T = o(
√

log(nT )/n).

Theorem 2.3.3. If log(T ) = o(n), for any ϵ > 0 and {rn,T}n,T≥1 any sequence increasing
to infinity such that rn,T = o

(√
nT/ log n

)
, we have for any σ ∈ SQ

Pθ∗

(
∥Γ̂σ − Γ∗∥∞ > ϵrn,T

√
log n√
nT

)
≤ Q2(3Q+ 1)Pθ∗ (∥π̂σ − π∗∥∞ > vn,T ) + o(1)

with {vn,T}n,T≥1 a sequence decreasing to 0 such that vn,T = o(
√

log(nT )/n).

Corollary 2.3.3. Assume that log(T ) = o(n) and minσ∈SQ
∥π̂σ−π∗∥∞ = oPθ∗ (vn,T ) with

{vn,T}n,T≥1 a sequence decreasing to 0 such that vn,T = o(
√

log(nT )/n). Then for any
ϵ > 0 and {rn,T}n,T≥1 any sequence increasing to infinity such that rn,T = o

(√
nT/ log n

)
,

we have the convergence

Pθ∗

(
min
σ∈SQ

∥Γ̂σ − Γ∗∥∞ > ϵrn,T

√
log n√
nT

)
−−−−→
n,T→∞

0.

Remark 2.3.2. Note that the upper bound obtained in Corollary 2.3.1 on the rate of
convergence in probability of π̂ does not ensure that minσ∈SQ

∥π̂σ − π∗∥∞ = oPθ∗ (vn,T )



86 Consistency of the ML and Variational estimators in a dynamic SBM

holds. While the latter has never been established (to our knowledge), it is a reasonable
assumption2.

We want an equivalent result than that of Corollary 2.3.3 when the number of time
steps T is fixed, and the connection probabilities are varying over time (the connection
parameter being π = π1:T = (π1, . . . , πT ) with πt = (πtql)q,l). For that, we are going to
need an equivalent of Theorem 2.3.2 in that case.

Theorem 2.3.4. For any fixed T ≥ 2, for any estimator θ̆ ∈ ΘT (at least for n large
enough), there exist some positive constants C,C1, C2, C3, C4 such that for any ϵ > 0, for
any positive sequence {yn}n≥1 such that log(1/yn) = o(n), any η ∈ (0, δ) and for n large
enough, we have

Pθ∗

(
E(Z1:T , θ̆, ϵyn)

)
≤QT exp(−2η2n) + Pθ∗

(
∥π̆1:T − π∗1:T∥∞ > vn

)
+ CnT

 exp
− (δ − η)2C1n+ C2 log(nT )− C4 log(ϵyn)


+ exp

− C3
(log(nT ))2

nv2
n

+ 5n log(nT )
,

whenever {vn}n≥1 is a sequence decreasing to 0 such that vn = o(
√

log(n)/n).

The following corollary gives the expected result.

Corollary 2.3.4. Let the number of time steps T ≥ 2 be fixed. We assume that
minσ∈SQ

∥π̂1:T
σ − π∗1:T∥∞ = oPθ∗ (vn) with {vn}n≥1 a sequence decreasing to 0 such that

vn = o(
√

log(n)/n). Then for any ϵ > 0 and {rn}n≥1 any sequence increasing to infinity
such that rn = o

(√
n/ log n

)
, we have the convergence

Pθ∗

(
min
σ∈SQ

∥Γ̂σ − Γ∗∥∞ > ϵrn

√
log n√
n

)
−−−→
n→∞

0.

The proof of Corollary 2.3.4 is the same as that of Corollary 2.3.3, but relying on
Theorem 2.3.4 instead of Theorem 2.3.2 and is therefore omitted.

Remark 2.3.3. As in Remark 2.3.1 for Corollaries 2.3.1 and 2.3.2, the results of Corol-
laries 2.3.3 and 2.3.4 still hold for sequences rn,T and rn increasing to infinity at any
rate.

2In particular, in the static case, Bickel et al. (2013) obtained a rate of n−1 for the connectivity
parameter in a non sparse setup (like ours)
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2.4 Variational estimators

In practice, we cannot compute the MLE except for very small values of n and T , because
it involves a summation over all the QnT possible latent configurations. We cannot
either use the Expectation-Maximization (EM) algorithm to approximate it because it
involves the computation of the conditional distribution of the latent variables given
the observations which is not tractable. A common solution is to use the Variational
Expectation-Maximization (VEM) algorithm that optimizes a lower bound of the log-
likelihood (see for example Daudin et al. (2008)). Let us denote Zt

iq = 1Zt
i =q for every t, i

and q. Using the same approach as in Matias and Miele (2017) for the VEM algorithm in
the dynamic SBM, we consider a variational approximation of the conditional distribution
of the latent variable Z1:T given the observed variable X1:T in the class of probability
distributions parameterized by χ = (τ, η) =

(
{τ tiq}t,i,q, {ηtiql}t,i,q,l

)
of the form

Qχ(Z1:T ) =
n∏
i=1

Qχ(Z1
i )

T∏
t=2

Qχ(Zt
i | Zt−1

i ) =
n∏
i=1


 Q∏
q=1

(τ 1
iq)Z

1
iq

 T−1∏
t=1

∏
1≤q,l≤Q

(
ηtiql
τ tiq

)Zt
iqZ

t+1
il

 ,
i.e. with Qχ such that EQχ

[
Zt
iqZ

t+1
il

]
= ηtiql and EQχ

[
Zt
iq

]
= τ tiq. Notice that Qχ(Zt+1

i =
l | Zt

i = q) = ηtiql/τ
t
iq = ηtiql/

∑Q
q′=1 η

t
iqq′ . The quantity to optimize in the VEM algorithm

is then

J (χ, θ) = ℓ(θ)−KL(Qχ,Pθ(·|X1:T )) = EQχ

[
logPθ(X1:T , Z1:T )

]
+H(Qχ)

with KL(·, ·) denoting the Kullback-Leibler divergence and H(·) denoting the entropy.
Define

χ̂(θ) = (τ̂(θ), η̂(θ)) = arg max
χ∈[0,1]T 2n2Q3

J (χ, θ),

and the variational estimator of θ

θ̃ = (Γ̃, π̃) = arg max
θ∈Θ

J (χ̂(θ), θ).

Moreover, we denote χ̃ = (τ̃ , η̃) = χ̂(θ̃) = (τ̂(θ̃), η̂(θ̃)). In practice, the VEM algorithm
is an iterative algorithm that maximizes the function J alternatively with respect to χ
and θ in order to find θ̃.
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2.4.1 Connectivity parameter

Theorem 2.4.1. For any sequence {rn,T}n,T≥1 increasing to infinity, if log(T ) = o(n),
we have for all ϵ > 0

Pθ∗

(
sup
θ∈Θ

∣∣∣∣∣ 2
n(n− 1)T J (χ̂(θ), θ)−M(π)

∣∣∣∣∣ > ϵrn,T√
n

)
−→

n,T→+∞
0.

We conclude on the consistency of the connection probabilities variational estimators
as n and T increase thanks to the following corollary.

Corollary 2.4.1. For any sequence {rn,T}n,T≥1 increasing to infinity such that rn,T =
o(n1/4), we have for any ϵ > 0

1
2Pθ

∗

(
min
σ∈SQ

∥π̃σ − π∗∥∞ >
ϵrn,T
n1/4

)
−−−−→
n,T→∞

0.

We have the equivalent following corollary for a fixed number of time steps.

Corollary 2.4.2. If the number of time steps T is fixed, we have for every ϵ > 0 and
for any sequence {rn}n≥1 increasing to infinity such that rn = o(n1/4)

1
2Pθ

∗

(
min
σ∈SQ

∥π̃1:T
σ − π∗1:T∥∞ >

ϵrn
n1/4

)
−−−→
n→∞

0.

Remark 2.4.1. As for Corollaries 2.3.1 to 2.3.4, the results of Corollaries 2.4.1 and 2.4.2
still hold for any sequences rn,T and rn increasing to infinity.

2.4.2 Latent transition matrix

We now prove that Γ̃ is consistent when the number of nodes and time steps increase.

Lemma 2.4.1. Any critical point (χ̆, θ̆) of the function J (·, ·) is such that Γ̆ satisfies
the fixed-point equation

∀(q, l) ∈ J1, QK2, γ̆ql =
∑n
i=1

∑T−1
t=1 η̆

t
iql∑n

i=1
∑T−1
t=1 τ̆

t
iq

. (2.4.1)

We assume that (χ̃, θ̃) is a critical point of J (·, ·). Then we have the fixed-point
equation

∀(q, l) ∈ J1, QK2, γ̃ql =
∑n
i=1

∑T−1
t=1 η̂

t
iql(θ̃)∑n

i=1
∑T−1
t=1 τ̂

t
iq(θ̃)

. (2.4.2)
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The following theorem gives the consistency and a rate of convergence of this estimator,
under an assumption on the rate of convergence of π̃.

Theorem 2.4.2. If log(T ) = o(n), for any ϵ > 0 and {rn,T}n,T≥1 any sequence increasing
to infinity such that rn,T = o

(√
nT/ log n

)
and for any σ ∈ SQ

Pθ∗

(
∥Γ̃σ − Γ∗∥∞ > ϵrn,T

√
log n√
nT

)
≤ 2Q2(3Q+ 1)Pθ∗ (∥π̃σ − π∗∥∞ > vn,T ) + o(1)

with {vn,T}n,T≥1 a sequence decreasing to 0 such that vn,T = o(
√

log(nT )/n).

Corollary 2.4.3. Assume that log(T ) = o(n) and minσ∈SQ
∥π̃σ−π∗∥∞ = oPθ∗ (vn,T ) with

{vn,T}n,T≥1 a sequence decreasing to 0 such that vn,T = o(
√

log(nT )/n). Then for any
ϵ > 0 and {rn,T}n,T≥1 any sequence increasing to infinity such that rn,T = o

(√
nT/ log n

)
,

we have the convergence

Pθ∗

(
min
σ∈SQ

∥Γ̃σ − Γ∗∥∞ > ϵrn,T

√
log n√
nT

)
−−−−→
n,T→∞

0.

The proof of Corollary 2.4.3 is the same as that of Corollary 2.3.3, using Theorem 2.4.2
instead of Theorem 2.3.3 and is therefore omitted.

When the number of time steps T is fixed and the connection probabilities can vary
over time, we have the following Corollary that is the equivalent of Corollary 2.4.3.

Corollary 2.4.4. Let the number of time steps T ≥ 2 be fixed. We assume that
minσ∈SQ

∥π̃1:T
σ − π∗1:T∥∞ = oPθ∗ (vn) with {vn}n≥1 a sequence decreasing to 0 such that

vn = o(
√

log(n)/n). Then for any ϵ > 0 and {rn}n≥1 any sequence increasing to infinity
such that rn = o

(√
n/ log n

)
, we have the convergence

Pθ∗

(
min
σ∈SQ

∥Γ̃σ − Γ∗∥∞ > ϵrn

√
log n√
n

)
−−−→
n→∞

0.

The proof of Corollary 2.4.4 is the same as that of Corollary 2.4.3, but relying on
Theorem 2.3.4 instead of Theorem 2.3.2 and is therefore omitted.

Remark 2.4.2. As for Corollaries 2.3.1 to 2.4.2, the results of Corollaries 2.4.3 and 2.4.4
still hold for any sequences rn,T and rn increasing to infinity.
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2.5 Proofs of main results

2.5.1 Proof of Theorem 2.3.1

The proof follows the lines of the proof of Theorem 3.6 in Celisse et al. (2012). Nonetheless,
our result is sharper as we establish an upper bound of the rate of convergence (in
probability) of the normalised likelihood. We fix some θ ∈ Θ and introduce the quantities

ẑ1:T = arg max
z1:T ∈J1,QKnT

logPθ(X1:T | Z1:T = z1:T ), (2.5.1)

Z̃1:T = arg max
z1:T ∈J1,QKnT

Eθ∗

[
logPθ(X1:T | Z1:T = z1:T )

∣∣∣∣ Z1:T
]
. (2.5.2)

Note that Z̃1:T is a random variable that depends on Z1:T and that

ẑ1:T = arg max
z1:T ∈J1,QKnT

T∑
t=1

logPθ(X t | Zt = zt)

=
(

arg max
z∈J1,QKn

logPθ(X1 | Z1 = z), . . . , arg max
z∈J1,QKn

logPθ(XT | ZT = z)
)
. (2.5.3)

Similarly, for any t ∈ J1, T K, we have Z̃t = arg maxz∈J1,QKn Eθ∗ [logPθ(X t | Zt = z) | Zt].
We bound the difference between Mn,T (Γ, π) and M(π) by introducing three interme-

diate terms so that we can write, for any sequence {rn,T}n,T≥1 and any ϵ > 0

Pθ∗

(
sup
θ∈Θ
|Mn,T (Γ, π)−M(π)| > ϵrn,T√

n

)

≤Pθ∗

(
sup
θ∈Θ

∣∣∣∣∣ 2
n(n− 1)T logPθ(X1:T )− 2

n(n− 1)T logPθ(X1:T | Z1:T = ẑ1:T )
∣∣∣∣∣ > ϵrn,T

3
√
n

)

+ Pθ∗

 sup
θ∈Θ

∣∣∣∣∣ 2
n(n− 1)T logPθ(X1:T | Z1:T = ẑ1:T )

− 2
n(n− 1)T Eθ∗

[
logPθ(X1:T | Z1:T = Z̃1:T )

∣∣∣∣ Z1:T
] ∣∣∣∣∣∣ > ϵrn,T

3
√
n


+ Pθ∗

(
sup
θ∈Θ

∣∣∣∣∣ 2
n(n− 1)T Eθ∗

[
logPθ(X1:T | Z1:T = Z̃1:T )

∣∣∣∣ Z1:T
]
−M(π)

∣∣∣∣∣ > ϵrn,T
3
√
n

)
.

(2.5.4)

In the following, we prove separately the convergence (in Pθ∗-probability) to zero of the
three terms of this sum (while controlling for the rate of these convergences). Before
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starting, let us remark that we have

logPθ(X1:T | Z1:T = z1:T ) =
T∑
t=1

∑
1≤i<j≤n

X t
ij log πzt

iz
t
j

+ (1−X t
ij) log(1− πzt

iz
t
j
)

(2.5.5)

and Eθ∗

[
logPθ(X1:T | Z1:T = z1:T )

∣∣∣∣ Z1:T
]

=
T∑
t=1

∑
1≤i<j≤n

π∗
Zt

iZ
t
j
log πzt

iz
t
j

+ (1− π∗
Zt

iZ
t
j
) log(1− πzt

iz
t
j
). (2.5.6)

In particular, for every t ∈ J1, T K, we have

ẑt = arg max
z=(z1,...,zn)∈J1,QKn

∑
1≤i<j≤n

X t
ij log πzizj

+ (1−X t
ij) log(1− πzizj

),

Z̃t = arg max
z=(z1,...,zn)∈J1,QKn

∑
1≤i<j≤n

π∗
Zt

iZ
t
j
log πzizj

+ (1− π∗
Zt

iZ
t
j
) log(1− πzizj

).

First term of the right-hand side of (2.5.4). We let

T1 :=
∣∣∣∣∣ 2
n(n− 1)T logPθ(X1:T )− 2

n(n− 1)T logPθ(X1:T | Z1:T = ẑ1:T )
∣∣∣∣∣

≤ 2
n(n− 1)T

T∑
t=1

∣∣∣logPθ(X t |X1:t−1)− logPθ(X t | Zt = ẑt)
∣∣∣ . (2.5.7)

Lemma 2.5.1. For every t ∈ J1, T K, we have
∣∣∣logPθ(X t|X1:t−1)− logPθ(X t|Zt = ẑt)

∣∣∣ ≤ ∣∣∣logPθ(Zt = ẑt|X1:t−1)
∣∣∣ .

Going back to (2.5.7) and applying Lemma 2.5.1, we get

T1 ≤
2

n(n− 1)T

T∑
t=1

∣∣∣logPθ(Zt = ẑt |X1:t−1)
∣∣∣ = − 2

n(n− 1)T

T∑
t=1

logPθ(Zt = ẑt |X1:t−1).

Now, using classical dependency rules in directed acyclic graphs (see for e.g. Lauritzen,
1996) combined with Assumption 2, we get
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T1 ≤ −
2

n(n− 1)T

T∑
t=1

log
∑

zt−1∈J1,QKn

Pθ(Zt = ẑt | Zt−1 = zt−1)Pθ(Zt−1 = zt−1 |X1:t−1)

≤ − 2
n(n− 1)T

T∑
t=1

log
∑

zt−1∈J1,QKn

δnPθ(Zt−1 = zt−1 |X1:t−1)

≤ − 2
n(n− 1)T

T∑
t=1

n log δ = 2
n− 1 log(1/δ).

This implies that Pθ∗(supθ∈Θ T1 > ϵrn,T/(3
√
n)) = 0 as soon as we have ϵrn,T/

√
n ≥

6 log(1/δ)/(n−1). Then for any sequence {rn,T}n,T≥1 increasing to infinity, for any ϵ > 0,
we have that Pθ∗(supθ∈Θ T1 > ϵrn,T/(3

√
n))→ 0 as n and T increase.

Second term of the right-hand side of (2.5.4). Let us denote

T2(Z1:T ) :=
∣∣∣∣∣ 2
n(n− 1)T logPθ(X1:T | Z1:T = ẑ1:T )

− 2
n(n− 1)T Eθ∗

[
logPθ(X1:T |Z1:T = Z̃1:T )

∣∣∣∣ Z1:T
] ∣∣∣∣∣.

For the sake of clarity, we study this term on the event {Z1:T = z∗1:T} where z∗1:T ∈
J1, QKnT is a fixed configuration. This event induces the definition of Z̃1:T following
Equation (2.5.2) as

Z̃1:T = arg max
z1:T ∈J1,QKnT

Eθ∗

[
logPθ(X1:T | Z1:T = z1:T )

∣∣∣∣ Z1:T = z∗1:T
]
,

or equivalently for every t ∈ J1, T K,

Z̃t = arg max
z=(z1,...,zn)∈J1,QKn

∑
1≤i<j≤n

π∗
z∗t

i z∗t
j

log πzizj
+ (1− π∗

z∗t
i z∗t

j
) log(1− πzizj

).

By definition of ẑ1:T and Z̃1:T respectively, we have the two inequalities

logPθ(X1:T | Z1:T = ẑ1:T ) ≥ logPθ(X1:T | Z1:T = Z̃1:T )
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and

Eθ∗

[
logPθ(X1:T | Z1:T = Z̃1:T )

∣∣∣∣ Z1:T = z∗1:T
]

≥Eθ∗

[
logPθ(X1:T | Z1:T = ẑ1:T )

∣∣∣∣ Z1:T = z∗1:T
]
,

implying the lower and upper bounds

logPθ(X1:T | Z1:T = Z̃1:T )− Eθ∗

[
logPθ(X1:T | Z1:T = Z̃1:T )

∣∣∣∣ Z1:T = z∗1:T
]

≤ logPθ(X1:T | Z1:T = ẑ1:T )− Eθ∗

[
logPθ(X1:T | Z1:T = Z̃1:T )

∣∣∣∣ Z1:T = z∗1:T
]

≤ logPθ(X1:T | Z1:T = ẑ1:T )− Eθ∗

[
logPθ(X1:T | Z1:T = ẑ1:T )

∣∣∣∣ Z1:T = z∗1:T
]
.

Taking the absolute value gives us an upper bound for T2(z∗1:T )

T2(z∗1:T ) ≤ max
z1:T ∈{ẑ1:T ,Z̃1:T }

2
n(n− 1)T

∣∣∣∣∣ logPθ(X1:T | Z1:T = z1:T )

− Eθ∗

[
logPθ(X1:T | Z1:T = z1:T )

∣∣∣∣ Z1:T = z∗1:T
] ∣∣∣∣∣.

Using Equations (2.5.5) and (2.5.6), we then obtain the following upper bound for
T2(z∗1:T )

T2(z∗1:T ) ≤ max
z1:T ∈{ẑ1:T ,Z̃1:T }

∣∣∣∣∣∣ 2
n(n− 1)T

T∑
t=1

∑
1≤i<j≤n

(X t
ij − π∗

z∗t
i z∗t

j
) log

 πzt
iz

t
j

1− πzt
iz

t
j

∣∣∣∣∣∣ .
We use the following concentration result to conclude.

Lemma 2.5.2. Let ϵ, β > 0 and {xn,T}n,T≥1 a sequence of positive real numbers. We
let P∗

θ∗(·) denote the probability conditional on {Z1:T = z∗1:T} under parameter θ∗, i.e.
P∗
θ∗(·) = Pθ∗(· | Z1:T = z∗1:T ). Denoting Λ = 2 log[(1− ζ)/ζ] > 0 we have for any θ ∈ Θ

P∗
θ∗

 sup
z1:T ∈J1,QKnT

sup
π∈[ζ,1−ζ]Q2

2
n(n− 1)T

∣∣∣∣∣∣
T∑
t=1

∑
1≤i<j≤n

(X t
ij − π∗

z∗t
i z∗t

j
) log

 πzt
iz

t
j

1− πzt
iz

t
j

∣∣∣∣∣∣ > ϵ


≤P∗

θ∗

 (1 + β)Λ√
n(n− 1)T/2

+
Λ
√
xn,T/2√

n(n− 1)T/2
+ (1/β + 1/3) (Λ/2)xn,T

n(n− 1)T/2 > ϵ

+ 2e−xn,T

≤12Ω/(n(n−1)T )>ϵ + 2e−xn,T (2.5.8)
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with Ω = (1 + β)Λ
√
n(n− 1)T/2 + Λ

√
n(n− 1)Txn,T/4 + (1/β + 1/3)(Λ/2)xn,T .

Let us choose xn,T = log(n) in the above lemma. For any ϵ > 0, for any sequence
{rn,T}n,T≥1 increasing to infinity, we have for n and T large enough

ϵrn,T
3
√
n
≥ 2Ω
n(n− 1)T .

Then for n and T large enough, the first term in the right-hand side of inequality (2.5.8)
is equal to 0 and we have

P∗
θ∗

(
sup
θ∈Θ

T2(z∗1:T ) > ϵrn,T
3
√
n

)
≤ 2
n

and Pθ∗

(
sup
θ∈Θ

T2(Z1:T ) > ϵrn,T
3
√
n

)
≤
∑
z∗1:T

P∗
θ∗

(
sup
θ∈Θ

T2(z∗1:T ) > ϵrn,T
3
√
n

)
Pθ∗(Z1:T = z∗1:T )

≤ 2
n
.

Third term of the right-hand side of (2.5.4). Let us denote

T3(Z1:T ) :=
∣∣∣∣∣ 2
n(n− 1)T Eθ∗

[
logPθ(X1:T | Z1:T = Z̃1:T )

∣∣∣∣ Z1:T
]
−M(π)

∣∣∣∣∣
=
∣∣∣∣∣ 2
n(n− 1)T

T∑
t=1

Eθ∗

[
logPθ(X t | Zt = Z̃t)

∣∣∣∣ Zt
]
−M(π, Āπ)

∣∣∣∣∣ .
For any fixed configuration zt ∈ J1, QKn, analogous to Equation (2.5.6), we write

Eθ∗

[
logPθ(X t | Zt = zt)

∣∣∣∣ Zt
]

=
∑

1≤i<j≤n
π∗
Zt

iZ
t
j
log πzt

iz
t
j

+ (1− π∗
Zt

iZ
t
j
) log(1− πzt

iz
t
j
)

=1
2

∑
1≤i ̸=j≤n

π∗
Zt

iZ
t
j
log πzt

iz
t
j

+ (1− π∗
Zt

iZ
t
j
) log(1− πzt

iz
t
j
)

=1
2

∑
1≤q,l,q′,l′≤Q

∑
1≤i ̸=j≤n

(
π∗
ql log πq′l′ + (1− π∗

ql) log(1− πq′l′)
)
1{Zt

i =q,Zt
j=l,zt

i =q′,zt
j=l′}

=1
2

∑
1≤q,l,q′,l′≤Q

Cqq′(Zt, zt)Cll′(Zt, zt)
(
π∗
ql log πq′l′ + (1− π∗

ql) log(1− πq′l′)
)
,

where Cqq′(Zt, zt) = |{i ∈ J1, nK;Zt
i = q, zti = q′}| is the (random variable) number of

nodes classified in group q in the current (random) configuration Zt, while they belong
to group q′ in (deterministic) configuration zt. Recall that Nq(zt) is the number of
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nodes assigned to class q by the configuration zt and let us denote atqq′ = aqq′(Zt, zt) =
Cqq′(Zt, zt)/Nq(Zt) the (random) proportion of vertices from class q in Zt attributed to
class q′ by zt. We write

2
n(n− 1)Eθ

∗

[
logPθ(X t | Zt = zt)

∣∣∣∣ Zt
]

=
∑

1≤q,l,q′,l′≤Q

Nq(Zt)Nl(Zt)
n(n− 1) atqq′atll′

(
π∗
ql log πq′l′ + (1− π∗

ql) log(1− πq′l′)
)

:=Φt(At, π),

with At = (atqq′)1≤q,q′≤Q.
Now extending these notations to the case where zt = Z̃t, we let Ãt = (ãtqq′)1≤q,q′≤Q

where ãtqq′ = aqq′(Zt, Z̃t). We remark that the definition of Z̃t implies that Ãt =
arg maxAt∈At(Z1:T ) Φt(At, π) with At(Z1:T ) the (random) subset of stochastic matrices
defined for every t ∈ J1, T K by

At(Z1:T ) =
{
A = (nql/Nq(Zt))1≤q,l≤Q;nql ∈ J0, Nq(Zt)K,

Q∑
l=1

nql = Nq(Zt)
}
.

Let us also denote Ātπ = arg maxA∈At(Z1:T ) M(π,A). Then

sup
θ∈Θ

T3(Z1:T ) ≤ sup
π∈[ζ,1−ζ]Q2

1
T

T∑
t=1

∣∣∣Φt(Ãt, π)−M(π, Āπ)
∣∣∣

≤ sup
π∈[ζ,1−ζ]Q2

1
T

T∑
t=1

∣∣∣Φt(Ãt, π)−M(π, Ātπ)
∣∣∣

+ 1
T

T∑
t=1

sup
π∈[ζ,1−ζ]Q2

∣∣∣M(π, Ātπ)−M(π, Āπ)
∣∣∣ . (2.5.9)

We start by stating a concentration lemma on the random variable Nq(Zt) for any
q ∈ J1, QK and any t ∈ J1, T K.

Lemma 2.5.3. For any θ ∈ Θ and any η ∈ (0, δ), let

Ωη(θ) :=
{
z1:T ∈ J1, QKnT ; ∀t ∈ J1, T K,∀q ∈ J1, QK,

Nq(zt)
n

≥ αq − η
}
.

Then Pθ
(
Z1:T ∈ Ωη(θ)

)
≥ 1−QT exp(−2η2n).

Building on the previous concentration lemma, the following one gives the convergence
in Pθ∗-probability of the second term in the right-hand side of (2.5.9).
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Lemma 2.5.4. For any ϵ > 0, any η ∈ (0, δ) and {rn,T}n,T≥1 any positive sequence,

Pθ∗

 1
T

T∑
t=1

sup
π∈[ζ,1−ζ]Q2

∣∣∣M(π, Ātπ)−M(π, Āπ)
∣∣∣ > ϵrn,T

6
√
n


≤QT exp

(
−2η2n

)
+ 1n≤6c

√
n/[ϵrn,T (δ−η)] (2.5.10)

with c = 6(1− δ)2(1− ζ) log(1/ζ)Q4.

Then taking any η ∈ (0, δ), for any ϵ > 0, for any sequence {rn,T}n,T≥1 increasing to
infinity, we have the following inequality for n and T large enough

rn,T >
6c
√
n

ϵ(δ − η)n, (2.5.11)

implying that the probability in Lemma 2.5.4 converges to 0 as n and T increase for any
ϵ > 0, as long as log T = o(n). Now, for the first term in the right-hand side of (2.5.9),
note that we have for every π and every t Φt(Ãt, π) ≥ Φt(Ātπ, π) because Ãt = arg maxA∈At Φt(A, π)

M(π, Ātπ) ≥M(π, Ãt) because Ātπ = arg maxA∈At M(π,A).

Then, either M(π, Ātπ) ≤ Φt(Ãt, π) and

0 ≤ Φt(Ãt, π)−M(π, Ātπ) ≤ Φt(Ãt, π)−M(π, Ãt)

or M(π, Ātπ) ≥ Φt(Ãt, π) and

0 ≤M(π, Ātπ)− Φt(Ãt, π) ≤M(π, Ātπ)− Φt(Ātπ, π).

In both cases, we get that
∣∣∣Φt(Ãt, π)−M(π, Ātπ)

∣∣∣ ≤ supA∈A |Φt(A, π)−M(π,A)| for
every t and π, thus obtaining the upper bound

sup
π∈[ζ,1−ζ]Q2

1
T

T∑
t=1

∣∣∣Φt(Ãt, π)−M(π, Ātπ)
∣∣∣ ≤ 1

T

T∑
t=1

sup
π∈[ζ,1−ζ]Q2

sup
At∈A

∣∣∣Φt(At, π)−M(π,At)
∣∣∣ .

Letting

∆(ζ) = sup
π∈[ζ,1−ζ]

sup
π∗∈[ζ,1−ζ]

|π∗ log π + (1− π∗) log(1− π)| ∈ (0,+∞)
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and recalling that 0 ≤ aql ≤ 1 (for every q, l ∈ J1, QK) for every A = (aql)1≤q,l≤Q ∈ A, we
have

sup
π∈[ζ,1−ζ]Q2

sup
At∈A

∣∣∣Φt(At, π)−M(π,At)
∣∣∣

≤ sup
π∈[ζ,1−ζ]Q2

sup
At∈A

∑
1≤q,l,q′,l′≤Q

∣∣∣∣∣∣
(
Nq(Zt)Nl(Zt)
n(n− 1) − α∗

qα
∗
l

)
atqq′atll′

×
(
π∗
ql log πq′l′ + (1− π∗

ql) log(1− πq′l′)
) ∣∣∣∣∣∣

≤ ∆(ζ)Q2 ∑
1≤q,l≤Q

∣∣∣∣∣Nq(Zt)Nl(Zt)
n(n− 1) − α∗

qα
∗
l

∣∣∣∣∣ .
Finally, we bound the first term of the right-hand-side of (2.5.9) as follows

sup
π∈[ζ,1−ζ]Q2

1
T

T∑
t=1

∣∣∣Φt(Ãt, π)−M(π, Ātπ)
∣∣∣ ≤ ∆(ζ)Q2 ∑

1≤q,l≤Q

1
T

T∑
t=1

∣∣∣∣∣Nq(Zt)Nl(Zt)
n(n− 1) − α∗

qα
∗
l

∣∣∣∣∣ .
(2.5.12)

Applying Markov’s Inequality, we obtain

Pθ∗

 sup
π∈[ζ,1−ζ]Q2

1
T

T∑
t=1

∣∣∣Φt(Ãt, π)−M(π, Ātπ)
∣∣∣ > ϵrn,T

6
√
n


≤
∑
q,l

Pθ∗

(
1
T

T∑
t=1

∣∣∣∣∣Nq(Zt)Nl(Zt)
n(n− 1) − α∗

qα
∗
l

∣∣∣∣∣ > ϵrn,T
6∆(ζ)Q4√n

)

≤6∆(ζ)Q4√n
ϵrn,T

∑
q,l

1
T

T∑
t=1

Eθ∗

[∣∣∣∣∣Nq(Zt)Nl(Zt)
n(n− 1) − α∗

qα
∗
l

∣∣∣∣∣
]

≤6∆(ζ)Q4√n
ϵrn,T

∑
q,l

Eθ∗

[∣∣∣∣∣Nq(Z1)Nl(Z1)
n(n− 1) − α∗

qα
∗
l

∣∣∣∣∣
]
.

The following lemma gives an upper bound of the expectation appearing in the previous
inequality, for any q, l ∈ J1, QK.

Lemma 2.5.5. For any q, l ∈ J1, QK and any t ∈ J1, T K, we have the following inequality

Eθ∗

[∣∣∣∣∣Nq(Zt)Nl(Zt)
n(n− 1) − α∗

qα
∗
l

∣∣∣∣∣
]
≤ 2
√
n

n− 1 .
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This leads to

Pθ∗

 sup
π∈[ζ,1−ζ]Q2

1
T

T∑
t=1

∣∣∣Φt(Ãt, π)−M(π, Ātπ)
∣∣∣ > ϵrn,T

6
√
n

 ≤ 12∆(ζ)Q6n

ϵrn,T (n− 1) .

Then for any ϵ > 0, for any sequence {rn,T}n,T≥1 increasing to infinity, we have the
convergence

Pθ∗

 sup
π∈[ζ,1−ζ]Q2

1
T

T∑
t=1

∣∣∣Φt(Ãt, π)−M(π, Ātπ)
∣∣∣ > ϵrn,T/(6

√
n)
 −−−−→

n,T→∞
0.

We proved the convergence to 0 of the three terms in the right-hand side of (2.5.4) for
any sequence {rn,T}n,T≥1 increasing to infinity and as long as log T = o(n). This gives
the expected result and concludes the proof.

2.5.2 Proof of Corollary 2.3.1

To prove this corollary, we establish the following lemma that allows us to obtain a rate
of convergence of π̂ to π∗ from a rate of convergence of Mn,T to M. Note that this lemma
is a bit more general than what we need and gives an equivalent result when the number
of time steps T is fixed, which will be useful for Corollary 2.3.2.

Lemma 2.5.6. Let {Fn,T}n,T≥1 be any random functions on the set Θ (resp. ΘT ) and
M (resp. MT ) defined as before. Assume that there exists a sequence {vn,T}n,T≥1 (resp.
{vn}n≥1) a sequence decreasing to 0 such that for every ϵ > 0, we have the following
convergence as n, T →∞ (resp. n→∞)

Pθ∗

(
sup

(Γ,π)∈Θ
|Fn,T (Γ, π)−M(π)| > ϵvn,T

)
−−−−→
n,T→∞

0

(
resp. Pθ∗

(
sup

(Γ,π)∈ΘT

∣∣∣Fn,T (Γ, π1:T )−MT (π1:T )
∣∣∣ > ϵvn

)
−−−→
n→∞

0
)
.

If for any n and T , θ̂ = (Γ̂, π̂) (resp. θ̂ = (Γ̂, π̂1:T )) is defined as the maximizer of Fn,T
on the set Θ (resp. ΘT ), we have the following convergence

Pθ∗

(
min
σ∈SQ

∥π̂σ − π∗∥∞ > ϵ
√
vn,T

)
−−−−→
n,T→∞

0

(
resp. Pθ∗

(
min

σ1,...,σT ∈SQ

∥π̂1:T
σ1:T − π∗1:T∥∞ > ϵ

√
vn

)
−−−→
n→∞

0
)
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with π̂1:T
σ1:T = (π̂tσt)t∈J1,T K.

The result of Corollary 2.3.1 is then a direct consequence of Theorem 2.3.1 (choosing
the sequence {r2

n,T}n,t≥1) and Lemma 2.5.6 applied with Fn,T = Mn,T .

2.5.3 Proof of Theorem 2.3.2

The proof follows the lines of the proof of Theorem 3.8 in Celisse et al. (2012). Nonetheless,
our result is sharper as we will establish an upper bound of the rate of convergence
(in probability) of the quantity at stake. For any ϵ > 0, any sequence {yn,T}n,T≥1 and
η ∈ (0, δ), we write

Pθ∗(E(Z1:T , θ̆, ϵyn,T ))
=

∑
z∗1:T ∈J1,QKnT

Pθ∗(E(z∗1:T , θ̆, ϵyn,T );Z1:T = z∗1:T ) ≤ Pθ∗(Z1:T ∈ Ωc
η(θ∗))

+
∑

z∗1:T ∈Ωη(θ∗)
Pθ∗

Pθ̆
(
Z1:T ̸= z∗1:T |X1:T

)
Pθ̆ (Z1:T = z∗1:T |X1:T ) > ϵyn,T

∣∣∣∣ Z1:T = z∗1:T

Pθ∗

(
Z1:T = z∗1:T

)
(2.5.13)

with Ωη(θ∗) as defined in Lemma 2.5.3. We will establish that there exist some positive
constants C,C1, C2, C3, C4 such that for any fixed configuration z∗1:T ∈ Ωη(θ∗), any ϵ > 0,
any positive sequence {yn,T}n,T≥1 such that log(1/yn,T ) = o(n) and n and T large enough,
we have

Pθ∗

[
Pθ̆(Z1:T ̸= z∗1:T |X1:T )
Pθ̆(Z1:T = z∗1:T |X1:T ) > ϵyn,T

∣∣∣∣ Z1:T = z∗1:T
]

≤Pθ∗

(
∥π̆ − π∗∥∞ > vn,T | Z1:T = z∗1:T

)
+ CnT

 exp
− (δ − η)2C1n+ C2 log(nT ) + C4 log(1/(ϵyn,T ))


+ exp

− C3
(log(nT ))2

nv2
n,T

+ 3n log(nT )
. (2.5.14)

Combined with (2.5.13) and applying Lemma 2.5.3, this gives the desired result. So now
we focus on establishing (2.5.14).
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In what follows, we consider a fixed configuration z∗1:T ∈ Ωη(θ∗) and introduce the
Hamming distance between z∗1:T and any other configuration z1:T defined as

∥z1:T − z∗1:T∥0 =
T∑
t=1

n∑
i=1

1zt
i ̸=z∗t

i
.

We let P∗
θ∗(·) denote the probability conditional on {Z1:T = z∗1:T} under parameter

θ = θ∗, i.e. P∗
θ∗(·) = Pθ∗(· | Z1:T = z∗1:T ). In the following, we will often use the fact that

the variables {X t
ij} are independent under P∗

θ∗ (with mean value π∗
z∗t

i z∗t
j

) so that we can
rely on Hoeffding’s Inequality. We introduce a sequence {vn,T}n,T≥1 decreasing to 0 and
Ωn,T the event defined as

Ωn,T = {∥π̆ − π∗∥∞ ≤ vn,T}.

We bound the probability of interest in (2.5.14) by splitting it on the two complementary
events Ωn,T and Ωc

n,T . For any ϵ > 0 and any positive sequence {yn,T}n,T≥1

P∗
θ∗

[
Pθ̆(Z1:T ̸= z∗1:T |X1:T )
Pθ̆(Z1:T = z∗1:T |X1:T ) > ϵyn,T

]

≤P∗
θ∗

(
Ωc
n,T

)
+ P∗

θ∗

[{
Pθ̆(Z1:T ̸= z∗1:T |X1:T )
Pθ̆(Z1:T = z∗1:T |X1:T ) > ϵyn,T

}
∩ Ωn,T

]
. (2.5.15)

Thus, the proof of (2.5.14) boils down to establishing the desired upper bound on the
second term appearing in the right-hand side of (2.5.15). We have

P∗
θ∗

[{
Pθ̆(Z1:T ̸= z∗1:T |X1:T )
Pθ̆(Z1:T = z∗1:T |X1:T ) > ϵyn,T

}
∩ Ωn,T

]

≤
nT∑
r=1

∑
z1:T ;∥z1:T −z∗1:T ∥0=r

P∗
θ∗

[{
Pθ̆(Z1:T = z1:T |X1:T )
Pθ̆(Z1:T = z∗1:T |X1:T ) > ϵyn,T/(Qr(nT )r+1)

}
∩ Ωn,T

]
,
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by using the bound (Q − 1)r
(
nT
r

)
≤ Qr(nT )r on the number of terms in the sum over

{z1:T ; ∥z1:T − z∗1:T∥0 = r} (for each value of r). Then,

P∗
θ∗

[{
Pθ̆(Z1:T ̸= z∗1:T |X1:T )
Pθ̆(Z1:T = z∗1:T |X1:T ) > ϵyn,T

}
∩ Ωn,T

]

≤
nT∑
r=1

∑
z1:T ;

∥z1:T −z∗1:T ∥0=r

P∗
θ∗

 log Pθ̆(Z1:T = z1:T |X1:T )
Pθ̆(Z1:T = z∗1:T |X1:T ) > log(ϵyn,T )− r logQ

− (r + 1) log(nT )
 ∩ Ωn,T


≤

nT∑
r=1

∑
z1:T ;

∥z1:T −z∗1:T ∥0=r

P∗
θ∗

 log Pθ̆(Z1:T = z1:T |X1:T )
Pθ̆(Z1:T = z∗1:T |X1:T ) > − log

(
1

ϵyn,T

)

− 3r log(nT )
 ∩ Ωn,T

, (2.5.16)

as long as nT ≥ Q. For any configuration z1:T such that ∥z1:T − z∗1:T∥0 = r, we denote
by r(1), . . . , r(T ) the number of differences between the two configurations at each time
step t ∈ J1, T K, i.e. r(t) = ∥zt− z∗t∥0 such that r = ∑

t r(t). Moreover, for any parameter
π, we define Dn,T (z1:T , π) the subset of indexes (i, j, t) ∈ J1, nK2 × J1, T K such that i < j

for which the parameter π differs between the configuration z∗1:T and z1:T , namely

Dn,T (z1:T , π) :=
{
(i, j, t) ∈ In,T ; πzt

iz
t
j
̸= πz∗t

i z∗t
j

}
,

with In,T = {(i, j, t) ∈ J1, nK2 × J1, T K; i < j} the set of indexes over which we sum to
compute the conditional log-likelihood. In what follows, we abbreviate to D∗ (resp. D̆),
the set Dn,T (z1:T , π∗) (resp. Dn,T (z1:T , π̆)). Next lemma gives a decomposition of the
main term at stake in (2.5.16).

Lemma 2.5.7. We have the decomposition

log Pθ̆(Z1:T = z1:T |X1:T )
Pθ̆(Z1:T = z∗1:T |X1:T ) = U1 + U2 − U3,
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where

U1 :=
∑

(i,j,t)∈D∗

X t
ij log

π∗
zt

iz
t
j

π∗
z∗t

i z∗t
j

+ (1−X t
ij) log

1− π∗
zt

iz
t
j

1− π∗
z∗t

i z∗t
j


+

n∑
i=1

log
ᾰz1

i

ᾰz∗1
i

+
T−1∑
t=1

n∑
i=1

log
γ̆zt

iz
t+1
i

γ̆z∗t
i z∗t+1

i

(2.5.17)

U2 :=
∑

(i,j,t)∈D∗∪D̆

log
1 +

(π̆zt
iz

t
j
− π∗

zt
iz

t
j
)(X t

ij − π∗
zt

iz
t
j
)

π∗
zt

iz
t
j
(1− π∗

zt
iz

t
j
)

 (2.5.18)

U3 :=
∑

(i,j,t)∈D∗∪D̆

log
1 +

(π̆z∗t
i z∗t

j
− π∗

z∗t
i z∗t

j
)(X t

ij − π∗
z∗t

i z∗t
j

)
π∗
z∗t

i z∗t
j

(1− π∗
z∗t

i z∗t
j

)

 . (2.5.19)

Combining (2.5.16) and Lemma 2.5.7, we obtain

P∗
θ∗

 ∑
z1:T ̸=z∗1:T

Pθ̆(Z1:T = z1:T |X1:T )
Pθ̆(Z1:T = z∗1:T |X1:T ) > ϵyn,T

 ∩ Ωn,T


≤

nT∑
r=1

∑
z1:T ;∥z1:T −z∗1:T ∥0=r

P∗
θ∗ [{U1 + U2 − U3 > − log(1/(ϵyn,T ))− 3r log(nT )} ∩ Ωn,T ] .

(2.5.20)

We then decompose

P∗
θ∗ [{U1 + U2 − U3 > − log(1/(ϵyn,T ))− 3r log(nT )} ∩ Ωn,T ]

≤P∗
θ∗ [{U1 + U2 − U3 > − log(1/(ϵyn,T ))− 3r log(nT )} ∩ Ωn,T ∩ {|U3| ≤ r log(nT )}]

+ P∗
θ∗ [Ωn,T ∩ {|U3| > r log(nT )}]

≤P∗
θ∗ [{U1 + U2 > − log(1/(ϵyn,T ))− 4r log(nT )} ∩ Ωn,T ]

+ P∗
θ∗ [Ωn,T ∩ {|U3| > r log(nT )}]

≤P∗
θ∗ [U1 > − log(1/(ϵyn,T ))− 5r log(nT )] + P∗

θ∗ [Ωn,T ∩ {|U2| > r log(nT )}]
+ P∗

θ∗ [Ωn,T ∩ {|U3| > r log(nT )}] . (2.5.21)

We handle these three terms separately in the following. From now on, we consider a
configuration z1:T such that ∥z1:T − z∗1:T∥0 = r = ∑

t r(t).
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First term in the right-hand side of (2.5.21). Recall that U1 is given by (2.5.17).
We can further decompose this term

U1 =
∑

(i,j,t)∈D∗

(X t
ij − π∗

z∗t
i z∗t

j
) log

π∗
zt

iz
t
j

π∗
z∗t

i z∗t
j

1− π∗
z∗t

i z∗t
j

1− π∗
zt

iz
t
j


+

∑
(i,j,t)∈D∗

π∗
z∗t

i z∗t
j

log
π∗
zt

iz
t
j

π∗
z∗t

i z∗t
j

+ (1− π∗
z∗t

i z∗t
j

) log
1− π∗

zt
iz

t
j

1− π∗
z∗t

i z∗t
j


+

n∑
i=1

log
ᾰz1

i

ᾰz∗1
i

+
T−1∑
t=1

n∑
i=1

log
γ̆zt

iz
t+1
i

γ̆z∗t
i z∗t+1

i

.

For n and T large enough such that Γ̆ ∈ [δ, 1 − δ]Q2 (implying for the corresponding
stationary distribution ᾰ ∈ [δ, 1− δ]Q), we have

n∑
i=1

log
ᾰz1

i

ᾰz∗1
i

+
T−1∑
t=1

n∑
i=1

log
γ̆zt

iz
t+1
i

γ̆z∗t
i z∗t+1

i

=
n∑
i=1

1{z1
i ̸=z∗1

i } log
ᾰz1

i

ᾰz∗1
i

+
T−1∑
t=1

n∑
i=1

1{(zt
i ,z

t+1
i )̸=(z∗t

i ,z∗t+1
i )} log

γ̆zt
iz

t+1
i

γ̆z∗t
i z∗t+1

i

≤r(1) log 1− δ
δ

+
T−1∑
t=1

[r(t) + r(t+ 1)] log 1− δ
δ
≤ 2r log 1− δ

δ
.

To handle the term U1, we need to lower bound the cardinality of the set D∗. This is
the purpose of Lemma 2.5.8 which is a generalization of Proposition B.4 in Celisse et al.
(2012). This can be done for all the configurations z1:T and all the configurations z∗1:T

that belong to some Ωη(θ).

Lemma 2.5.8. For any η ∈ (0, δ), any parameter θ ∈ Θ, any configuration z1:T and any
z∗1:T ∈ Ωη(θ) such that ∥z1:T − z∗1:T∥0 = r, we have

∣∣∣Dn,T (z1:T , π)
∣∣∣ ≥ (δ − η)2

4 nr.

Combining Lemma 2.5.8 with the previous bound, we get that

(|D∗|)−1

 n∑
i=1

log
ᾰz1

i

ᾰz∗1
i

+
T−1∑
t=1

n∑
i=1

log
γ̆zt

iz
t+1
i

γ̆z∗t
i z∗t+1

i

 ≤ 2r
|D∗|

log 1− δ
δ

≤ 8
n(δ − η)2 log 1− δ

δ
−−−−→
n→+∞

0. (2.5.22)
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We also have

(|D∗|)−1 ∑
(i,j,t)∈D∗

π∗
z∗t

i z∗t
j

log
π∗
zt

iz
t
j

π∗
z∗t

i z∗t
j

+ (1− π∗
z∗t

i z∗t
j

) log
1− π∗

zt
iz

t
j

1− π∗
z∗t

i z∗t
j


≤ max

q,l,q′,l′;π∗
ql

̸=π∗
q′l′
−k(π∗

ql, π
∗
q′l′)

with k(x, y) = x log(x/y) + (1− x) log[(1− x)/(1− y)] for (x, y) ∈ (0, 1)2. The function
k is positive for every (x, y) such that x ̸= y, hence, introducing the notation K∗ =
minq,l,q′,l′;π∗

ql
̸=π∗

q′l′
k(π∗

ql, π
∗
q′l′)/2,

max
q,l,q′,l′;π∗

ql
̸=π∗

q′l′
−k(π∗

ql, π
∗
q′l′) := −2K∗ < 0.

So, by (2.5.22), we have for n large enough

(|D∗|)−1

 ∑
(i,j,t)∈D∗

π∗
z∗t

i z∗t
j

log
π∗
zt

iz
t
j

π∗
z∗t

i z∗t
j

+ (1− π∗
z∗t

i z∗t
j

) log
1− π∗

zt
iz

t
j

1− π∗
z∗t

i z∗t
j


+

n∑
i=1

log
ᾰz1

i

ᾰz∗1
i

+
T−1∑
t=1

n∑
i=1

log
γ̆zt

iz
t+1
i

γ̆z∗t
i z∗t+1

i

 ≤ −K∗.

This leads to

P∗
θ∗(U1 > u) ≤ P∗

θ∗

 ∑
(i,j,t)∈D∗

(X t
ij − π∗

z∗t
i z∗t

j
) log

π∗
zt

iz
t
j

π∗
z∗t

i z∗t
j

1− π∗
z∗t

i z∗t
j

1− π∗
zt

iz
t
j

− |D∗|K∗ > u


for any u > 0 and large enough n. Moreover, thanks to Hoeffding’s Inequality and
Assumption 3,

P∗
θ∗(U1 > u) ≤P∗

θ∗

 ∑
(i,j,t)∈D∗

(X t
ij − π∗

z∗t
i z∗t

j
) log

π∗
zt

iz
t
j

π∗
z∗t

i z∗t
j

1− π∗
z∗t

i z∗t
j

1− π∗
zt

iz
t
j

 > u+ |D∗|K∗


≤ exp

[
−u

2 + |D∗|2K∗2 + 2u|D∗|K∗

|D∗|Cζ

]

≤ exp
[
−|D

∗|2K∗2 + 2u|D∗|K∗

|D∗|Cζ

]
= exp

[
−2uK∗

Cζ

]
exp

[
−|D

∗|K∗2

Cζ

]
,
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where Cζ is a constant depending on ζ. Finally using Lemma 2.5.8, we have

P∗
θ∗ (U1 > − log(1/(ϵyn,T ))− 5r log(nT ))

≤ exp
[
[log(1/(ϵyn,T )) + 5r log(nT )] 2K∗

Cζ

]
exp

[
−|D

∗|K∗2

Cζ

]

≤ exp
[
[log(1/(ϵyn,T )) + 5r log(nT )] 2K∗

Cζ

]
exp

[
−nr (δ − η)2K∗2

4Cζ

]
.

Second term in the right-hand side of (2.5.21). We have

U2 :=
∑

(i,j,t)∈D∗∪D̆

log
1 +

(π̆zt
iz

t
j
− π∗

zt
iz

t
j
)(X t

ij − π∗
zt

iz
t
j
)

π∗
zt

iz
t
j
(1− π∗

zt
iz

t
j
)


≤

∑
(i,j,t)∈D∗∪D̆

(π̆zt
iz

t
j
− π∗

zt
iz

t
j
)(X t

ij − π∗
zt

iz
t
j
)

π∗
zt

iz
t
j
(1− π∗

zt
iz

t
j
) .

For any q, l, q′, l′ ∈ J1, QK, we introduce the sets

Fqlq′l′ = Fqlq′l′(z1:T , z∗1:T ) := {(i, j, t) ∈ In,T ; zti = q, ztj = l, z∗t
i = q′, z∗t

j = l′}
Fql = Fql(z1:T ) := ∪1≤q′,l′≤QFqlq′l′ = {(i, j, t) ∈ In,T ; zti = q, ztj = l}

Gqlq′l′ = Gqlq′l′(z1:T , z∗1:T , π∗, π̆) := (D∗ ∪ D̆) ∩ Fqlq′l′

= {(i, j, t) ∈ In,T ; zti = q, ztj = l, z∗t
i = q′, z∗t

j = l′

and (π∗
zt

iz
t
j
̸= π∗

z∗t
i z∗t

j
or π̆zt

iz
t
j
̸= π̆z∗t

i z∗t
j

)}

Gql = Gql(z1:T , z∗1:T , π∗, π̆) := (D∗ ∪ D̆) ∩ Fql
= {(i, j, t) ∈ In,T ; zti = q, ztj = l and (π∗

zt
iz

t
j
̸= π∗

z∗t
i z∗t

j
or π̆zt

iz
t
j
̸= π̆z∗t

i z∗t
j

)}.



106 Consistency of the ML and Variational estimators in a dynamic SBM

Then we bound

|U2| ≤
∑

1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣∣
∑

(i,j,t)∈D∗∪D̆

(X t
ij − π∗

ql)1zt
i =q,zt

j=l

∣∣∣∣∣∣∣
≤

∑
1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑

(i,j,t)∈Gql

(X t
ij − π∗

ql)
∣∣∣∣∣∣

≤
∑

1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑

(i,j,t)∈Gql

(X t
ij − π∗

z∗t
i z∗t

j
)
∣∣∣∣∣∣

+
∑

1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑

(i,j,t)∈Gql

(π∗
z∗t

i z∗t
j
− π∗

ql)
∣∣∣∣∣∣

≤
∑

1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑

(i,j,t)∈Gql

(X t
ij − π∗

z∗t
i z∗t

j
)
∣∣∣∣∣∣

+
∑

1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑
q′,l′

(π∗
q′l′ − π∗

ql)|Gqlq′l′|

∣∣∣∣∣∣ . (2.5.23)

For every u > 0, we thus have

P∗
θ∗(Ωn,T ∩ {|U2| > u})

≤P∗
θ∗

 ∑
1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑

(i,j,t)∈Gql

(X t
ij − π∗

z∗t
i z∗t

j
)
∣∣∣∣∣∣ > u/2

 ∩ Ωn,T


+ P∗

θ∗

 ∑
1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑

1≤q′,l′≤Q
(π∗

q′l′ − π∗
ql)|Gqlq′l′|

∣∣∣∣∣∣ > u/2
 ∩ Ωn,T

 . (2.5.24)

We start by dealing with the first term of the right-hand side of (2.5.24). Notice that on the
event Ωn,T , we have

∣∣∣(π̆ql − π∗
ql)/(π∗

ql(1− π∗
ql))

∣∣∣ ≤ vn,T/ζ
2 for every q, l ∈ J1, QK. The next

lemma establishes that any set Dn,T (z1:T , π) is included in a larger set, whose cardinality
is bounded. In particular, the random set D̆ is included in a larger deterministic subset.

Lemma 2.5.9. Let z1:T and z∗1:T denote two configurations such that ∥z1:T −z∗1:T∥0 = r.
Then for any parameter π = (πql)1≤q,l≤Q, we have

Dn,T (z1:T , π) ⊂ Dn,T (z1:T ) :=
{
(i, j, t) ∈ J1, nK2 × J1, T K; (zti , ztj) ̸= (z∗t

i , z
∗t
j )
}

and
∣∣∣Dn,T (z1:T )

∣∣∣ ≤ 2nr.
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As the set Gql is random (because D̆ is random), we write

P∗
θ∗

 ∑
1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑

(i,j,t)∈Gql

(X t
ij − π∗

z∗t
i z∗t

j
)
∣∣∣∣∣∣ > u/2

 ∩ Ωn,T


≤P∗

θ∗

 ∑
1≤q,l≤Q

∣∣∣∣∣∣
∑

(i,j,t)∈Gql

(X t
ij − π∗

z∗t
i z∗t

j
)
∣∣∣∣∣∣ > uζ2

2vn,T


≤

∑
D⊂Dn,T (z1:T )

P∗
θ∗

 ∑
1≤q,l≤Q

∣∣∣∣∣∣
∑

(i,j,t)∈Fql∩D
(X t

ij − π∗
z∗t

i z∗t
j

)
∣∣∣∣∣∣ > uζ2

2vn,T

 ,
where now D is a deterministic set. By a union bound and Hoeffding’s inequality, we
have for any D ⊂ Dn,T (z1:T )

P∗
θ∗

 ∑
1≤q,l≤Q

∣∣∣∣∣∣
∑

(i,j,t)∈Fql∩D
(X t

ij − π∗
z∗t

i z∗t
j

)
∣∣∣∣∣∣ > uζ2

2vn,T


≤Q2 max

1≤q,l≤Q
P∗
θ∗

∣∣∣∣∣∣
∑

(i,j,t)∈Fql∩D
(X t

ij − π∗
z∗t

i z∗t
j

)
∣∣∣∣∣∣ > uζ2

2vn,T

 ≤ 2Q2 exp
(
− 2u2ζ4

4v2
n,TQ

4
1
|D|

)
.

This leads to

P∗
θ∗

 ∑
1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑

(i,j,t)∈Gql

(X t
ij − π∗

z∗t
i z∗t

j
)
∣∣∣∣∣∣ > u/2

 ∩ Ωn,T


≤

∑
D⊂Dn,T (z1:T )

2Q2 exp
(
− 2u2ζ4

4v2
n,TQ

4
1
|D|

)
≤

2nr∑
k=1

∑
D⊂Dn,T (z1:T );|D|=k

2Q2 exp
(
− 2u2ζ4

4v2
n,TQ

4
1
k

)

≤2Q2
2nr∑
k=1

(2nr)k exp
(
− 2u2ζ4

4v2
n,TQ

4
1

2nr

)
≤ 2Q2 exp

(
− u2ζ4

4v2
n,TQ

4nr

)
(2nr)2nr+1.

For the second term of (2.5.24), we get from a union bound and from Lemma 2.5.9 (that
gives an upper bound for |D∗ ∪ D̆|) that

P∗
θ∗

 ∑
1≤q,l≤Q

∣∣∣∣∣ (π̆ql − π∗
ql)

π∗
ql(1− π∗

ql)

∣∣∣∣∣
∣∣∣∣∣∣
∑

1≤q′,l′≤Q
(π∗

q′l′ − π∗
ql)|Gqlq′l′ |

∣∣∣∣∣∣ > u/2
 ∩ Ωn,T


≤P∗

θ∗

 ∑
1≤q,l≤Q

∣∣∣∣∣∣
∑

1≤q′,l′≤Q
(π∗

q′l′ − π∗
ql)|Gqlq′l′ |

∣∣∣∣∣∣ > uζ2

2vn,T


≤Q2 max

1≤q,l≤Q
P∗
θ∗

∣∣∣∣∣∣
∑

1≤q′,l′≤Q
(π∗

q′l′ − π∗
ql)|Gqlq′l′ |

∣∣∣∣∣∣ > uζ2

2vn,TQ2

 ≤ Q2P∗
θ∗

(
2nr > uζ2

2vn,TQ2

)
,
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because |π∗
q′l′ − π∗

ql| ≤ 1, implying that
∣∣∣∣∣∣
∑
q′,l′

(π∗
q′l′ − π∗

ql)|Gqlq′l′ |

∣∣∣∣∣∣ ≤
∑
q′,l′
|Gqlq′l′| = |Gql| = |Fql ∩ (D∗ ∪ D̆)| ≤ |Dn,T (z1:T )| ≤ 2nr.

Finally, we have the following upper bound for the second term of (2.5.21)

P∗
θ∗ (Ωn,T ∩ {|U2| > r log(nT )}) ≤2Q2 exp

(
−rζ

4(log(nT ))2

4Q4v2
n,Tn

)
(2nr)2nr+1

+Q2P∗
θ∗

(
vn,T >

ζ2 log(nT )
4Q2n

)
.

Third term in the right-hand side of (2.5.21). We want to bound (in probability)
the last term U3. Distinguishing between the cases where X t

ij = 0 and X t
ij = 1, we have

U3 :=
∑

(i,j,t)∈D∗∪D̆

log
1 +

(π̆z∗t
i z∗t

j
− π∗

z∗t
i z∗t

j
)(X t

ij − π∗
z∗t

i z∗t
j

)
π∗
z∗t

i z∗t
j

(1− π∗
z∗t

i z∗t
j

)


=

∑
(i,j,t)∈D∗∪D̆

(1−X t
ij) log

1−
(π̆z∗t

i z∗t
j
− π∗

z∗t
i z∗t

j
)

(1− π∗
z∗t

i z∗t
j

)


+X t

ij log
1 +

(π̆z∗t
i z∗t

j
− π∗

z∗t
i z∗t

j
)

π∗
z∗t

i z∗t
j


=

∑
1≤q,l≤Q

∑
(i,j,t)∈D∗∪D̆

(1−X t
ij) log

[
1−

(π̆ql − π∗
ql)

(1− π∗
ql)

]

+X t
ij log

[
1 +

(π̆ql − π∗
ql)

π∗
ql

]1z∗t
i =q,z∗t

j =l.

For any (q, l) ∈ J1, QK2, we further introduce the sets

F ∗
ql = ∪1≤q′,l′≤QFq′l′ql = {(i, j, t) ∈ In,T ; z∗t

i = q, z∗t
j = l}

G∗
ql = ∪1≤q′,l′≤QGq′l′ql = (D∗ ∪ D̆) ∩ F ∗

ql = {(i, j, t) ∈ D∗ ∪ D̆; z∗t
i = q, z∗t

j = l}.
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Centering the X t
ij (under the distribution P∗

θ∗), we get

U3 =
∑

1≤q,l≤Q

∑
(i,j,t)∈D∗∪D̆

(
(π∗

ql −X t
ij) log

[
1−

(π̆ql − π∗
ql)

(1− π∗
ql)

]

+ (X t
ij − π∗

ql) log
[
1 +

(π̆ql − π∗
ql)

π∗
ql

])
1z∗t

i =q,z∗t
j =l

+
∑

1≤q,l≤Q

∑
(i,j,t)∈D∗∪D̆

(
(1− π∗

ql) log
[
1−

(π̆ql − π∗
ql)

(1− π∗
ql)

]

+ π∗
ql log

[
1 +

(π̆ql − π∗
ql)

π∗
ql

])
1z∗t

i =q,z∗t
j =l

=
∑

1≤q,l≤Q

(
log

[
1 +

(π̆ql − π∗
ql)

π∗
ql

]
− log

[
1−

(π̆ql − π∗
ql)

(1− π∗
ql)

]) ∑
(i,j,t)∈G∗

ql

(X t
ij − π∗

ql)

+
∑

1≤q,l≤Q
|G∗

ql|
(

(1− π∗
ql) log

[
1−

(π̆ql − π∗
ql)

(1− π∗
ql)

]
+ π∗

ql log
[
1 +

(π̆ql − π∗
ql)

π∗
ql

])
.

Then, on the event Ωn,T and for n and T large enough such that |(π̆ql−π∗
ql)/(1−π∗

ql)| ≤ 1/2
and |(π̆ql − π∗

ql)/π∗
ql| ≤ 1/2 for every q and l, using the fact that | log(1 + x)| ≤ 2|x| for

x ∈ [−1/2, 1/2], we have

|U3| ≤4vn,T
ζ

∑
1≤q,l≤Q

∣∣∣∣∣∣∣
∑

(i,j,t)∈G∗
ql

(X t
ij − π∗

ql)

∣∣∣∣∣∣∣+ 4vn,T
ζ

∑
1≤q,l≤Q

|G∗
ql|.

Then, for every u > 0,

P∗
θ∗ (Ωn,T ∩ {|U3| > u}) ≤P∗

θ∗

 ∑
1≤q,l≤Q

∣∣∣∣∣∣∣
∑

(i,j,t)∈G∗
ql

(X t
ij − π∗

ql)

∣∣∣∣∣∣∣ >
uζ

8vn,T


+ P∗

θ∗

vn,T ∑
1≤q,l≤Q

|G∗
ql| >

uζ

8

 . (2.5.25)
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For the first term of (2.5.25), using Hoeffding’s inequality as before,

P∗
θ∗

 ∑
1≤q,l≤Q

∣∣∣∣∣∣∣
∑

(i,j,t)∈G∗
ql

(X t
ij − π∗

ql)

∣∣∣∣∣∣∣ >
uζ

8vn,T


≤

2nr∑
k=1

∑
D⊂Dn,T (z1:T );|D|=k

P∗
θ∗

 ∑
1≤q,l≤Q

∣∣∣∣∣∣∣
∑

(i,j,t)∈D∩F ∗
ql

(X t
ij − π∗

ql)

∣∣∣∣∣∣∣ >
uζ

8vn,T


≤2Q2(2nr)2nr+1 exp

(
− u2ζ2

82Q4v2
n,Tnr

)
.

For the second term of (2.5.25), we use

P∗
θ∗

vn,T ∑
1≤q,l≤Q

|G∗
ql| >

uζ

8

 ≤ P∗
θ∗

(
vn,T >

uζ

16nr

)
.

Finally, we have the following upper bound for the third term of (2.5.21)

P∗
θ∗ (Ωn,T ∩ {|U3| > r log(nT )}) ≤2Q2(2nr)2nr+1 exp

(
−r(log(nT ))2ζ2

82Q4v2
n,Tn

)

+ P∗
θ∗

(
vn,T >

log(nT )ζ
16n

)
.

Combining the 3 bounds on the right-hand-side of (2.5.21).

P∗
θ∗ ({U1 + U2 − U3 > − log(1/(ϵyn,T ))− 3r log(nT )} ∩ Ωn,T )

≤ exp
[
[log(1/(ϵyn,T )) + 5r log(nT )] 2K∗

Cζ

]
exp

[
−nr (δ − η)2K∗2

4Cζ

]

+ 2Q2(2nr)2nr+1 exp
[
−rζ

4(log(nT ))2

4Q4v2
n,Tn

]
+Q2P∗

θ∗

(
vn,T >

ζ2 log(nT )
4Q2n

)

+ 2Q2(2nr)2nr+1 exp
[
−r(log(nT ))2ζ2

82Q4v2
n,Tn

]
+ P∗

θ∗

(
vn,T >

log(nT )ζ
16n

)
.

Now we choose the sequence vn,T such that vn,T = o(
√

log(nT )/n) which is sufficient to im-
ply that the quantities P∗

θ∗ (vn,T > ζ2 log(nT )/(4Q2n)) and P∗
θ∗ (vn,T > log(nT )ζ/(16n))

vanish as n and T increase. For large enough values of n and T and with C1, C2, C3, C4
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and κ positive constants only depending on Q, ζ and K∗, we then have

P∗
θ∗ ({U1 + U2 − U3 > − log(1/(ϵyn,T ))− 3r log(nT )} ∩ Ωn,T )

≤ exp
[
[log(1/(ϵyn,T )) + 5r log(nT )] 2K∗

Cζ

]
exp

[
−nr (δ − η)2K∗2

4Cζ

]

+ 2Q2(2nr)2nr+1 exp
[
−rζ

4(log(nT ))2

4Q4v2
n,Tn

]
+ 2Q2(2nr)2nr+1 exp

[
−r(log(nT ))2ζ2

82Q4v2
n,Tn

]

≤ exp
− (δ − η)2C1nr + C2 log(nT )r + C4 log(1/(ϵyn,T ))


+ κ exp

3nr log(nT )− C3
(log(nT ))2r

nv2
n,T

. (2.5.26)

Let us introduce

unT = exp
[
−(δ − η)2C1n+ C2 log(nT ) + C4 log(1/(ϵyn,T ))

]
wnT = exp

[
−C3

(log(nT ))2

nv2
n,T

+ 3n log(nT )
]
.

Now we go back to (2.5.20). Noticing that the number of configurations z1:T such that

∥z1:T − z∗1:T∥0 = r is equal to
(
nT

r

)
(Q− 1)r, we have

P∗
θ∗

({
Pθ̆(Z1:T ̸= z∗1:T |X1:T )
Pθ̆(Z1:T = z∗1:T |X1:T ) > ϵyn,T

}
∩ Ωn,T

)

≤
nT∑
r=1

(
nT

r

)
(Q− 1)rurnT +

nT∑
r=1

(
nT

r

)
(Q− 1)rκwrnT

≤[1 +QunT ]nT − 1 + κ
(
[1 +QwnT ]nT − 1

)
.

Finally, notice that as long as log T = o(n) and log(1/yn,T ) = o(n) (resp. as long as
vn,T = o(

√
log(nT )/n)), we have nTunT (resp. nTwnT ) converges to 0. Then we obtain

for some universal positive constant C and large enough n and T

P∗
θ∗

({
Pθ̆(Z1:T ̸= z∗1:T |X1:T )
Pθ̆(Z1:T = z∗1:T |X1:T ) > ϵyn,T

}
∩ Ωn,T

)
≤ CnT (unT + wnT ).

This leads directly to inequality (2.5.14).
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2.5.4 Proof of Theorem 2.3.3

We fix some σ ∈ SQ and study the convergence in Pθ∗−probability of γ̂σ(q)σ(l) to γ∗
ql with

Γ̂ as defined by the fixed point equation (2.3.2), i.e.

γ̂σ(q)σ(l) =
∑T−1
t=1

∑n
i=1 Pθ̂σ

(
Zt
i = q, Zt+1

i = l |X1:T
)

∑T−1
t=1

∑n
i=1 Pθ̂σ

(Zt
i = q |X1:T )

.

First, let us denote

Aq,l = 1
n(T − 1)

T−1∑
t=1

n∑
i=1

Pθ̂σ

(
Zt
i = q, Zt+1

i = l |X1:T
)
,

Bq = 1
n(T − 1)

T−1∑
t=1

n∑
i=1

Pθ̂σ

(
Zt
i = q |X1:T

)
.

Then we can write the quantity at stake as

γ̂σ(q)σ(l) − γ∗
ql = Aq,l

Bq

− γ∗
ql =

Aq,l − α∗
qγ

∗
ql

Bq

+ α∗
qγ

∗
ql

(
1
Bq

− 1
α∗
q

)

to obtain the following upper bound on the probability of interest

Pθ∗

(∣∣∣γ̂σ(q)σ(l) − γ∗
ql

∣∣∣ > ϵrn,T

√
log n√
nT

)
≤Pθ∗

(∣∣∣∣∣Aq,l − α
∗
qγ

∗
ql

Bq

∣∣∣∣∣ > ϵ

2rn,T
√

log n√
nT

)

+ Pθ∗

(
α∗
qγ

∗
ql

∣∣∣∣∣ 1
Bq

− 1
α∗
q

∣∣∣∣∣ > ϵ

2rn,T
√

log n√
nT

)
.

(2.5.27)
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First term of the right-hand side of (2.5.27). For the first term in (2.5.27), for
any 0 < λ < δ (implying λ < α∗

q for any q ∈ J1, QK),

Pθ∗

(∣∣∣∣∣Aq,l − α
∗
qγ

∗
ql

Bq

∣∣∣∣∣ > ϵ

2rn,T
√

log n√
nT

)

=Pθ∗

∣∣∣∣∣Aq,l − α
∗
qγ

∗
ql

Bq

∣∣∣∣∣ > ϵ

2rn,T
√

log n√
nT

∣∣∣∣∣∣Bq ≥ α∗
q − λ

Pθ∗

(
Bq ≥ α∗

q − λ
)

+ Pθ∗

∣∣∣∣∣Aq,l − α
∗
qγ

∗
ql

Bq

∣∣∣∣∣ > ϵ

2rn,T
√

log n√
nT

∣∣∣∣∣∣Bq < α∗
q − λ

Pθ∗

(
Bq < α∗

q − λ
)

≤Pθ∗

(∣∣∣Aq,l − α∗
qγ

∗
ql

∣∣∣ > ϵ

2rn,T
√

log n√
nT

(α∗
q − λ)

)
+ Pθ∗

(
Bq < α∗

q − λ
)
. (2.5.28)

First, we upper bound the probability Pθ∗

(∣∣∣Aq,l − α∗
qγ

∗
ql

∣∣∣ > ϵrn,T
√

logn√
nT

)
for any ϵ > 0,

using the following lemma.

Lemma 2.5.10. If log(T ) = o(n), for any ϵ > 0, for any sequence {rn,T}n,T≥1 increasing
to infinity such that rn,T = o

(√
nT/ log n

)
and any η ∈ (0, δ), we have for any σ ∈ SQ

Pθ∗

(∣∣∣∣∣ 1
n(T − 1)

T−1∑
t=1

n∑
i=1

Pθ̂σ

(
Zt
i = q, Zt+1

i = l |X1:T
)
− α∗

qγ
∗
ql

∣∣∣∣∣ > ϵrn,T

√
log n√
nT

)

≤Pθ∗ (∥π̂σ − π∗∥∞ > vn,T ) + o(1)

with vn,T a sequence decreasing to 0 such that vn,T = o
(√

log(nT )/n
)
.

Then, for the second term of (2.5.28), notice that Bq = ∑Q
l=1 Aq,l and ∑Q

l=1 γ
∗
ql = 1.

We then have, if log(T ) = o(n) and vn,T = o
(√

log(nT )/n
)
, using Lemma 2.5.10 again,

Pθ∗

(
Bq < α∗

q − λ
)

=Pθ∗

(
Bq − α∗

q < −λ
)

= Pθ∗

 Q∑
l=1

(Aq,l − α∗
qγ

∗
ql) < −λ


≤

Q∑
l=1

Pθ∗

(
Aq,l − α∗

qγ
∗
ql < −λ/Q

)
≤

Q∑
l=1

Pθ∗

(∣∣∣Aq,l − α∗
qγ

∗
ql

∣∣∣ > λ/Q
)

≤QPθ∗ (∥π̂σ − π∗∥∞ > vn,T ) + o(1).
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Finally, for the first term of (2.5.27), if yn,T is such that 1/yn,T = o
(√

nT/ log(n)
)
, if

vn,T = o
(√

log(nT )/n
)

and as long as log(T ) = o(n), we obtain

Pθ∗

(∣∣∣∣∣Aq,l − α
∗
qγ

∗
ql

Bq

∣∣∣∣∣ > ϵ

2rn,T
√

log n√
nT

)
≤ (Q+ 1)Pθ∗ (∥π̂σ − π∗∥∞ > vn,T ) + o(1).

(2.5.29)

Second term of the right-hand side of (2.5.27). For the second term of (2.5.27),
we split it on two complementary events as before. For any 0 < λ < δ, we have

Pθ∗

(
α∗
qγ

∗
ql

∣∣∣∣∣ 1
Bq

− 1
α∗
q

∣∣∣∣∣ > ϵ

2rn,T
√

log n√
nT

)

=Pθ∗

α∗
qγ

∗
ql

∣∣∣∣∣ 1
Bq

− 1
α∗
q

∣∣∣∣∣ > ϵ

2rn,T
√

log n√
nT

∣∣∣∣∣∣Bq ≥ α∗
q − λ

Pθ∗

(
Bq ≥ α∗

q − λ
)

+ Pθ∗

α∗
qγ

∗
ql

∣∣∣∣∣ 1
Bq

− 1
α∗
q

∣∣∣∣∣ > ϵ

2rn,T
√

log n√
nT

∣∣∣∣∣∣Bq < α∗
q − λ

Pθ∗

(
Bq < α∗

q − λ
)

≤Pθ∗

α∗
qγ

∗
ql

∣∣∣∣∣ 1
Bq

− 1
α∗
q

∣∣∣∣∣ > ϵ

2rn,T
√

log n√
nT

∣∣∣∣∣∣Bq ≥ α∗
q − λ

Pθ∗

(
Bq ≥ α∗

q − λ
)

+ Pθ∗

(
Bq < α∗

q − λ
)
. (2.5.30)

We already gave an upper bound on the second term in the right-hand side of (2.5.30).
Let us give one for the first term. Notice that as α∗

q ≥ δ and if Bq ≥ α∗
q − λ ≥ δ − λ > 0,

we have by the mean value theorem∣∣∣∣∣ 1
Bq

− 1
α∗
q

∣∣∣∣∣ ≤ 1
(δ − λ)2

∣∣∣Bq − α∗
q

∣∣∣ .
We can then write for the first term in the right-hand side of (2.5.30), as long as
log(T ) = o(n), for {yn,T}n,T≥1 such that 1/yn,T = o

(√
nT/ log n

)
and with vn,T such
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that vn,T = o
(√

log(nT )/n
)
, still using Lemma 2.5.10

Pθ∗

α∗
qγ

∗
ql

∣∣∣∣∣ 1
Bq

− 1
α∗
q

∣∣∣∣∣ > ϵ

2rn,T
√

log n√
nT

∣∣∣∣∣∣Bq ≥ α∗
q − λ

Pθ∗

(
Bq ≥ α∗

q − λ
)

≤Pθ∗

(∣∣∣Bq − α∗
q

∣∣∣ > (δ − λ)2ϵ

2α∗
qγ

∗
ql

rn,T

√
log n√
nT

)

≤Pθ∗

∣∣∣∣∣∣
Q∑
l=1

(Aq,l − α∗
qγ

∗
ql)
∣∣∣∣∣∣ > (δ − λ)2ϵ

2α∗
qγ

∗
ql

rn,T

√
log n√
nT


≤

Q∑
l=1

Pθ∗

(∣∣∣Aq,l − α∗
qγ

∗
ql

∣∣∣ > (δ − λ)2ϵ

2α∗
qγ

∗
qlQ

rn,T

√
log n√
nT

)
≤ QPθ∗ (∥π̂σ − π∗∥∞ > vn,T ) + o(1).

We finally obtain for the second term of the right-hand side of (2.5.27)

Pθ∗

(
α∗
qγ

∗
ql

∣∣∣∣∣ 1
Bq

− 1
α∗
q

∣∣∣∣∣ > ϵ

2rn,T
√

log n√
nT

)
≤ 2QPθ∗ (∥π̂σ − π∗∥∞ > vn,T ) + o(1). (2.5.31)

We conclude the proof by summing the upper bounds obtained in (2.5.29) and (2.5.31)

Pθ∗

(∣∣∣γ̂σ(q)σ(l)− γ∗
ql

∣∣∣ > ϵrn,T

√
log n√
nT

)
≤(3Q+ 1)Pθ∗ (∥π̂σ − π∗∥∞ > vn,T ) + o(1)

and by noticing that Pθ∗(∥Γ̂σ − Γ∗∥∞ > ϵrn,T
√

log n/
√
nT ) ≤ ∑

1≤q,l≤Q Pθ∗(|γ̂σ(q)σ(l) −
γ∗
ql| > ϵrn,T

√
log n/

√
nT ).

2.5.5 Proof of Corollary 2.3.3

Denoting by σn,T the permutation minimizing the distance between π̂ (permuted) and
π∗ for every (n, T ) ∈ J1, nK × J1, T K, i.e. σn,T = argminσ∈SQ

∥π̂σ − π∗∥∞, we apply
Theorem 2.3.3 to θ̂σn,T

in order to get

Pθ∗

(
min
σ∈SQ

∥ Γ̂σ − Γ∗∥∞ > ϵrn,T

√
log n√
nT

)

≤Pθ∗

(
∥ Γ̂σn,T

− Γ∗∥∞ > ϵrn,T

√
log n√
nT

)

≤Q2(3Q+ 1)Pθ∗

(
min
σ∈SQ

∥π̂σ − π∗∥∞ > vn,T

)
+ o(1) −−−−→

n,T→∞
0.
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2.5.6 Proof of Theorem 2.4.1

We use the following lemma, that states that the quantity we optimize in the VEM
algorithm and the log-likelihood are asymptotically equivalent.

Lemma 2.5.11. We have the following inequality Pθ∗-a.s.

sup
θ∈Θ

∣∣∣∣∣ 2
n(n− 1)T J (χ̂(θ), θ)− 2

n(n− 1)T ℓ(θ)
∣∣∣∣∣ ≤ 2 log(1/δ)

n− 1 .

We have that for any ϵ > 0, for n and T large enough,

Pθ∗

(
sup
θ∈Θ

∣∣∣∣∣ 2
n(n− 1)T J (χ̂(θ), θ)− 2

n(n− 1)T ℓ(θ)
∣∣∣∣∣ > ϵrn,T√

n

)

≤Pθ∗

(
2 log(1/δ)
n− 1 >

ϵrn,T√
n

)
= 0

We then conclude by combining this result with Theorem 2.3.1.

2.5.7 Proof of Corollary 2.4.1

This is a direct consequence of Theorem 2.4.1 and Lemma 2.5.6 applied with the functions
Fn,T = 2

n(n−1)TJ (χ̂(·), ·).

2.5.8 Proof of Theorem 2.4.2

This proof is quite similar to that of Theorem 2.3.3. We fix some σ ∈ SQ and study
the convergence in Pθ∗−probability of γ̃σ(q)σ(l) to γ∗

ql with Γ̃ as defined by the fixed point
equation (2.4.1), i.e.

γ̃σ(q)σ(l) =
∑n
i=1

∑T−1
t=1 η̂

t
iql(θ̃σ)∑n

i=1
∑T−1
t=1 τ̂

t
iq(θ̃σ)

.

First, let us denote

Aq,l = 1
n(T − 1)

n∑
i=1

T−1∑
t=1

η̂tiql(θ̃σ) = 1
n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)(Zt
i = q, Zt+1

i = l),

Bq = 1
n(T − 1)

n∑
i=1

T−1∑
t=1

τ̂ tiq(θ̃σ) = 1
n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)(Zt
i = q).
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Then we can write the quantity at stake as

γ̃σ(q)σ(l) − γ∗
ql = Aq,l

Bq

− γ∗
ql =

Aq,l − α∗
qγ

∗
ql

Bq

+ α∗
qγ

∗
ql

(
1
Bq

− 1
α∗
q

)
.

We follow the line of the proof of Theorem 2.3.3, using Lemma 2.5.12 below instead of
Lemma 2.5.10 in order to obtain the result.

Lemma 2.5.12. For any ϵ > 0, for any sequence {rn,T}n,T≥1 increasing to infinity such
that rn,T = o

(√
nT/ log n

)
and any η ∈ (0, δ), we have for any σ ∈ SQ

Pθ∗

(∣∣∣∣∣ 1
n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)(Zt
i = q, Zt+1

i = l)− α∗
qγ

∗
ql

∣∣∣∣∣ > ϵrn,T

√
log n√
nT

)

≤2Pθ∗ (∥π̃σ − π∗∥∞ > vn,T ) + o(1)

with vn,T a sequence decreasing to 0 such that vn,T = o(
√

log(nT )/n).





Chapter 3

Estimation of parameters in a
space-evolving graph model based
on Markov random fields

3.1 Introduction

Markov random fields (MRFs) are widely used models for the study of spatial data, for
example in image processing, statistical physics or epidemiology, as they are convenient
and flexible. A MRF is based on a known graph on the considered locations (generally a
lattice), which we refer to as location graph, and the value of the field at one location
depends only on the neighbour locations. The distribution of the Markov random field
is a Gibbs distribution (by the Hammersley-Clifford Theorem, see for example Besag
(1974)). Besides, random graphs are a suitable tool to model and describe interactions
in many kinds of datasets such as biological, ecological, social or transport networks.
We will focus here on the case where we observe networks in multiple locations linked
through a MRF, i.e. space-evolving networks, and are interested in the classification
structure of the nodes of these graphs. We will therefore combine unobserved Markov
random fields and graph models.

This is motivated by an application in ecology, considering we observe graphs of
interactions of species (which we refer to as species interaction graphs) in different
locations and we want to study the connection behaviour of this species and cluster them
into groups. Rather than considering each graph separately, we want to make use of
geographical information about species at different locations. Edges in ecological networks
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moutain

aalakeaa

Fig. 3.1 Location graph for a species. This graph depends on the geography and
environment. We assume here that the species is not present at high altitude (on the
mountain) and cannot cross the lake.

can be of several types, such as predation, parasitism, mutualism1 or commensalism2.
See for example Delmas et al. (2019) for more information on the analysis of ecological
networks. In the model we consider, we model the correlation over space using a known
graph over the locations (that we will call location graph) that might be different for each
species, and that is based on the environment. In such a graph, an edge exists between
two locations if they are nearby and if there are no natural barrier between them that
cannot be crossed by the species, such as mountains or rivers (see Figure 3.1). This is
based on the idea that the species (which means a collection of individuals) moves freely
between these two locations and thus tends to behave the same way (with respect to its
interactions towards other species) at these two locations. The model is then flexible,
allowing to represent the species heterogeneity regarding their movement behaviours
between locations.

Random graphs have been intensively studied, and in particular several node clustering
methods exist, allowing to describe the heterogeneous behaviour of nodes (and more
precisely of groups of nodes) in a graph. We will focus in this work on the Stochastic
Block Model (SBM, Holland et al., 1983) in which the nodes are partitioned into classes.
In the SBM, class memberships of the nodes are represented by latent variables and the
connection between two nodes is drawn from a distribution depending on the classes of
these two nodes (a Bernoulli distribution in the case of binary graphs). Assuming that
our observations are drawn from such a model, we can estimate the parameters and the
groups of nodes that share the same connection behaviour. Another way to obtain a

1ecological interaction between two or more species where each species has a benefit, such as flowering
plants being pollinated by animals

2interaction which is beneficial for a species and neutral for the other
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clustering, and more specifically to recover communities3, is to use spectral clustering
methods, i.e. algorithms that cluster points using eigenvectors of matrices derived from
the data (see for example Von Luxburg (2007) for more details on the spectral clustering,
and Rohe et al. (2011) for a version of the spectral clustering for the recovery of a general
clustering in the context of graphs and not only community detection). Methods based on
the optimisation of a measure known as modularity have also been introduced (Newman
and Girvan, 2004), this measure being proportional to the number of edges within groups
minus the expected number in an equivalent network with random edges. Another way
to identify communities is by running dynamical processes on the graph, such as random
walks (Pons and Latapy, 2005), based on the idea that if the within-community edge
density is high and the between-community one is low, a random walk will be trapped in
each cluster for quite some time, before finding a way out of it.

When studying spatial data through MRF models, problems occur when performing
maximum likelihood estimation. In particular, the complexity of the joint probability
distribution leads to an intractable normalising constant (unless for very small graphs).
Some methods have been introduced to circumvent the problems caused by the complexity
and therefore intractability of the joint probability distribution in spatial data. Besag
(1975) introduced the pseudolikelihood, approximating the joint probability distribution
by the product of the conditional distributions at each location, given all the other
locations (thus given the neighbours). An estimator of the distribution parameter can
then be obtained by maximising the pseudolikelihood. The composite likelihood (Lindsay,
1988) extends the pseudolikelihood by approximating the joint distribution by the product
of tractable joint distributions of variables of a small number of locations. See Varin
et al. (2011) for a review of composite likelihood methods and Okabayashi et al. (2011)
for the use of composite likelihood for the Potts model. Some Markov chain Monte Carlo
methods have also been introduced in order to approximate the maximum likelihood
estimator. For example, Younes (1988) proposes a stochastic gradient algorithm using
a Gibbs sampler for the MCMC approximation of the gradient. Geyer and Thompson
(1992) propose an algorithm to approximate the maximum likelihood based on a direct
approximation of the likelihood from a MCMC sample and its maximisation. Some
methods have also been introduced in order to calculate or approximate the normalising
constant. Pettitt et al. (2003) and Friel and Pettitt (2004) compute the constant by
wrapping the lattice on a cylinder. Reeves and Pettitt (2004) propose a recursive method
based on an appropriate factorisation of the unnormalised joint probability (due to

3i.e. groups of vertices that have a high within-group connectivity and a low between-group connec-
tivity
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the Markov property) reducing the complexity of the summation and giving an exact
computation of the normalising constant for lattices up to about 20 rows. Reduced
dependence approximation (RDA) extends this forward recursion method in order to
compute an approximation of the normalising constant on regular lattices of any size
(Friel et al., 2009) or lattices with irregular boundaries (McGrory et al., 2012). In
particular, such methods can be used in the task of inference. The normalising constant
can also be approximated by using Markov Chain Monte Carlo (MCMC) samplers such
as the Gibbs sampler, or using path sampling (Gelman and Meng, 1998).

Another type of methods, which will be our focus in this work, is the mean-field
(Chandler, 1987) and mean-field like approximations, consisting of neglecting the fluctua-
tions of the neighbours of the location we are considering by setting their values to their
mean (for the mean-field approximation) or to another value, like the mode or a simulated
value (for the mean-field like approximation). This results in a distribution that factorises
over the locations, and solves the problem of the normalising constant. Note that in
a Bayesian setting, the computation of the posterior distribution of the parameters of
the MRF given the observations suffers from the same problems as for the maximum
likelihood estimation. Some existing methods are for example auxiliary variable methods
(Møller et al., 2006; Murray et al., 2006) or the use of composite likelihood (Friel, 2012;
Stoehr and Friel, 2015). For a review on inference for discrete Markov random fields, see
Stoehr (2017).

In the model we consider, the species are partitioned into a finite number of classes
at each location, the classes following a Markov random field for each species, thus
taking into account the spatial dependency of group memberships. But, as it is often
the case, the groups are not observed, and we are then in the case of a hidden Markov
random field (HMRF), where the observations (here the species interaction graphs at
each location) depend on the latent Markov random field. Methods have been introduced
to estimate the parameters and/or classification of a hidden Markov random field.
In particular, this problem has been tackled in the field of image segmentation, i.e.
when wanting to obtain a segmentation of a picture (Celeux et al., 2003; Forbes and
Fort, 2007), of brain imaging (Zhang et al., 2001), and of gene clustering (Vignes and
Forbes, 2009). Number of algorithms have been introduced for the study of HMRFs,
namely methods based on Monte Carlo techniques, pseudolikelihood, the EM algorithm...
Besag (1986) and then Lakshmanan and Derin (1989) (more generally, see Qian and
Titterington (1991) describing Restoration-Maximization algorithms) propose iterative
algorithms that consist of two steps. The first is a step of assignment in which we find
the configuration maximising the probability given the observations and the current
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parameter, using respectively an ICM (Iterated Conditional Modes) algorithm4 and a
simulated annealing. The second step consists in estimating the parameter maximising
the complete likelihood, by using for example the pseudolikelihood as in Besag (1986).
Chalmond (1989) introduced the Gibbsian EM, a variation of the EM algorithm based
on the pseudolikelihood and where the conditional expectations are approximated by
using a Monte Carlo method based on the Gibbs sampler. Pieczynski (1992) (see also
Pieczynski (1994)) proposed a method for parameter estimation with latent variables
called ICE (Iterative Conditional Expectation) which, assuming that we can estimate the
parameters given the complete variable (observed and latent), iteratively approximates
the expectation of this estimator given the observations (based on simulations from the
conditional distribution of the latent variables given the observations).

In this work, we are interested in the estimation of parameters, and we follow Celeux
et al. (2003) who propose EM-like algorithms for image segmentation (that have been
illustrated in Celeux et al. (2002)). They use mean-field like approximations, generalising
the mean field EM by Zhang (1992). They introduce in particular the simulated field
EM algorithm (which we will also refer to as simulated EM), in which at every iteration
of the algorithm, a configuration of the hidden Markov field given the observations is
simulated with the current parameter, this configuration being used for the mean-field like
approximation. Other possibilities are the mean field algorithm and mode field algorithm,
using respectively the mean field estimate and the mode field estimate of the conditional
distribution. In this work, we propose an algorithm based on the simulated EM, adapted
to the observation of species interaction graphs generated under a SBM at each location.
The simulated EM has been used for example in Vignes and Forbes (2009) to cluster genes,
with Gaussian observations. In Vignes and Forbes (2009), the parameters are estimated
using a simulated EM and the class memberships are then estimated using a Maximum
Posterior Marginal principle5. More recently, Forbes and Fort (2007) introduced the
Monte Carlo VEM algorithm, that combines the mean-field like approach and Monte
Carlo techniques, and proved its convergence. Ranalli et al. (2018) and Lai and Lim
(2015) use methods based on the composite likelihood. In particular, Ranalli et al. (2018)
propose an EM algorithm based on the complete composite likelihood. Note that as
before, in a Bayesian setting for an HMRF, the computation of the posterior distribution
of the parameters given the observations suffers from the same problems as for the
maximum likelihood estimation. Some examples of Bayesian estimation in the context of
HMRF are Friel et al. (2009); McGrory et al. (2009) or Everitt (2012).

4corresponding to a simulated annealing with a temperature equel to 0
5consisting in assigning a gene to the class that maximises the probability of the membership to this

class given the observations, under the estimated parameter
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This article is organised as follows. Section 3.2 introduces our model and notation.
More precisely, Section 3.2.1 describes the spatial graph model and notations, Section 3.2.2
gives the assumptions we make on the model parameters and Section 3.3 establishes the
generic identifiability of the model under certain conditions. Section 3.4 describes the
parameter estimation method, that is based on the simulated EM. Finally, Section 3.5
presents some results on simulations.

3.2 Model and notation

3.2.1 Definition of the model

We consider n species observed at L locations. At each location l, we observe interactions
between the species, represented by an undirected binary graph with no self-loops, with
adjacency matrix X l = {X l

ij}1≤i,j≤n such that for every nodes 1 ≤ i, j ≤ n, we have
X l
ii = 0 and X l

ij = X l
ji. The case of a set of directed graphs, with or without self-loops,

may be handled similarly. The species are divided into Q ≥ 2 groups at each location,
represented by the latent variables (Z1, . . . , Zn) with Zi = {Z l

i}1≤l≤L ∈ {1, . . . , Q}L. We
will also denote Z l = (Z l

1, . . . , Z
l
n) and Z1:L = (Z1, . . . , ZL) = (Z l

i)1≤l≤L,1≤i≤n. All the
Zis are independent and each one follows a Gibbs distribution (more precisely we consider
a Potts model), given by the known location graph Gi = ({1, . . . , L};Ei) with Ei the set
of edges. We allow the species to have different location graphs in order to model species
with different movement behaviours between the observed locations. Figure 3.2 gives a
graphical representation of the model.

We have for every species i according to the Potts model, denoting ψi = (αi, βi),

Pψi
(Zi) =Pψi

(Z1
i , . . . , Z

L
i ) = 1

Si(αi, βi)
exp

 Q∑
q=1

αiq
L∑
l=1

1Zl
i=q + βi

∑
(l,l′)∈Ei

1Zl
i=Zl′

i


:= 1
Si(αi, βi)

exp [−Hi(Zi)] (3.2.1)

with Si(αi, βi) the normalising constant, αi = (αiq)1≤q≤Q, where αiq, βi ∈ R, and defining
Hi the energy function

Hi(zi) = Hi(z1
i , . . . , z

L
i ) =

Q∑
q=1

αiq
L∑
l=1

1zl
i=q + βi

∑
(l,l′)∈Ei

1zl
i=zl′

i
.

The parameter α = (αiq)1≤q≤Q is the parameter of the external field, i.e. species
i is more likely to be in groups associated with large values of αi = (αiq)1≤q≤Q. Note
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Species 1

Species 2

Species 3

A
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D
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Location A

1
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Location B

1
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Location C

1
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Location D

Fig. 3.2 Example of representation of the model for Q = 2, L = 4 and n = 3. On the
left, the three layers represent the graphs on locations of the three species (i.e. the three
location graphs), and for each location (A, B, C and D), the dotted edges between layers
represent the connection between species at that location. On the right are the observed
interaction graphs between the 3 species at each of the four locations. Note that the
representation on the right only contains the interactions graphs at each location, and
not the space dependency between these locations. The Q classes are represented by
colors on the nodes (green and purple).

that if αiq = 0 for all q ∈ J1, QK, all the groups are equally probable (a priori). The
parameter βi determines the influence on the group of species i at a given location of
the groups of the same species at neighbour locations (or the strength of interaction
between neighbour locations). This means that the group membership of a species at a
location and therefore its behaviour towards the other ones is influenced by the group
membership of this species at the neighbour locations. More precisely, the membership
to a group for a species i at location l is dependent on whether or not the species is in
that same group at a neighbour location in the location graph Gi. If βi is positive, the
model encourages neighbours to be in the same group, and on the contrary, a negative βi
encourages neighbours to be in different groups.

We write Si(αi, βi) as follows

Si(αi, βi) =
∑
z1:L

i

exp
 Q∑
q=1

αiq
L∑
l=1

1zl
i=q + βi

∑
(l,l′)∈Ei

1zl
i=zl′

i

 .
Note that the normalising constant is intractable in general because it requires a summa-
tion over all the QnL configurations. We can write the distribution of Z1:L as follows,
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the Z l being independent,

Pψ(Z1:L) =
n∏
i=1

1
Si(αi, βi)

exp [−Hi(Zi)] = 1∏n
i=1 Si(αi, βi)

exp
[
−

n∑
i=1

Hi(Zi)
]

where ψ = (ψi)1≤i≤n.
Each adjacency matrix X l then follows a stochastic block model so that, conditional

on the latent groups {Z l
i}1≤i ≤n, the {X l

ij}1≤i<j≤n are independent Bernoulli random
variables

X l
ij | Z l

i = q, Z l
j = q′ ∼ B(πlqq′), i.e. Pπ(X l | Z l) =

∏
1≤i<j≤n

(πlZl
iZ

l
j
)Xl

ij (1− πlZl
iZ

l
j
)1−Xl

ij ,

(3.2.2)

and πlqq′ ∈ [0, 1] are the connectivity parameters, satisfying πlqq′ = πlq′q for every 1 ≤
q, q′ ≤ Q. The parameter of the model is θ = (ψ, π) = (α, β, π) with

• α = (α1, . . . , αn) ∈ RnQ with αi = (αiq)1≤q≤Q the parameters of the external fields,

• β = (β1, . . . , βn) ∈ Rn the interaction parameters,

• π = (πlqq′)1≤q,q′≤Q,1≤l≤L ∈ [0, 1]LQ(Q+1)/2 the symmetric matrices of connection
probabilities.

We will denote in the following z−i = (z1, . . . , zi−1, zi+1, . . . , zn) for any i ∈ J1, nK,
i.e. the latent variables for every node except i, and identically we will denote z−l =
(z1, . . . , zl−1, zl+1, . . . , zL) for any l ∈ J1, LK, i.e. the latent variables at every location ex-
cept l. Let us also denote Z l

iq = 1Zl
i=q for every l, i and q, and Zl

i = (Z l
iq)1≤q≤Q ∈ {0, 1}Q.

3.2.2 Assumptions

We impose some constraints on these model parameters for identifiability purposes (see
Section 3.3). The assumptions we make are the following.

1. For every i ∈ J1, nK, the parameter αi satisfies ∑Q
q=1 αiq = 0.

2. For every q ∈ J1, QK, for any l, l′ ∈ J1, LK, we have πlqq = πl
′
qq := πqq.

3. For every l ∈ J1, LK, the values {πlqq′}1≤q≤q′≤Q are Q(Q+ 1)/2 distinct values.
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We make Assumption 1 in order for the Potts model to be identifiable. Indeed,
adding the same constant to all the αiq for any i ∈ J1, nK leads to the same distribution.
Note that when considering the estimation of the parameters (in Section 3.4), we will
equivalently impose that αi1 = 0 for every i ∈ J1, nK. Assumptions 2 and 3 are sufficient
for the identifiability of the model, to avoid label switching issues between the different
locations. We denote by Θ the set of parameters satisfying these constraints.

3.3 Identifiability

In this section, we establish the generic identifiability of our model under the assumptions
of Section 3.2.2. We first state the identifiability of the Potts model, for any i ∈ J1, nK.

Lemma 3.3.1. For each i ∈ J1, nK, the parameters ψi = (αi, βi) of the Potts model as
defined in (3.2.1) satisfying Assumption 1 are identifiable from the distribution of Z1:L

i ,
as long as there is at least one edge in the location graph Gi (implying that L ≥ 2).

We believe that this result is known, but did not find a written proof of it. We
then give the proof of Lemma 3.3.1 in Appendix B.1 for completeness. Then, for the
identifiability of our model, we follow the proof of Theorem 2 in Allman et al. (2011)
(see also Theorem 2 in Becker and Holzmann (2018)) based on Kruskal’s theorem (see
for example Theorem 16 in Allman et al. (2011)) to prove the generic identifiability of
our model, meaning that the nonidentifiable parameters form a set of Lebesgue measure
zero. Note that we obtain this identifiability up to label permutation of the groups (as
in any latent groups model), meaning that we can only recover θσ with σ in SQ the set
of permutations on J1, QK, where

θσ = (ασ, β, πσ) =
(
(αiσ(q))1≤i≤n,1≤q≤Q, (βi)1≤i≤n, (πσ(q)σ(q′))1≤q,q′≤Q

)
.

Note that the permutation does not affect β, at it applies only on the latent groups.

Proposition 3.3.1. Under Assumptions 1 to 3, the parameter θ = (α, β, π) is generically
identifiable up to label permutation from the distribution of X1:L, if there is at least one
edge in each location graph and n ≥ m2, where m ≥ Q− 1 +

(
Q+2

2

)2
if Q is even,

m ≥ Q− 1 + (Q+1)(Q+3)
4 if Q is odd.
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Remark 3.3.1. Following the proof of Theorem 5 in Allman et al. (2009) would allow to
get a better result for the case Q = 2, obtaining the identifiability for n ≥ 16 instead of
n ≥ 25. We will not give more details about that.

Note that as in Allman et al. (2011) the generic aspect concerns only the part of the
parameter space with the connectivity parameter, i.e. the πqq′s. This means that α and
β are identifiable (not only generically) from the distribution of X1:L. In particular, a
Potts model without external field (i.e. with αiq = 0 for every i and q) is still generically
identifiable (even though this restriction on the parameter reduces the parameter space
to a subspace of smaller dimension).

Proof of Proposition 3.3.1. Following the lines of the proof of Theorem 2 in Allman
et al. (2011), for any number m of species, we denote by Al the Qm × 2(m

2 ) matrix of
conditional probabilities of observing all possible species interaction graph configurations
X l ∈ {0, 1}(

m
2 ), conditioned on node states Z l = (Z l

1, . . . , Z
l
m) ∈ {1, . . . , Q}m at location

l for each l ∈ J1, LK. We then write, denoting by ⊗ the Kronecker product,

A = A1 ⊗ A2 ⊗ . . .⊗ AL, (3.3.1)

this QmL × 2L(m
2 ) matrix being the matrix of conditional probabilities of observing all

possible sets of species interaction graphs X1:L, conditioned on node states at all locations
Z1:L. It is established in the proof of Theorem 2 in Allman et al. (2011) that each matrix
Al has generically full row rank as soon as m ≥ Q− 1 +

(
Q+2

2

)2
if Q is even,

m ≥ Q− 1 + (Q+1)(Q+3)
4 if Q is odd.

Then from its definition 3.3.1, A has also generically full row rank. We will then conclude
the proof thanks to a lemma similar to Lemma 16 in Allman et al. (2009) that we write
below. Let us define before Kn the graph on the nL nodes {(l, i)}1≤i≤n,1≤l≤L that is the
union of the L complete graphs at each location, i.e. such that there is an edge between
(l, i) and (l′, i′) if and only if l = l′ (and i ̸= i′ so that there is no self loop).

Lemma 3.3.2. If the QmL × 2L(m
2 ) matrix A defined in (3.3.1) has rank QmL, then with

n = m2 there exist pairwise edge-disjoint subgraphs G1, G2, G3 of Kn such that for each
Gk (1 ≤ k ≤ 3), the matrix of probabilities Bk of observing subgraphs of Gk conditioned
on node state assignments has rank QnL.

Proof of Lemma 3.3.2. The proof of that lemma is similar to that of Lemma 16 from
Allman et al. (2009), except for the construction of the Gks. We do the same partition
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Fig. 3.3 Partitions for m = 4 and L = 3. In red, the mL = 12 sets of the partition
leading to G1, in green the mL sets of the partition leading to G2, and in blue, the mL
sets of the partition leading to G3. More precisely, the sets of the partition leading to
G3 are for each l

{
{(l, 1, 1), (l, 2, 2), (l, 3, 3), (l, 4, 4)}, {(l, 1, 2), (l, 2, 3), (l, 3, 4), (l, 4, 1)},

{(l, 1, 3), (l, 2, 4), (l, 3, 1), (l, 4, 2)}, {(l, 1, 4), (l, 2, 1), (l, 3, 2), (l, 4, 3)}.

as in Allman et al. (2009) separately for each l, i.e. we picture the nodes as lattice
points in L square grids and take as the partition leading to G1 the rows of the grids,
as the partition leading to G2 the columns of the grids and as the partition leading to
G3 the diagonals of the grids, each Gk then being the union of mL complete subgraphs.
Explicitly, we label the nodes by (l, i, j) ∈ {1, . . . , L} × {1, . . . ,m} × {1, . . . ,m} such
that {(l, i, j)}1≤i,j≤m is the set of n = m2 nodes at location l for any l ∈ L (and two
nodes (l, i, j) and (l′, i, j) corresponding to the same species at locations l and l′). We
can then write Pk = {V k

l,j; l ∈ {1, . . . , L}, j ∈ {1, . . . ,m}} denoting the partition of the
node set leading to Gk with

V 1
l,j = {(l, j, i); i ∈ {1, . . . ,m}},
V 2
l,j = {(l, i, j); i ∈ {1, . . . ,m}},
V 3
l,j = {(l, i, i+ j mod m); i ∈ {1, . . . ,m}}

and each Gk is the union over (l, j) ∈ {1, . . . , L} × {1, . . . ,m} of the complete graphs
on node set V k

l,j. By construction, the Gks have no edge in common, and are thus
independent given Z1:L. See example in Figure 3.3.

Then, up to a reordering of the rows and columns, the matrix Bk of conditional
probabilities of observing all possible subgraphs of Gk conditioned on node states can be
written as the m-th Kronecker power of A

Bk = A⊗m = (A1 ⊗ A2 ⊗ . . .⊗ AL)⊗m. (3.3.2)
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We already stated that A has generically full row rank under our assumptions, and then
so has Bk. This concludes the proof of Lemma 3.3.2.

Going back to the proof of Proposition 3.3.1 and as in Allman et al. (2011), we can
apply Kruskal’s theorem that gives that the set (v := Pθ(Z1:L = ·), {Bk = Pθ(Gk =
· | Z1:L = ·)}1≤k≤3) is generically identifiable up to label swapping, from the distribution
of the random variables G1, G2, G3 and thus from that of X1:L (for n large enough with
respect to Q). To conclude, we need to identify the parameters (those of the Potts
models, i.e. (αiq)1≤i≤n,1≤q≤Q and (βi)1≤i≤n, and the connection probability matrices
(πlqq′)1≤l≤L,1≤q,q′≤Q). Recall that we assume that ∀q ∈ J1, QK, the within-group connection
probability is the same for every location l, i.e. πlqq = πl

′
qq := πqq for any l, l′ ∈ J1, LK, and

also that the values {πqq}1≤q≤Q are all distinct. We also assume that for any l ∈ J1, LK the
(πlqq′)1≤q≤q′≤Q are all distinct. To identify the parameters, we rely on the same technique
as in the proof of Theorem 2 in Becker and Holzmann (2018) and on the conclusion
of the proof of Theorem 2 in Allman et al. (2011). We focus on the matrix B1, and
doing marginalisations as in those proofs for every edge in G1, we can identify the values
(πqq)1≤q≤Q (choosing an arbitrary labeling) and then (πlqq′)1≤q ̸=q′≤Q.

Having identified all the connection probabilities, we can isolate the entries of v
corresponding to the configurations such that Z1:L

i is fixed (equal to some c ∈ J1, QKL).
We describe how we identify those entries. To find the rows corresponding to configurations
in which Z l

i = q for some q ∈ J1, QK, i ∈ J1, nK and l ∈ J1, LK, we choose some j, k ∈ J1, nK
such that i, j, and k are in the same set in the partition used to construct G1 and we sum
the columns for which X l

ij = 1, those for which X l
ik = 1, and those for which X l

jk = 1.
Doing so, we obtain the values of πl

Zl
iZ

l
j
, πl

Zl
iZ

l
k

and πl
Zl

jZ
l
k

and can therefore identify for
every row of B1 the values of Z l

i , Z
l
j and Z l

k thanks to the assumption that (πlqq′)1≤q,q′≤Q

are distinct values and to the fact that we identified these quantities earlier. Doing
this for all i ∈ J1, nK and l ∈ J1, LK, we can obtain the entry in v corresponding to any
configuration of the nL nodes. Summing the entries corresponding to the configurations
such that Z1:L

i = c, we obtain the probability Pθ(Z1:L
i = c). Doing this for every possible

c and for every i, we have the probability distribution of each Markov field. Now using
Lemma 3.3.1, stating that we can identify the parameters of the Potts model for a species
i from the distribution of Z1:L

i , allows us to recover the αiqs and βis and to conclude the
proof.

Particular case of the affiliation model: a counter-example The constraint
imposed on each πl in Assumption 3 (that its values (πlqq′)1≤q≤q′≤Q are distinct) implies
that the result of Proposition 3.3.1 does not apply to the particular case of the affiliation
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model for the conditional distribution of the graphs X l. Indeed, in the affiliation model,
the parameter π is determined by the values πlqq = πlin for every q ∈ J1, QK (within-
group connection probability) and πlqq′ = πlout for every q ̸= q′ ∈ J1, QK (between-groups
connection probability) at each location l.

The identifiability result of Proposition 3.3.1 actually does not hold in general for
the affiliation model. Indeed we exhibit in the proposition below a particular example
of an affiliation model (satisfying Assumptions 1 and 2 but not Assumption 3) without
external field6 whose parameters are not identifiable. Note that this is a partial result,
as the model might be identifiable in the affiliation case at the cost of some additional
assumptions. The exhibition of such counter-example allows us to have some insights
about the constraints we could impose in order to obtain identifiability.

Proposition 3.3.2. Assume that all the species have the same location graphs Gi =
G = (V,E) with no cycle of odd length and the same parameter βi = β, and that there
is no external field, i.e. αiq = 0 for every i ∈ J1, nK and q ∈ J1, QK. Assume also that
Q = 2 and that πlqq = πin (so that Assumption 2 is satisfied) and that πlqq′ = πlout for any
q ̸= q′ ∈ J1, QK and l ∈ J1, LK. Then, the parameter θ = (β, π) of the model cannot be
identified.

This result holds in particular for first order lattices as location graphs, such lattices
containing only cycles of even length.

Proof of Proposition 3.3.2. We are going to show that for any parameter θ = (β, π)
satisfying the assumptions in the proposition, the parameter θ̃ = (β̃, π̃), defined such
that β̃ = −β and π̃ = π, leads to the same distribution as θ for X1:L. For any possible
configuration z1:L, we construct a transformed version z̃1:L of z1:L as follows. Let us
choose a starting location l ∈ J1, LK (for example location 1 in Figure 3.4) and set z̃l = zl

(i.e. z̃li = zli for every i ∈ J1, nK). Then for every neighbour location l′ of l (in our case,
locations 2 and 3), let us set z̃l′i = 1 if zl′i = 2 and z̃l

′
i = 2 if zl′i = 1 for every i ∈ J1, nK7.

Then for any neighbour location l′′ of each l′ that has not been visited yet (in our case,
locations 4,5 and 6), let us set z̃l′′ = zl

′′ . Continue until the whole z̃1:L has been defined.
In short, this means that we must define z̃1:L such that for any two neighbour locations, z̃
must necessarily be permuted at exactly one of the two locations. This is possible thanks
to the absence of cycles of odd length. See figure 3.4 for a graphical representation.

6Recall that the generic aspect of the identifiability result we obtained in Proposition 3.3.1 concerns
only the part of the parameter space with the connectivity parameter, so that the result holds without
external field.

7i.e. z̃l′ is a permutation of zl′ , switching groups 1 and 2
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Fig. 3.4 Example of a location graph G with 10 locations and no cycle of odd length. For
any configuration z1:L, for the locations in green, z̃l is the same than zl. For the locations
in purple, z̃l is equal to a permutation (switching the groups 1 and 2) of zl. The absence
of cycles of odd length implies that two nodes of the same colour cannot be neighbours.

We can write the probability distribution of X1:L as follows

Pθ(X1:L) =
∑
z1:L

Pπ(X1:L | Z1:L = z1:L)Pψ(Z1:L = z1:L)

=
∑
z1:L


 L∏
l=1

∏
i<j

(πlzl
iz

l
j
)Xl

ij (1− πlzl
iz

l
j
)1−Xl

ij

 n∏
i=1

1
S(β) exp

 ∑
(l,l′)∈E

β1zl
i=zl′

i


=
∑
z1:L


 L∏
l=1

∏
i<j

(
(πin)

1
zl

i
=zl

j (πlout)
1

zl
i
̸=zl

j

)Xl
ij
(

1− (πin)
1

zl
i
=zl

j (πlout)
1

zl
i
̸=zl

j

)1−Xl
ij


×

n∏
i=1

1
S(β) exp

 ∑
(l,l′)∈E

β1zl
i=zl′

i

.
Then, using the definitions of β̃, π̃ and z̃, and in particular noticing that

• if locations l and l′ are neighbours, zli = zl
′
i ⇐⇒ z̃li ̸= z̃l

′
i for any i ∈ J1, nK,

• zli = zlj ⇐⇒ z̃li = z̃lj for any i, j ∈ J1, nK and any l ∈ J1, LK,

we have

Pθ(X1:L) =
∑
z1:L
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i

.
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Finally, using the fact that summing over the z̃1:L is equivalent to summing over the z1:L

and that 1z̃l
i ̸=z̃l′

i
= 1− 1z̃l

i=z̃l′
i
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We can then express this probability distribution in terms of the parameter θ̃, the two
parameters then leading to the same distribution. This relies on the fact that the
probability of observing any z1:L under the parameter β is the same as that of observing
z̃1:L under the parameter β̃, and that the distribution of X1:L given Z1:L = z1:L under
parameter π is the same as that of X1:L given Z1:L = z̃1:L under the parameter π̃ = π

(due to the fact that we are in an affiliation model). We remark that the normalising
constant of the Potts model with Q = 2, with parameter β̃ = −β and location graph
G = (V,E) (with no cycles of odd length) is equal to S(β) exp(|E|β̃) where S(β) is the
normalising constant of the Potts model with Q = 2, with parameter β and location
graph G.

3.4 Estimation

3.4.1 Likelihood

We can write the conditional log-likelihood and the likelihood, using the conditional
independence of the X l

ijs (given the Z l
is), as

logPθ(X1:L|Z1:L = z1:L) =
L∑
l=1

logPπ(X l|Z l = zl)

=
L∑
l=1

∑
i<j

X l
ij log πlzl

iz
l
j

+ (1−X l
ij) log(1− πlzl

iz
l
j
) (3.4.1)
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and

Pθ(X1:L) (3.4.2)
=
∑
z1:L
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The log-likelihood is then written

logPθ(X1:L) = log
∑
z1:L

Pπ(X1:L|Z1:L = z1:L)Pψ(Z1:L = z1:L)
 . (3.4.4)

This is the quantity we would like to maximise to estimate the model parameters, but as
we will see in the following, we will not be able to maximise it directly.

3.4.2 Maximum likelihood approach

We want to estimate the model parameters relying on a maximum likelihood approach.
We then want to maximise the following quantity

Pθ(X1:L) =
∑
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.
We cannot maximise it directly because the computation of this quantity involves a
summation over all the QnL possible latent configurations, in addition to the normalising
constants Si(αi, βi) being intractable. We cannot either use the Expectation-Maximization
(EM) algorithm to approximate it because it involves the computation of the conditional
distribution of the latent variables given the observations which is not tractable, and it
still involves the intractable normalising constants. We will then rely on an alternative
of the EM algorithm, the simulated field algorithm as defined in Celeux et al. (2003). It
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consists of simulating a latent configuration and using a mean-field like approximation
(for the conditional distribution of the latent variables given the observations, and
the distribution of the latent variables) in order to make the considered conditional
distribution and the normalising constant tractable. The approximation consists in
replacing the intractable distributions by distributions that factorise over the locations,
and such that for each location, the neighbours of this location are fixed at the values of
the simulated configuration.

3.4.3 EM algorithm

We first describe briefly the EM algorithm (Dempster et al., 1977) in this case and see why
we need to use an alternative. EM is an iterative algorithm used to approximate maximum
likelihood estimates of parameters in statistical models, in the presence of latent variables.
We start with some initial value of the parameter θ(0) = (ψ(0), π(0)) = (α(0), β(0), π(0)). At
iteration t of the EM algorithm, we want to maximise with respect to θ the quantity

Q(θ|θ(t−1)) =Eθ(t−1)

[
logPθ

(
Z1:L, X1:L
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[
logPψ
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]

:=Q1(π|θ(t−1)) +Q2(α, β|θ(t−1)). (3.4.5)

Notice that the first term Q1 only depends on the connection probabilities (or emission
parameter) π whereas the second term Q2 only depends on the parameters α and β of
the Gibbs distribution. We can write for the first term
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(3.4.6)
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The second term can be written as follows
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Each iteration is composed of two consecutive steps (E-step and M-step). The E step
consists in computing the quantity Q(θ|θ(t−1)), and the M (Maximization) step consists
in maximising this quantity with respect to θ to obtain θ(t), the estimate at step t.
It is proven that the log-likelihood increases at each iteration. Here, the E step is
intractable because neither the normalising constants Si(αi, βi) appearing in Q2 nor the
distribution of the latent variables given the observations (needed in both Q1 and Q2)
can be computed. Using a mean-field like approximation for both the distribution of
the latent variables and of the latent variables given the observations will solve these
problems. We will describe this method in the following section.

3.4.4 Mean-field like approximation

The idea of this approach is to replace the intractable distributions (of the latent variables,
and of the latent variables given the observations) with simpler distributions.

We use a mean-field like approximation in the EM algorithm, both for the distribution
of the latent variables and that of the latent variables given the observations. The mean
field like approximation, in a classical setup (when considering a single HMRF), consists
in considering approximations of the distributions that factorise over the locations, where
for each location l, the values of the latent variable at neighbour locations of l are set to
deterministic values. This approach is a generalisation of the mean-field approximation
(see Chandler (1987); Celeux et al. (2003) and Appendix B.2), in which the fixed values of
the neighbours are their means. In our setup, we will consider approximate distributions
factorising over both the locations and species. More precisely, given a fixed configuration
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z̃1:L, the distribution of Z1:L appearing in Q2 is approximated by the following distribution

Pz̃ψ(Z1:L = z1:L) :=
L∏
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i )

(3.4.8)

where Ni(l) is the set of neighbours of l in the location graph Gi of species i, i.e.

Ni(l) = {l′; (l, l′) ∈ Ei}.

Moreover note that
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. (3.4.9)

Now, for the distribution of the latent variable Z1:L given the observations X1:L

(that appears in the expectation in both Q1 and Q2), we consider instead given a fixed
configuration z̃1:L the following approximation

Pz̃θ(t−1)(Z1:L = z1:L |X1:L)
∝Pz̃π(t−1)(X1:L | Z1:L = z1:L)Pz̃ψ(t−1)(Z1:L = z1:L)
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Pθ(t−1)(zli | Z
Ni(l)
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Ni(l)
i , Z l

−i = z̃l−i, X
l
i�), (3.4.10)

where ∝ means "proportional to", and X l
i� = (X l

i1, . . . , X
l
in). Note that we make two

approximations here, for the probability distribution of Z1:L in (3.4.8), as in the classical
mean field like approximation, and an additional approximation for the conditional
probability distribution of X1:L given Z1:L, assuming that the neighbours of a location
are fixed (set to the values z̃Ni(l)

i ), but also the values of the other species at the same
location (set to z̃l−i).

3.4.5 Simulated EM Algorithm

We consider an EM algorithm with a mean-field like approximation, and in particular
the simulated EM (Celeux et al., 2003), in which the mean field like approximation is
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based on a realisation of the conditional distribution of the latent variables given the
observations.

At each step t of the algorithm, we approximate the distribution of the latent variables
given the observations and the distribution of the latent variables by their mean-field
like approximations as defined in (3.4.10) and (3.4.8) respectively, where z̃1:L is drawn
from the distribution Pθ(t−1)(Z1:L |X1:L) thanks to a Gibbs sampler. This will allow us
to compute the expectations with respect to that distribution of Z1:L given X1:L (see
Equation (3.4.5)) and to get rid of the intractable normalising constant in the term
Pψ(Z1:L) appearing in Q2.

Each iteration t of the algorithm is then divided into two steps. One consists in
simulating a configuration z̃1:L from a current parameter value θ(t−1) and from the
observations X1:L using a Gibbs sampler, in order to replace the distributions (of Z1:L

and of Z1:L given the observations X1:L) by their mean-field like approximations. The
second one is an EM algorithm iteration (using the mean-field like approximations). Our
algorithm is summarised in Algorithm 6.

3.4.6 Step 1: Simulation of a configuration for the mean-field
like approximation

The first step is the simulation of a configuration z̃1:L from the conditional distribution
Pθ(t−1)(Z1:L |X1:L) relying on a Gibbs sampler.

Gibbs sampling The Gibbs sampling algorithm is such that at each iteration m ∈
J1,MK, for each l ∈ J1, LK and i ∈ J1, nK, z(m)l

i is simulated from the distribution

Pθ(t−1)(Z l
i |X l, z−l, zl−i) = Pθ(t−1)(Z l

i |X l, z
Ni(l)
i , zl−i)

∝ Pπ(t−1)(X l | Z l
i , z

l
−i)Pψ(t−1)(Z l

i | z
Ni(l)
i ) (3.4.11)

where z1:L is the current configuration in the algorithm, and recalling that the probability
of the observations at location l given the latent classes of the species at this location is
given in (3.2.2) and that the probability Pψ(t−1)(Z l

i | z−l
i ) of Z l

i given the values of z−l
i at

the other locations depends only on the neighbour locations and is given in (3.4.9). More
precisely, we use Algorithm 5. Note that in order for the Gibbs sampler to be valid, we
must update at each step m the nL components of the configuration one at a time and
not simultaneously.
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Algorithm 5: Conditional Gibbs sampler
input : A number of iterations M , a collection of location graphs G1, . . .Gn, a

parameter θ(t−1) = (α(t−1), β(t−1), π(t−1))
output : A realisation of the random variable Z1:L ∼ Pθ(t−1)(· |X1:L)

1 Initialise an arbitrary configuration z(0)1:L;
2 for m = 1 to M do
3 for l = 1 to L do
4 for i = 1 to n do
5 z1:L ← (z(m)1:l−1, z

(m)l
1:i−1, z

(m−1)l
i:n , z(m−1)l+1:L);

6 Draw z
(m)l
i from the conditional distribution

Pθ(t−1)(Z(m)l
i |X1:L, zl−i, z

−l) in (3.4.11) ;
7 end
8 end
9 end

10 return z(M)1:L

In practice, at each iteration of the simulated EM algorithm, we only carry out a
single (M=1) or just a few iterations of the Gibbs sampler, starting from the previous
configuration.

3.4.7 Step 2: EM iteration

As mentioned before, the mean-field like approximation based on the configuration drawn
in the first step of the algorithm is what makes this second step tractable. Indeed,
replacing the conditional distribution Pθ(t−1)(Z1:L |X1:L) by its approximation in (3.4.10)
solves the problem of the computation of the conditional expectations appearing in Q1

and Q2, and replacing the marginal distribution Pψ(Z1:L
i ) by ∏L

l=1 Pψ(Z l
i | ZNi(l) = z̃Ni(l))

for every i ∈ J1, nK solves the problem of the computation of the normalising constants
appearing in Q2. Recalling that we denote by θ(t−1) = (α(t−1), β(t−1), π(t−1)) the previous
parameter (at iteration t − 1), we have at iteration t the following two steps of the
algorithm.

3.4.7.1 E step

We want to compute the approximations of the quantities Q1(π|θ(t−1)) and Q2(α, β|θ(t−1))
(see (3.4.5)). Recall that Q1 and Q2 are given by (3.4.6) and (3.4.7) respectively.
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Lemma 3.4.1. The approximations Q̃1 and Q̃2 of Q1 and Q2 respectively under the
mean-field like approximation based on z̃1:L are given by
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∑
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(3.4.12)

and
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where f(X l
ij, π

l
qq′) is the probability of X l

ij conditional to πl
Zl

iZ
l
j

= πlqq′, i.e.

f(X l
ij, π

l
qq′) = Pπ(X l

ij | Z l
i = q, Z l

j = q′) = X l
ij log πlqq′ + (1−X l

ij) log(1− πlqq′)

and where Pz̃ stands for a probability distribution under the mean field like approximation
based on z̃1:L and is given in this case by

Pz̃θ(t−1)(Z l
i = q |X l)

=
Pπ(t−1)(X l

i� | Z l
−i = z̃l−i, Z

l
i = q)Pψ(t−1)(Z l

i = q | ZNi(l)
i = z̃

Ni(l)
i )∑

zl
i∈J1,QK Pπ(t−1)(X l

i� | Z l
i = zli, Z

l
−i = z̃l−i)Pψ(t−1)(Z l

i = zli | Z
Ni(l)
i = z̃

Ni(l)
i )

.

A proof of this lemma can be found in Section 3.6. Note that all the quantities
appearing in Q̃1 and Q̃2 can now be computed easily, and we will then be able to maximise
them in the following M-step.

3.4.7.2 M step

The aim of the M-step is then to maximise respectively with respect to π and (α, β) the
approximations of the quantities Q1(π|θ(t−1)) and Q2(α, β|θ(t−1)) obtained above. This
is the role of the two following lemmas.
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Lemma 3.4.2. The parameter π̃ maximising the approximation Q̃1(π|θ(t−1)) (see Equa-
tion (3.4.12)) of Q1(π|θ(t−1)) satisfies for every l ∈ J1, LK and any 1 ≤ q ̸= q′ ≤ Q

π̃lqq′ =
∑
i ̸=j Pz̃θ(t−1)(Z l

i = q |X l)Pz̃
θ(t−1)(Z l

j = q′ |X l)X l
ij∑

i ̸=j Pz̃θ(t−1)(Z l
i = q |X l)Pz̃

θ(t−1)(Z l
j = q′ |X l) (3.4.14)

and for any q ∈ J1, QK

π̃qq =
∑L
l=1

∑
i<j Pz̃θ(t−1)(Z l

i = q |X l)Pz̃
θ(t−1)(Z l

j = q |X l)X l
ij∑L

l=1
∑
i<j Pz̃θ(t−1)(Z l

i = q |X l)Pz̃
θ(t−1)(Z l

j = q |X l)
. (3.4.15)

The proof of this lemma is immediate, consisting in differentiating Q̃1(π|θ(t−1)) (in
Equation (3.4.12)) with respect to πlqq′ for any q, q′ ∈ J1, QK and l ∈ J1, LK and setting
these derivatives equal to zero, and is therefore omitted. We then state a result for
the maximisation of Q̃2(α, β|θ(t−1)) with respect to α, β. We recall that we impose the
constraint αi1 = 0 on the parameter.

Lemma 3.4.3. The parameter (α̃, β̃) maximising the approximation Q̃2(α, β|θ(t−1)) (see
Equation (3.4.13)) of Q2(α, β|θ(t−1)) satisfies for any i ∈ J1, nK

α̃i1 = 0, ∂Q̃2(α̃, β̃|θ(t−1))
∂αiq

= 0 ∀q ∈ J2, QK and ∂Q̃2(α̃, β̃|θ(t−1))
∂βi

= 0

where

∂Q̃2(α, β|θ(t−1))
∂αiq

=
L∑
l=1

Pz̃θ(t−1)(Z l
i = q |X l)−

L∑
l=1

exp
(
αiq + βi

∑
l′∈Ni(l) 1z̃l′

i =q

)
∑Q
q′=1 exp

(
αiq′ + βi

∑
l′∈Ni(l) 1z̃l′

i =q′

)
(3.4.16)

and

∂Q̃2(α, β|θ(t−1))
∂βi

=
L∑
l=1

∑
l′∈Ni(l)

Pz̃θ(t−1)(Z l
i = z̃l

′

i |X l)

−
L∑
l=1

∑Q
q=1

(∑
l′∈Ni(l) 1z̃l′

i =q

)
exp

(
αiq + βi

∑
l′∈Ni(l) 1z̃l′

i =q

)
∑Q
q=1 exp

(
αiq + βi

∑
l′∈Ni(l) 1z̃l′

i =q

) . (3.4.17)

The proof of this lemma is also immediate and is omitted. Note that we do not obtain
a closed-form expression for the parameters α and β for which the derivatives in (3.4.16)
and (3.4.17) are equal to zero, and need to rely on numerical methods. We choose to use
a Newton-Raphson algorithm to find the zeros of these derivatives.
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Remark 3.4.1. Note that we could also consider the particular case where the parameters
of the MRF (α and β) are the same for every species (and then are denoted by α =
(αq)1≤q≤Q ∈ RQ and β ∈ R). In that case, the derivatives with respect to αq and β are
respectively

∂Q̃2(α, β|θ(t−1))
∂αq

=
n∑
i=1

L∑
l=1

Pz̃θ(t−1)(Z l
i = q |X l)

−
n∑
i=1

L∑
l=1

exp
(
αq + β

∑
l′∈Ni(l) 1z̃l′

i =q

)
∑Q
q′=1 exp

(
αq′ + β

∑
l′∈Ni(l) 1z̃l′

i =q′

) ,
and

∂Q̃2(α, β|θ(t−1))
∂β

=
n∑
i=1

L∑
l=1

∑
l′∈Ni(l)

Pz̃θ(t−1)(Z l
i = z̃l

′

i |X l)

−
n∑
i=1

L∑
l=1

∑Q
q=1

(∑
l′∈Ni(l) 1z̃l′

i =q

)
exp

(
αiq + βi

∑
l′∈Ni(l) 1z̃l′

i =q

)
∑Q
q=1 exp

(
αiq + βi

∑
l′∈Ni(l) 1z̃l′

i =q

) .

Algorithm 6: Simulated EM for the space-evolving SBM
input : A collection of observed graphs X1:L, a collection of location graphs

G1, . . . ,Gn, a number of groups Q, an initial parameter
θ(0) = (α(0), β(0), π(0))

output : A parameter estimate θ̃
1 Initialise an arbitrary configuration z̃(0)1:L and t = 0;
2 while the algorithm has not converged do
3 Set t← t+ 1 ;
4 Simulation step: ;
5 Draw a configuration z̃(t)1:L with the Gibbs sampler algorithm (Algorithm 5)

with parameter θ(t−1);
6 EM step: ;
7 Compute π(t) the estimator of π from the formulas (3.4.14) and (3.4.15) ;
8 Compute α(t) and β(t) by setting the quantities in (3.4.16) and (3.4.17) equal

to zero with a Newton-Raphson algorithm ;
9 end

10 return θ̃ := θ(t)
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3.4.8 Initialisation and stopping criterion of the algorithm

It is well known that the EM algorithm may only find a local maximum of the likelihood,
depending on the initial parameter. The usual strategy is then to run the algorithm
multiple times with different initialisations and compare the obtained estimators in
terms of the likelihood. Here we cannot compute the likelihood, but we can rely on the
approximation Q̃ of Q obtained in the final iteration of the algorithm in order to choose
the best estimator. We can also use this approximation for stopping the algorithm.

We can start from some random initial parameters, or from a "reasonable" value of the
parameter, as we now describe. We start by performing an absolute spectral clustering
of the nodes at each location and thus obtain an estimated clustering ẑl at each location
l. At each location l, the initial connection probabilities π(0)l are computed from ẑl8,
and the rows and columns of π(0)l are permuted such that the diagonal is in ascending
order (in order to take into account the potential label switching between the different
locations). The initial parameter α(0) is defined as follows for every i ∈ J1, nK

α
(0)
i1 = 0 and α

(0)
iq = 1

L

(
L∑
l=1

1ẑl
i=q −

L∑
l=1

1ẑl
i=1

)
∀q ∈ J2, QK.

The parameter β is initialised at (0, . . . , 0) (no interaction). In Section 3.5, we will start
from four different initialisations, three random ones and one "reasonable" initialisation
that we just described.

We observe that the estimators obtained at the different steps of our algorithm are
not stable, i.e. do not seem to converge to a fixed value, but their trajectories seem
however to exhibit a similar limiting behaviour around a fixed value. As pointed out in
Forbes and Fort (2007), the convergence of this algorithm might need to be understood
in terms of the ergodic behaviour of the process of the estimators at each step, as it is
the case for the stochastic EM (see Diebolt and Celeux (1993); Feodor Nielsen (2000)) in
which this process is an homogeneous Markov chain that is ergodic under mild conditions
and converges to its stationary distribution. We thus choose to compute a mean of the
parameter estimators of the last iterations of the algorithm. We use a stopping condition
that is |Q̃(t) − Q̃(t−1)|/|Q̃(t−1)| < 10−5, then let the algorithm perform 30 more iterations
and take the mean of the parameters and of Q̃ over these 30 iterations. We finally keep
the estimator corresponding to the initialisation leading to the highest mean of Q̃ over
the last 30 iterations.

8For q1, q2 ∈ J1, QK, π(0)l
q1q2 is the proportion of present edges between species that are in groups q1

and q2 respectively in the configuration ẑl.
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3.5 Illustration of the method on synthetic datasets

We illustrate the performance of our algorithm on simulated datasets. For that, we fix
n = 18 species (leading to n2 = 324 observations of potential edges at each location) and
L = 218 locations. Moreover, we use location graphs that are grids of size 12× 18. We
also fix Q = 2. For these n = 18 species, we consider 3 different values for αi2 that are
−0.8, 0, 0.8 (recall that αi1 = 0) and three different values for βi that are −0.5, 0, 0.5. We
thus have 9 different scenarios for the parameters governing the MRF. We distribute these
values such that for each of the 9 pairs of parameters (αi2, βi), 2 species are governed by a
MRF with (αi2, βi). We fix the diagonal of π at (0.3, 0.7)9, and we also choose 3 different
values for πl12 that we fix at 0.2, 0.5, 0.8, each of these three values being assigned to 72
locations.

With this setup, we run 60 simulations. For each simulated dataset, we start from four
different initialisations. Three out of the four iterations are random. The other is defined
as in Section 3.4.8. We use a stopping condition that is |Q̃(t) − Q̃(t−1)|/|Q̃(t−1)| < 10−5,
then let the algorithm perform 30 more iterations and take the mean of the parameters
and of Q̃ over these 30 iterations.

We finally keep the estimator corresponding to the initialisation leading to the highest
mean of Q̃ over the last 30 iterations. We plotted the boxplots of the estimators of αi2
for the three values of the true αi2 in Figure 3.5, those of the esimators of βi for the three
true values of βi in Figure 3.6, those of the estimators of π11 and π22 in Figure 3.7, and
those of the estimators of πl12 for the three true values of πl12 in Figure 3.8. The x-axis
indicates the true value of the parameter.

These experiments give good results, in the sense that we can recover the different
behaviours from the estimated parameters. We remark that the estimation seems more
precise for the connection parameters π than for the parameters of the Potts model.

9that is constant over the locations
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Fig. 3.5 Results of the simulated EM for αi2. The 3 boxplots correspond to the 3 different
values αi2 = {−0.8, 0, 0.8}. The true values are marked in red. Note that each true value
of the parameter αi2 corresponds to 6 species.
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Fig. 3.6 Results of the simulated EM for βi. The 3 boxplots correspond to the 3 different
values βi = {−0.5, 0, 0.5}. The true values are marked in red. Note that each true value
of the parameter βi corresponds to 6 species.
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Fig. 3.8 Results of the simulated EM for πl12. The 3 boxplots correspond to the 3 different
values πl12 = {0.2, 0.5, 0.8}. The true values are marked in red. Note that each true value
of the parameter πl12 corresponds to 72 locations.
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3.6 Proofs

Proof of Lemma 3.4.1. The mean-field like approximations of Q1 consists in replacing
the expectation with respect to the conditional distribution of the latent variables Z1:L

given the observations X1:L by the expectation under the mean field like approximation
(based on z̃1:L) of this conditional distribution (see Equation (3.4.10)). It can then be
written as follows

Q̃1(π|θ(t−1))
=Ez̃θ(t−1)

[
logPπ

(
X1:L|Z1:L

)
|X1:L

]
=Ez̃θ(t−1)

 L∑
l=1

∑
i<j

X l
ij log πlZl

iZ
l
j

+ (1−X l
ij) log(1− πlZl

iZ
l
j
)
∣∣∣∣∣∣X1:L


=Ez̃θ(t−1)

 ∑
1≤q,q′≤Q

L∑
l=1

∑
i<j

Z l
iqZ

l
jq′

(
X l
ij log πlqq′ + (1−X l

ij) log(1− πlqq′)
)∣∣∣∣∣∣X1:L

 ,
where Ez̃ stands for an expectation under the mean field approximation (with neighbours
set to the values in z̃1:L). Using the fact that the matrices πl are symmetric (πlqq′ = πlq′q),
and so are the matrices X l, we can rewrite the summation differently and obtain

Q̃1(π|θ(t−1)) =
∑

1≤q<q′≤Q

L∑
l=1

∑
i ̸=j

Pz̃θ(t−1)(Z l
i = q |X l)Pz̃θ(t−1)(Z l

j = q′ |X l)

×
(
X l
ij log πlqq′ + (1−X l

ij) log(1− πlqq′)
)

+
Q∑
q=1

L∑
l=1

∑
i<j

Pz̃θ(t−1)(Z l
i = q |X l)Pz̃θ(t−1)(Z l

j = q |X l)

×
(
X l
ij log πlqq + (1−X l

ij) log(1− πlqq)
),
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where Pz̃ stands for a probability distribution under the mean field like approximation.
This quantity is written as (see Equation (3.4.10))

Pz̃θ(t−1)(Z l
i = q |X l)

=
Pπ(t−1)(X l

i� | Z l
−i = z̃l−i, Z

l
i = q)Pψ(t−1)(Z l

i = q | ZNi(l)
i = z̃

Ni(l)
i )

Pθ(t−1)(X l
i� | Z

Ni(l)
i = z̃

Ni(l)
i , Z l

−i = z̃l−i)

=
Pπ(t−1)(X l

i� | Z l
−i = z̃l−i, Z

l
i = q)Pψ(t−1)(Z l

i = q | ZNi(l)
i = z̃

Ni(l)
i )∑

zl
i∈J1,QK Pπ(t−1)(X l

i� | Z l
i = zli, Z

l
−i = z̃l−i)Pψ(t−1)(Z l

i = zli | Z
Ni(l)
i = z̃

Ni(l)
i )

.

We also write the approximation of Q2 as follows, by replacing both the expectation
with respect to the conditional distribution of the latent variables Z1:L given the observa-
tions X1:L by the expectation under the mean field like approximation (based on z̃1:L) of
this conditional distribution (see Equation (3.4.10)) and the distribution of the latent
variables Z1:L by its approximation under the mean field like approximation (also based
on z̃1:L) (see Equation (3.4.9)),

Q̃2(α, β|θ(t−1)) =Ez̃θ(t−1)

[
logPz̃ψ

(
Z1:L

)∣∣∣X1:L
]

=
n∑
i=1

L∑
l=1

Ez̃θ(t−1)

[
logPψ

(
Z l
i | Z

Ni(l)
i = z̃

Ni(l)
i

)∣∣∣X1:L
]

=
n∑
i=1

L∑
l=1

Ez̃θ(t−1)

 log
exp

(
αiZl

i
+ βi

∑
l′∈Ni(l) 1Zl

i=z̃l′
i

)
∑Q
q=1 exp(αiq + βi

∑
l′∈Ni(l) 1q=z̃l′

i
)

∣∣∣∣∣∣X1:L


=

n∑
i=1

L∑
l=1

Ez̃θ(t−1)

αiZl
i
+ βi

∑
l′∈Ni(l)

1Zl
i=z̃l′

i

∣∣∣∣∣∣X1:L


− log

 Q∑
q=1

exp
αiq + βi

∑
l′∈Ni(l)

1q=z̃l′
i


=

n∑
i=1

L∑
l=1


 Q∑
q=1

αiqPz̃θ(t−1)

(
Z l
i = q

∣∣∣X l
)+ βi

∑
l′∈Ni(l)

Pz̃θ(t−1)

(
Z l
i = z̃l

′

i

∣∣∣X l
)

− log
 Q∑
q=1

exp
αiq + βi

∑
l′∈Ni(l)

1q=z̃l′
i

.



Conclusions and perspectives

The aim of this thesis was to study and propose methods for the analysis of graphs and
more precisely for node clustering, in the context of multiple networks with a space or
time dependency. In particular, we studied the consistency of parameter estimators in
a dynamic SBM and proposed a spatial SBM together with a method to estimate its
parameter.

In Chapter 2, we obtained consistency results for the maximum likelihood and
variational estimators in a dynamic version of the SBM based on hidden Markov chains
under certain conditions. This follows the work of Celisse et al. (2012) who obtained
consistency results in the static SBM. However, these conditions exclude the sparse
case (as in Celisse et al. (2012)), and are therefore quite restrictive since many large
real-world network exhibit sparsity, and the study of this case would be of great interest.
In Bickel et al. (2013), in the static case, they introduce a density parameter defined
as ρ = P(Xij = 1) and analyse the asymptotic behaviour when ρ ≡ ρn → 0 when n

increases. Note that we tried generalising the work of Bickel et al. (2013) to the dynamic
SBM, but have not managed to obtain results yet.

Moreover, we obtained bounds for the rates of convergence. For the case where
the connectivity parameter is fixed over time, we proved that the estimators of the
connectivity parameter converges faster than rn,T/n

1/4 with {rn,T}n,T≥1 any sequence
increasing to infinity, and that the estimators of the transition matrix converges faster
than rn,T

√
log n/

√
n with {rn,T}n,T≥1 any sequence increasing to infinity. We believe that

these rates are not optimal, and that they should be at least as good as those obtained
in Bickel et al. (2013) in the static case, when their density parameter is constant (dense
setup), which is n−1 for the connectivity parameter, and n−1/2 for the parameter of the
distribution of the latent variables. Furthermore, our consistency result for the transition
matrix estimators requires an additional assumption that the connectivity parameter
estimators converges at a rate that is o(

√
log(nT )/n). Obtaining a sharper bound as

mentioned before for the connectivity parameter estimators would then solve the problem
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of this additional assumption.

In Chapter 3, we introduced a spatial SBM based on hidden Markov random fields
and proposed an algorithm based on the simulated EM of Celeux et al. (2003) for the
estimation of parameters in this model. While it gave promising results on synthetic data
in the case where Q = 2, more experiments have to be conducted, namely with a larger
number of classes, or with more general location graphs than lattices. Moreover, we
have been interested in parameter estimation, but we would also like to know if we can
recover a satisfying clustering of the nodes at each location. Such estimated clustering
could be obtained using the fact that we can simulate according to the conditional
distribution Pθ̃(Z1:L | X1:L) of the latent variables given the observations, under the
estimated parameter θ̃ (outputted by the algorithm). Experiments should then be
conducted, comparing an estimated clustering with the true one, using for example the
Adjusted Rand Index (Hubert and Arabie, 1985).

Moreover, we would like to study the effect of the strength of interaction on the
quality of parameter estimation. Indeed, for large absolute values of the interaction
strength parameter β, we tend to observe large parts or the whole Markov random field
equal to the same value (for positive values) or for example a check pattern on a first
order lattice (for negative values) (see Figure 1.13). We can then reasonably think that
large absolute values of β make the estimation task harder.

We also obtained the generic identifiability of the model parameters under certain
conditions. These conditions exclude the affiliation case, and we gave a counter-example
(in Section 3.3) to show that without further assumptions, the parameters are in fact not
identifiable in this case. However, from the proof of non-identifiability of our particular
counter-example, we may wonder if we could obtain the identifiability by imposing for
example a non-negativity condition on β, different values for the parameter α in all the
groups, and/or to have at least a triangle (or cycle of odd length) in the location graph.
Further investigation has to be done for the identifiability in the particular affiliation
case.

In addition, we would like to propose a model selection criterion for the choice of the
number of classes. Some simple possibility would be to approximate the BIC based on
the mean field like approximation as in Forbes and Peyrard (2003) (see Section 1.7.9).
However the results obtained with this criterion have been found to be unstable. Another
option would be to adapt the criterion proposed by Forbes and Peyrard (2003) based on
an approximation of the partition function (see also Section 1.7.9). We plan to investigate
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a combination of this approach with criteria used for the SBM (see Section 1.4.5.2), such
as the ICL of Daudin et al. (2008).

We would also like to extend the model to make it more flexible. A quite straightfor-
ward extension would be to allow the set of nodes to be (a bit) different at the different
locations. A less straightforward one would be to allow the model to have different
numbers of classes at different locations. This would however be problematic for obtaining
a satisfying criterion for the choice of the number of classes.

It would also be interesting to take into account the asymptotic behaviour of the
obtained algorithm (as it does not seem to converge to a fixed value) in order to obtain a
smarter stopping rule. Indeed, the obtained sequence of estimators (and hence of our
stopping criterion) is not "stable" and looking at the difference of the criterion between
two time steps is probably not optimal. Moreover, the convergence of this algorithm
could be studied.

We could compare the performance of our method with that of separate SBM for
each location (i.e. without taking into account the interaction between the locations),
as no other methods for such spatial network data has been introduced. In particular,
we could compare the performance for different values of the strength of interaction, as
we expect our method to outperform a method considering the graphs at each location
separately when there is a significant interaction between the locations.

Finally, we would like to apply the method to a real dataset, with "expert" information
to determine the location graphs for each species.
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Appendix A

Supplementary material for
Chapter 2

A.1 Proofs of main results for the finite time case

A.1.1 Proof of Corollary 2.3.2

When the number of time steps is fixed and the connection probabilities vary over time,
the conditional log-likelihood is

ℓTc (θ;Z1:T ) =
T∑
t=1

∑
1≤i<j≤n

X t
ij log πtZt

iZ
t
j

+ (1−X t
ij) log(1− πtZt

iZ
t
j
)

and the likelihood ℓT (θ) is defined as in (2.2.2) with ℓTc (·) instead of ℓc(·). The maximum
likelihood estimator is then

θ̂ = (Γ̂, π̂1:T ) = arg max
θ∈ΘT

ℓT (θ).

As before, we denote the normalized log-likelihood Mn,T (Γ, π1:T ) = 2/(n(n− 1)T )ℓT (θ).
We introduce the following limiting quantity

MT (π1:T ) = 1
T

T∑
t=1

M(πt) = 1
T

T∑
t=1

sup
A∈A

M(πt, A).
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We follow the lines of the proof of Theorem 2.3.1 in order to prove that we have for any
sequence yn → +∞, for all ϵ > 0

Pθ∗

(
sup

(Γ,π1:T )∈ΘT

∣∣∣Mn,T (Γ, π1:T )−MT (π1:T )
∣∣∣ > ϵyn√

n

)
−→
n→+∞

0. (A.1.1)

Choosing yn = r2
n, we then use Lemma 2.5.6 to conclude that, as r2

n/
√
n = o(1) by

assumption, for any ϵ > 0,

Pθ∗

(
min

σ1,...,σT ∈SQ

∥π̂1:T
σ1:T − π∗1:T∥∞ > ϵrn/n

1/4
)
−−−→
n→∞

0.

In particular, for every t ∈ J1, T K, π̂t converges in Pθ∗-probability to π∗t up to label
switching. Then, let us prove that on the event {minσ1,...,σT ∈SQ

∥π̂1:T − π∗1:T
σ1:T ∥∞ ≤

ϵrnn
−1/4} (whose probability converges to 1), for n large enough, the permutation σt

minimizing the distance between π∗t and π̂tσt is the same for every t ∈ J1, T K. We consider
n large enough such that ϵrnn−1/4 < min1≤q ̸=l≤Q |π∗

qq − π∗
ll|/4. Denoting by σ1

m, . . . , σ
T
m

the permutations (depending on n) minimizing ∥π̂1:T − π∗1:T
σ1:T ∥∞, we have that, for any

1 ≤ t ̸= t′ ≤ T , if some q, l ∈ J1, QK are such that σtm(q) = σt
′
m(l), then

π̂tσt
m(q)σt

m(q) = π̂tσt′
m(l)σt′

m(l) = π̂t
′

σt′
m(l)σt′

m(l)

and on the event we consider

|π∗t
qq − π∗t

ll | = |π∗t
qq − π∗t′

ll | = |π∗t
qq − π̂tσt

m(q)σt
m(q) + π̂t

′

σt′
m(l)σt′

m(l) − π
∗t′
ll |

≤ |π∗t
qq − π̂tσt

m(q)σt
m(q)|+ |π̂t

′

σt′
m(l)σt′

m(l) − π
∗t′
ll |

≤ 2ϵrnn−1/4 < min
1≤q ̸=l≤Q

|π∗
qq − π∗

ll|/2,

implying that q = l. This means that on this event, the permutation σtm minimizing the
distance between π∗t and π̂tσt is the same for every t ∈ J1, T K. We can conclude that

Pθ∗

(
min
σ∈SQ

∥π̂1:T
σ − π∗1:T∥∞ > ϵrn/n

1/4
)

=1− Pθ∗

(
min
σ∈SQ

∥π̂1:T
σ − π∗1:T∥∞ ≤ ϵrn/n

1/4
)

−−−→
n→∞

0.
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A.1.2 Proof of Theorem 2.3.4

First, let us introduce some notations, as in the proof of Theorem 2.3.2. For any fixed
configuration z∗1:T ∈ Ωη, we define for any configuration z1:T and any parameter θ

Dn,T (z1:T , π1:T ) :=
{

(i, j, t) ∈ In,T ; πtzt
iz

t
j
̸= πtz∗t

i z∗t
j

}
and for any 1 ≤ t ≤ T

Dt
n,T (zt, πt) :=

{
(i, j) ∈ J1, nK2; i < j and πtzt

iz
t
j
̸= πtz∗t

i z∗t
j

}
,

and as before, we abbreviate to D∗ (resp. D̆), the set Dn,T (z1:T , π∗1:T ) (resp. the set
Dn,T (z1:T , π̆1:T )). We also introduce for any q, l, q′, l′ ∈ J1, QK the quantities Fqlq′l′ , Fql,
Gqlq′l′ and Gql as before, accordingly to this definition of Dn,T (z1:T , π1:T ). Finally, we
introduce for any t ∈ J1, T K and q, l, q′, l′ ∈ J1, QK the quantities

F t
qlq′l′ = F t

qlq′l′(zt, z∗t) := {(i, j) ∈ J1, nK2; i < j and zti = q, ztj = l, z∗t
i = q′, z∗t

j = l′}
F t
ql = F t

ql(zt) := ∪1≤q′,l′≤QF
t
qlq′l′ = {(i, j) ∈ J1, nK2; i < j and zti = q, ztj = l}

Gt
qlq′l′ = Gt

qlq′l′(zt, z∗t, π∗t, π̆t) := (D∗t ∪ D̆t) ∩ F t
qlq′l′

= {(i, j) ∈ J1, nK2; i < j and zti = q, ztj = l, z∗t
i = q′, z∗t

j = l′

and (π∗t
zt

iz
t
j
̸= π∗t

z∗t
i z∗t

j
or π̆tzt

iz
t
j
̸= π̆tz∗t

i z∗t
j

)}

Gt
ql = Gt

ql(zt, z∗t, π∗t, π̆t) := (D∗t ∪ D̆t) ∩ F t
ql

= {(i, j) ∈ J1, nK2; i < j and zti = q, ztj = l and (π∗t
zt

iz
t
j
̸= π∗t

z∗t
i z∗t

j
or π̆tzt

iz
t
j
̸= π̆tz∗t

i z∗t
j

)}.

Note that we can get an equivalent of Lemma 2.5.8 with a similar proof that gives that
for any configuration z∗1:T in Ωη, for any configuration z1:T and any θ ∈ ΘT ,

∣∣∣Dn,T (z1:T , π1:T )
∣∣∣ ≥ γ2

4 nr.

In the same way, we have an equivalent of Lemma 2.5.9 (with a similar proof) that gives
that for any zt and z∗t two configurations at time t such that ∥zt − z∗t∥0 = r(t) and any
parameter πt = (πtql)1≤q,l≤Q, we have

Dt
n,T (zt, πt) ⊂ Dt

n,T (zt) :=
{
(i, j) ∈ J1, nK2 × J1, T K; (zti , ztj) ̸= (z∗t

i , z
∗t
j )
}

and
∣∣∣Dt

n,T (zt)
∣∣∣ ≤ 2nr(t). (A.1.2)
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Going back to the proof of Theorem 2.3.4, we follow the line of that of Theorem 2.3.2,
with a few changes. We get the same decomposition as in equation (2.5.20), replacing
π by π1, . . . , πT in the definitions of U1, U2 and U3, and replacing the event Ωn,T by
Ωn = {∥π̂1:T − π∗1:T∥∞ ≤ vn}. For U1, the proof does not change. For U2, we write
(instead of (2.5.23))

|U2| ≤

∣∣∣∣∣∣∣
∑

(i,j,t)∈D∗∪D̆

∑
1≤q,l≤Q

π̆tql − π∗t
ql

π∗t
ql (1− π∗t

ql )
(X t

ij − π∗t
ql )1zt

i =q,zt
j=l

∣∣∣∣∣∣∣
≤

T∑
t=1

∑
1≤q,l≤Q

∣∣∣∣∣∣∣
π̆tql − π∗t

ql

π∗t
ql (1− π∗t

ql )
∑

(i,j)∈Gt
ql

(X t
ij − π∗t

ql )

∣∣∣∣∣∣∣
≤

T∑
t=1

∑
1≤q,l≤Q

∣∣∣π̆tql − π∗t
ql

∣∣∣
π∗t
ql (1− π∗t

ql )

∣∣∣∣∣∣∣
∑
q′,l′

∑
(i,j)∈Gt

qlq′l′

(X t
ij − π∗t

ql )

∣∣∣∣∣∣∣
≤

T∑
t=1

∑
1≤q,l≤Q

∣∣∣π̆tql − π∗t
ql

∣∣∣
π∗t
ql (1− π∗t

ql )

∣∣∣∣∣∣∣
∑
q′,l′

∑
(i,j)∈Gt

qlq′l′

(X t
ij − π∗t

q′l′)

∣∣∣∣∣∣∣
+

T∑
t=1

∑
1≤q,l≤Q

∣∣∣π̆tql − π∗t
ql

∣∣∣
π∗t
ql (1− π∗t

ql )

∣∣∣∣∣∣
∑
q′,l′

(π∗t
q′l′ − π∗t

ql )|Gt
qlq′l′ |

∣∣∣∣∣∣ .
For every u > 0, we thus have

P∗
θ∗ ({|U2| > u} ∩ Ωn)

≤
T∑
t=1

P∗
θ∗




∑
1≤q,l≤Q

∣∣∣π̆tql − π∗t
ql

∣∣∣
π∗t
ql (1− π∗t

ql )

∣∣∣∣∣∣∣
∑

1≤q′,l′≤Q

∑
(i,j)∈Gt

qlq′l′

(X t
ij − π∗t

q′l′)

∣∣∣∣∣∣∣ >
u

2T

 ∩ Ωn


+

T∑
t=1

P∗
θ∗

 ∑
1≤q,l≤Q

∣∣∣π̆tql − π∗t
ql

∣∣∣
π∗t
ql (1− π∗t

ql )

∣∣∣∣∣∣
∑

1≤q′,l′≤Q
(π∗t

q′l′ − π∗t
ql )|Gt

qlq′l′ |

∣∣∣∣∣∣ > u

2T

 ∩ Ωn

 . (A.1.3)

We start by dealing with the first term of (A.1.3). Notice that on the event Ωn, we
have

∣∣∣π̆tql − π∗t
ql

∣∣∣ /(π∗t
ql (1− π∗t

ql )) ≤ vn/ζ
2 for every q, l ∈ J1, QK. As the set Gt

ql is random
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(because D̆t is random), we write for every t ∈ J1, T K, using (A.1.2),

P∗
θ∗




∑
1≤q,l≤Q

∣∣∣π̆tql − π∗t
ql

∣∣∣
π∗t
ql (1− π∗t

ql )

∣∣∣∣∣∣∣
∑

1≤q′,l′≤Q

∑
(i,j)∈Gt

ql

(X t
ij − π∗t

q′l′)

∣∣∣∣∣∣∣ >
u

2T

 ∩ Ωn


≤P∗

θ∗

 ∑
1≤q,l≤Q

∣∣∣∣∣∣∣
∑

1≤q′,l′≤Q

∑
(i,j)∈Gt

ql

(X t
ij − π∗t

q′l′)

∣∣∣∣∣∣∣ >
uζ2

2Tvn


≤

∑
D⊂Dt

n,T (zt)
P∗
θ∗

 ∑
1≤q,l≤Q

∣∣∣∣∣∣∣
∑

1≤q′,l′≤Q

∑
(i,j)∈F t

ql
∩D

(X t
ij − π∗t

q′l′)

∣∣∣∣∣∣∣ >
uζ2

2Tvn


where now D is a deterministic set. By a union bound and Hoeffding’s inequality, we
have for any D ⊂ Dt

n,T (zt)

P∗
θ∗

 ∑
1≤q,l≤Q

∣∣∣∣∣∣∣
∑

1≤q′,l′≤Q

∑
(i,j)∈F t

ql
∩D

(X t
ij − π∗t

q′l′)

∣∣∣∣∣∣∣ >
uζ2

2Tvn


≤Q2 max

1≤q,l≤Q
P∗
θ∗


∣∣∣∣∣∣∣
∑

1≤q′,l′≤Q

∑
(i,j)∈F t

ql
∩D

(X t
ij − π∗t

q′l′)

∣∣∣∣∣∣∣ >
uζ2

2TvnQ2


≤2Q2 exp

(
− 2u2ζ4

4T 2v2
nQ

4
1
|D|

)
.

This leads to, for the first term of (A.1.3),

T∑
t=1

P∗
θ∗




∑
1≤q,l≤Q

∣∣∣∣∣ (π̆tql − π∗t
ql )

π∗t
ql (1− π∗t

ql )

∣∣∣∣∣
∣∣∣∣∣∣∣
∑

1≤q′,l′≤Q

∑
(i,j)∈Gt

ql

(X t
ij − π∗t

q′l′)

∣∣∣∣∣∣∣ >
u

2T

 ∩ Ωn


≤

T∑
t=1

∑
D⊂Dt

n,T (zt)
2Q2 exp

(
− 2u2ζ4

4T 2v2
nQ

4
1
|D|

)

≤
T∑
t=1

2nr(t)∑
k=1

∑
D⊂Dt

n,T (zt);|D|=k
2Q2 exp

(
− 2u2ζ4

4T 2v2
nQ

4
1
k

)

≤2Q2
T∑
t=1

exp
(
− u2ζ4

4T 2v2
nQ

4nr(t)

)
(2nr(t))2nr(t)+1

≤2Q2T exp
(
− u2ζ4

4T 2v2
nQ

4nr

)
(2nr)2nr+1.
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For the second term of (A.1.3), we get from a union bound and from (A.1.2) that

T∑
t=1

P∗
θ∗

 ∑
1≤q,l≤Q

∣∣∣∣∣ (π̆tql − π∗t
ql )

π∗t
ql (1− π∗t

ql )

∣∣∣∣∣
∣∣∣∣∣∣
∑

1≤q′,l′≤Q
(π∗t

q′l′ − π∗t
ql )|Gt

qlq′l′ |

∣∣∣∣∣∣ > u

2T

 ∩ Ωn


≤Q2

T∑
t=1

max
1≤q,l≤Q

P∗
θ∗

∣∣∣∣∣∣
∑

1≤q′,l′≤Q
(π∗t

q′l′ − π∗t
ql )|Gt

qlq′l′ |

∣∣∣∣∣∣ > uζ2

2TvnQ2


≤Q2TP∗

θ∗

(
2nr > uζ2

2vnTQ2

)
.

Finally, we have the following upper bound for U2

P∗
θ∗ (Ωn ∩ {|U2| > r log(nT )}) ≤2Q2T exp

(
−rζ

4(log(nT ))2

4Q4T 2v2
nn

)
(2nr)2nr+1

+Q2TP∗
θ∗

(
vn >

ζ2 log(nT )
4Q2Tn

)
.

For the third term U3, denoting G∗t
ql = ∪1≤q′,l′≤QG

t
ql = {(i, j) ∈ D∗t∪ D̆t; z∗t

i = q, z∗t
j = l},

we have

U3 =
∑

1≤q,l≤Q

∑
(i,j,t)∈D∗∪D̆

(
(π∗t

ql −X t
ij) log

[
1−

(π̆tql − π∗t
ql )

(1− π∗t
ql )

]

+ (X t
ij − π∗t

ql ) log
[
1 +

(π̆tql − π∗t
ql )

π∗t
ql

])
1z∗t

i =q,z∗t
j =l

+
∑

1≤q,l≤Q

∑
(i,j,t)∈D∗∪D̆

(
(1− π∗

ql) log
[
1−

(π̆tql − π∗t
ql )

(1− π∗t
ql )

]

+ π∗t
ql log

[
1 +

(π̆tql − π∗t
ql )

π∗t
ql

])
1z∗t

i =q,z∗t
j =l

=
T∑
t=1

∑
1≤q,l≤Q

(
log

[
1 +

(π̆tql − π∗t
ql )

π∗t
ql

]
− log

[
1−

(π̆tql − π∗t
ql )

(1− π∗t
ql )

]) ∑
(i,j)∈G∗t

ql

(X t
ij − π∗t

ql )

+
T∑
t=1

∑
1≤q,l≤Q

|G∗t
ql |
(

(1− π∗t
ql ) log

[
1 +

(π̆tql − π∗t
ql )

π∗t
ql

]
+ π∗t

ql log
[
1−

(π̆tql − π∗t
ql )

(1− π∗t
ql )

])
.

Then, we have on the event Ωn and for n large enough such that |(π̆tql − π∗t
ql )/π∗t

ql | ≤ 1/2
and |(π̆tql − π∗t

ql )/(1− π∗t
ql )| ≤ 1/2 for every q and l, using the fact that | log(1 + x)| ≤ 2|x|
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for x ∈ [−1/2, 1/2],

|U3| ≤
T∑
t=1

4vn
ζ

∑
1≤q,l≤Q

∣∣∣∣∣∣∣
∑

(i,j)∈G∗t
ql

(X t
ij − π∗t

ql )

∣∣∣∣∣∣∣+
T∑
t=1

4vn
ζ

∑
1≤q,l≤Q

|G∗t
ql |.

Then, for every u > 0,

P∗
θ∗ (Ωn ∩ {|U3| > u}) ≤

T∑
t=1

P∗
θ∗

 ∑
1≤q,l≤Q

∣∣∣∣∣∣∣
∑

(i,j)∈Q∗t
ql

(X t
ij − π∗t

ql )

∣∣∣∣∣∣∣ >
uζ

8vnT


+

T∑
t=1

P∗
θ∗

vn ∑
1≤q,l≤Q

|G∗t
ql | >

uζ

8T

 . (A.1.4)

For the first term of (A.1.4), using Hoeffding’s inequality as before,

T∑
t=1

P∗
θ∗

∑
q,l

∣∣∣∣∣∣∣
∑

(i,j)∈G∗t
ql

(X t
ij − π∗t

ql )

∣∣∣∣∣∣∣ > uζ/(8vnT )


≤

T∑
t=1

2nr(t)∑
k=1

∑
D⊂Dt

n,T (zt);|D|=k
P∗
θ∗

∑
q,l

∣∣∣∣∣∣∣
∑

(i,j)∈F ∗t
ql

∩D
(X t

ij − π∗t
ql )

∣∣∣∣∣∣∣ > uζ/(8vnT )


≤2Q2T exp

(
− u2ζ2

82T 2Q4v2
nnr

)
(2nr)2nr+1,

and for the second term of (A.1.4),

T∑
t=1

P∗
θ∗

vn∑
q,l

|G∗t
ql | >

uζ

8T

 ≤ TP∗
θ∗

(
vn >

uζ

16Tnr

)
.

Finally, we have the following upper bound for U3

P∗
θ∗ (Ωn ∩ {|U3| > r log(nT )}) ≤2Q2T exp

(
−rζ

2(log(nT ))2

82T 2Q4v2
nn

)
(2nr)2nr+1

+ TP∗
θ∗

(
vn >

ζ log(nT )
16Tn

)
.

Now we choose the sequence vn such that vn = o(
√

log n/n) which is sufficient to im-
ply that the quantities P∗

θ∗ (vn > ζ2 log(nT )/(4Q2Tn)) and P∗
θ∗ (vn > ζ log(nT )/(16Tn))

vanish as n increases and we gather the three upper bounds. For large enough values of
n and with C1, C2, C3, C4 and κ positive constants only depending on Q, ζ, K∗ and T ,
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we then have

P∗
θ∗ ({U1 + U2 − U3 > − log(1/(ϵyn))− 3r log(nT )} ∩ Ωn)

≤ exp
[
(log(1/(ϵyn)) + 5r log(nT ))2K∗

Cζ

]
exp

[
−nr (δ − η)2K∗2

4Cζ

]

+ 2Q2T exp
(
−rζ

4(log(nT ))2

4Q4T 2v2
nn

)
(2nr)2nr+1 + 2Q2T exp

(
−rζ

2(log(nT ))2

82T 2Q4v2
nn

)
(2nr)2nr+1

≤ exp
[
−(δ − η)2C1nr + C2 log(nT )r + C4 log(1/(ϵyn))

]
+ κ exp

[
5nr log(nT )− C3

(log(nT ))2r

nv2
n

]
.

Then, introducing

unT = exp
[
−(δ − η)2C1n+ C2 log(nT ) + C4 log(1/(ϵyn))

]
wnT = exp

[
−C3

(log(nT ))2

nv2
n

+ 5n log(nT )
]
,

we conclude as in the proof of Theorem 2.3.2, noticing that nTunT (resp. nTwnT )
converges to 0 as n increases as long as log(1/yn) = o(n) (resp. as long as vn =
o(
√

log(n)/n)).

A.1.3 Proof of Corollary 2.4.2

As in the proof of Theorem 2.4.1, using the convergence in Equation (A.1.1) and
Lemma 2.5.11, we obtain for any ϵ > 0

Pθ∗

(
sup
θ∈Θ

∣∣∣∣∣ 2
n(n− 1)T J (χ̂(θ), θ)−MT (π1:T )

∣∣∣∣∣ > ϵr2
n√
n

)
−→
n→+∞

0.

We then conclude by using Lemma 2.5.6 applied with Fn,T = 2
n(n−1)TJ (χ̂(·), ·).

A.2 Proofs of technical lemmas

A.2.1 Proof of Lemma 2.3.1

As in the proof of Lemma E.2 from Celisse et al. (2012), we use the method of Lagrange
multipliers to find the fixed-point equation of the critical point. Recall that θ = (Γ, π)
and let us denote the likelihood L(Γ, π) := exp ℓ(θ) = Pθ(X1:T ) and the conditional
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likelihood Lc(z1:T , π) = Pθ(X1:T |Z1:T = z1:T ). Recall the definition of Nql(z1:T ) in (2.2.1)
and that

Pθ(Z1:T = z1:T ) =
∏

1≤q,l≤Q
γ
Nql(z1:T )
ql

n∏
i=1

α1
z1

i
.

We compute the derivative of the Lagrangian with respect to each parameter γql.

∂

∂γql

L(Γ, π) +
Q∑

m=1
λm

 Q∑
k=1

γmk − 1


= ∂

∂γql

∑
z1:T

Lc(z1:T , π)Pθ(Z1:T = z1:T )
+ λq

=
∑
z1:T

Lc(z1:T , π)Nql(z1:T )
γql

Pθ(Z1:T = z1:T ) + λq

= 1
γql

T−1∑
t=1

n∑
i=1

∑
z1:T

Lc(z1:T , π)Pθ(Z1:T = z1:T )1zt
i =q,zt+1

i =l + λqγql


= 1
γql

(
T−1∑
t=1

n∑
i=1

Pθ(X1:T , Zt
i = q, Zt+1

i = l) + λqγql

)
.

At the critical point θ̆ = (γ̆, π̆), we obtain that for each (q, l) ∈ J1, QK2 we have

γ̆ql ∝
T−1∑
t=1

n∑
i=1

Pθ̆(X
1:T , Zt

i = q, Zt+1
i = l)

where ∝ means ’proportional to’. The constraint ∑l γql = 1 gives the normalizing term
and we obtain

γ̆ql =
∑T−1
t=1

∑n
i=1 Pθ̆(X1:T , Zt

i = q, Zt+1
i = l)∑T−1

t=1
∑n
i=1 Pθ̆(X1:T , Zt

i = q)
=
∑T−1
t=1

∑n
i=1 Pθ̆(Zt

i = q, Zt+1
i = l |X1:T )∑T−1

t=1
∑n
i=1 Pθ̆(Zt

i = q |X1:T )
.
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A.2.2 Proof of Lemma 2.4.1

We can write the quantity to optimize

J (χ, θ) =EQχ

[
logPθ(X1:T , Z1:T )

]
+H(Qχ)

=EQχ

[
logPθ(X1:T | Z1:T )

]
+ EQχ

[
logPθ(Z1:T )

]
− EQχ

[
logQχ(Z1:T )

]
=EQχ

 T∑
t=1

∑
i<j

X t
ij log πZt

iZ
t
j

+ (1−X t
ij) log(1− πZt

iZ
t
j
)


+ EQχ

[
n∑
i=1

logαZ1
i

+
n∑
i=1

T−1∑
t=1

log γZt
iZ

t+1
i

]

− EQχ

[
n∑
i=1

logQχ(Z1
i ) +

n∑
i=1

T−1∑
t=1

logQχ(Zt+1
i | Zt

i )
]

=
T∑
t=1

∑
i<j

∑
q,l

τ tiqτ
t
jl

[
X t
ij log πql + (1−X t

ij) log(1− πql)
]

+
n∑
i=1

Q∑
q=1

τ 1
iq logαq +

n∑
i=1

∑
q,l

T−1∑
t=1

ηtiql log γql

−
n∑
i=1

Q∑
q=1

τ 1
iq log τ 1

iq −
n∑
i=1

T−1∑
t=1

∑
q,l

ηtiql log
ηtiql
τ tiq

. (A.2.1)

Using this expression, we can obtain directly the expected fixed-point equation for the
variational estimator of the transition probability from q to l.

A.2.3 Proof of Lemma 2.5.1

We rely on the notation introduced in the proof of Theorem 2.3.1. For any t ∈ J1, T K,
using classical dependency rules in directed acyclic graphs and the expression (2.5.3) of
ẑt, we write

logPθ(X t |X1:t−1) = log
∑
zt

Pθ(X t | Zt = zt)Pθ(Zt = zt |X1:t−1)

≤ log
[
Pθ(X t | Zt = ẑt)

∑
zt

Pθ(Zt = zt |X1:t−1)
]

≤ logPθ(X t | Zt = ẑt)

and thus
logPθ(X t |X1:t−1)− logPθ(X t | Zt = ẑt) ≤ 0. (A.2.2)
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Using Bayes’ rule, we have

logPθ(X t |X1:t−1) = logPθ(X t, Zt |X1:t−1)− logPθ(Zt |X1:t).

Taking the expectation of this quantity with respect to any distribution Q on Zt, we
obtain

logPθ(X t |X1:t−1) = EQ
[
logPθ(X t, Zt |X1:t−1)

]
+ KL

(
Q;Pθ(Zt |X1:t)

)
+H(Q)

≥ EQ
[
logPθ(X t, Zt |X1:t−1)

]
+H(Q)

≥ EQ
[
logPθ(X t | Zt)

]
+ EQ

[
logPθ(Zt |X1:t−1)

]
+H(Q),

where KL (Q;Pθ(Zt |X1:t)) = EQ [logQ(Zt)− logPθ(Zt |X1:t)] is a Kullback-Leibler
divergence (thus non negative) and H(Q) = −EQ [logQ(Zt)] is the entropy of Q.

Taking now Q as the Dirac distribution located on ẑt , we have H(Q) = 0 and

logPθ(X t |X1:t−1) ≥ logPθ(X t | Zt = ẑt) + logPθ(Zt = ẑt |X1:t−1). (A.2.3)

Now, combining Inequalities (A.2.2) and (A.2.3), we obtain

logPθ(Zt = ẑt |X1:t−1) ≤ logPθ(X t |X1:t−1)− logPθ(X t | Zt = ẑt) ≤ 0,

giving the expected result.

A.2.4 Proof of Lemma 2.5.2

To prove this lemma, we first establish a control of the expectation of the random variable
appearing in the statement.

Lemma A.2.1. We have the following inequality for z∗1:T and z1:T any configurations
and any θ ∈ Θ

Eθ∗

 sup
(z1:T ,π)∈

J1,QKnT ×[ζ,1−ζ]Q2

∣∣∣∣∣∣ 2
n(n− 1)T

T∑
t=1

∑
i<j

(X t
ij − π∗

z∗t
i z∗t

j
) log

 πzt
iz

t
j

1− πzt
iz

t
j

∣∣∣∣∣∣
∣∣∣∣ Z1:T = z∗1:T


≤
√

2
n(n− 1)T Λ

with Λ = 2 log[(1− ζ)/ζ].
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We now turn to the proof of Lemma 2.5.2. Let us first recall Talagrand’s inequality (see
for e.g. Massart, 2007, page 170, Equation (5.50)).

Theorem (Talagrand’s inequality). Let {Y t
ij}1≤i<j≤n,1≤t≤T denote independent and cen-

tered random variables. Define

∀g := {gtij}1≤i<j≤n,1≤t≤T ∈ G, Sn,T (g) =
∑

1≤i<j≤n

T∑
t=1

Y t
ijg

t
ij,

where G ⊂ Rn(n−1)T/2. Let us further assume that there exist b > 0 and σ2 >

0 such that |Y t
ijg

t
ij| ≤ b for every (i, j, t) ∈ J1, nK2 × J1, T K and any g ∈ G and

supg∈G
∑
i<j

∑
t Var(Y t

ijg
t
ij) ≤ σ2. Then, for every β > 0 and x > 0, for any finite

set {g1, . . . , g2n(n−1)T/2} of elements of G, we have

P
(

max
g∈{g1,...,g2n(n−1)T/2 }

Sn,T (g) ≥E
[

max
g∈{g1,...,g2n(n−1)T/2 }

Sn,T (g)
]

(1 + β)

+
√

2σ2x+ b(β−1 + 3−1)x
)
≤ e−x.

First, notice that argminϖ∈[ζ,1−ζ] log(ϖ/(1−ϖ)) = ζ and arg maxϖ∈[ζ,1−ζ] log(ϖ/(1−
ϖ)) = 1− ζ so that we have

P∗
θ∗

 sup
(z1:T ,π)∈J1,QKnT ×[ζ,1−ζ]Q2

2
n(n− 1)T

∣∣∣∣∣∣
T∑
t=1

∑
i<j

(X t
ij − π∗

z∗t
i z∗t

j
) log

 πzt
iz

t
j

1− πzt
iz

t
j

∣∣∣∣∣∣ > ϵ


≤ P∗

θ∗

 max
ϖ∈{ζ,1−ζ}n(n−1)T/2

2
n(n− 1)T

∣∣∣∣∣∣
T∑
t=1

∑
i<j

(X t
ij − π∗

z∗t
i z∗t

j
) log

(
ϖt
i,j

1−ϖt
i,j

)∣∣∣∣∣∣ > ϵ


with ϖ := {ϖt

i,j}1≤i<j≤n,1≤t≤T . The set {ζ, 1 − ζ}n(n−1)T/2 is finite, of size 2n(n−1)T/2.
Let us now apply Talagrand’s inequality to our setup. Note that for every (i, j, t) ∈
J1, nK2 × J1, T K, for any π ∈ [ζ, 1− ζ]Q2 , we have∣∣∣∣∣∣(X t

ij − π∗
z∗t

i z∗t
j

) log
 πzt

iz
t
j

1− πzt
iz

t
j

∣∣∣∣∣∣ ≤ log[(1− ζ)/ζ] = Λ
2

almost surely thanks to Assumption 3, and with Λ as defined in Lemma A.2.1. Combining
this result with Lemma A.2.1 and writing

Ω = (1 + β)Λ
√
n(n− 1)T/2 +

√
n(n− 1)T (Λ/2)2xn,T + (1/β + 1/3)(Λ/2)xn,T ,
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we have for any ϵ > 0, for any β > 0, applying Talagrand’s inequality with b = Λ/2 and
σ2 = n(n− 1)T/2(Λ/2)2,

P∗
θ∗

 sup
(z1:T ,π)∈J1,QKnT ×[ζ,1−ζ]Q2

2
n(n− 1)T

∣∣∣∣∣∣
T∑
t=1

∑
i<j

(X t
ij − π∗

z∗t
i z∗t

j
) log

 πzt
iz

t
j

1− πzt
iz

t
j

∣∣∣∣∣∣ > ϵ


≤P∗

θ∗

 max
ϖ∈{ζ,1−ζ}n(n−1)T/2

2
n(n− 1)T

∣∣∣∣∣∣
T∑
t=1

∑
i<j

(X t
ij − π∗

z∗t
i z∗t

j
) log

(
ϖt
i,j

1−ϖt
i,j

)∣∣∣∣∣∣ > ϵ


≤P∗

θ∗

ϵ < max
ϖ∈

{ζ,1−ζ}n(n−1)T/2

2
n(n− 1)T

∣∣∣∣∣∣
T∑
t=1

∑
i<j

(X t
ij − π∗

z∗t
i z∗t

j
) log

(
ϖt
i,j

1−ϖt
i,j

)∣∣∣∣∣∣ ≤ 2
n(n− 1)T Ω


+ P∗

θ∗

 max
ϖ∈

{ζ,1−ζ}n(n−1)T/2

2
n(n− 1)T

∣∣∣∣∣∣
T∑
t=1

∑
i<j

(X t
ij − π∗

z∗t
i z∗t

j
) log

(
ϖt
i,j

1−ϖt
i,j

)∣∣∣∣∣∣ > 2
n(n− 1)T Ω


≤P∗

θ∗

(
2

n(n− 1)T Ω > ϵ

)
+ 2e−xn,T ≤ 1ϵ<2Ω/(n(n−1)T ) + 2e−xn,T .

A.2.5 Proof of Lemma 2.5.3

For any η ∈ (0, δ), Hoeffding’s inequality (see for example Theorem 2.8 from Boucheron
et al., 2013) gives that

Pθ
(
∀t ∈ J1, T K,∀q ∈ J1, QK,

Nq(Zt)
n

≥ αq − η
)

=1− Pθ
(
∃t ∈ J1, T K,∃q ∈ J1, QK; 1

n

n∑
i=1

1Zt
i =q < αq − η

)

≥1−
Q∑
q=1

T∑
t=1

exp
(
−2η2n

)
≥ 1−QT exp

(
−2η2n

)
,

which concludes the proof.

A.2.6 Proof of Lemma 2.5.4

First notice that arg maxA∈A M(π,A) may not be unique, it is in fact a closed subset of
A. However, we choose a fixed element Āπ in this subset in the following. Letting ϵ > 0



190 Supplementary material for Chapter 2

and η ∈ (0, δ) and using Lemma 2.5.3, we can split the probability as

Pθ∗

 1
T

T∑
t=1

sup
π∈[ζ,1−ζ]Q2

∣∣∣M(π, Ātπ)−M(π, Āπ)
∣∣∣ > ϵrn

6
√
n


≤Pθ∗

 1
T

T∑
t=1

sup
π∈[ζ,1−ζ]Q2

∣∣∣M(π, Ātπ)−M(π, Āπ)
∣∣∣ > ϵrn

6
√
n

 ∩ Ωη(θ∗)


+QT exp
(
−2η2n

)
,

recalling that

Ωη(θ) :=
{
z1:T ∈ J1, QKnT ; ∀t ∈ J1, T K,∀q ∈ J1, QK,

Nq(zt)
n

≥ αq − η
}
.

We thus want to bound the quantity

Pθ∗

T−1
T∑
t=1

sup
π∈[ζ,1−ζ]Q2

∣∣∣M(π, Ātπ)−M(π, Āπ)
∣∣∣ > ϵrn/(6

√
n)


on the event
{
Z1:T ∈ Ωη(θ∗)

}
, which means bounding

Pθ∗

 1
T

T∑
t=1

sup
π∈[ζ,1−ζ]Q2

∣∣∣M(π, Ātπ)−M(π, Āπ)
∣∣∣ > ϵrn

6
√
n

∣∣∣∣∣∣ Z1:T ∈ Ωη(θ∗)
 .

Let us denote for any matrix P of size m× n the norm ∥P∥∞ = max(i,j)∈J1,mK×J1,nK |Pij|.
Then note that, for any matrix Ă with coefficients in [0, 1], for any π ∈ [ζ, 1− ζ]Q2 , using
Assumption 2 and 3,

(
M(π, Āπ)−M(π, Ă)

)
≤
∑
q,l

α∗
qα

∗
l

∑
q′,l′
|āqq′ āll′ − ăqq′ ăll′ | sup

π∈[ζ,1−ζ]Q2
|π∗
ql log πq′l′ + (1− π∗

ql) log(1− πq′l′)|

≤2(1− δ)2(1− ζ) log(1/ζ)
∑
q,l

∑
q′,l′
|āqq′ āll′ − ăqq′ ăll′|

≤2(1− δ)2(1− ζ) log(1/ζ)Q42∥Ă− Āπ∥∞ := c∥Ă− Āπ∥∞
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with c = 4(1− δ)2(1− ζ) log(1/ζ)Q4. On the event Ωη(θ∗) we then have

Pθ∗

 1
T

T∑
t=1

sup
π∈[ζ,1−ζ]Q2

∣∣∣M(π, Ātπ)−M(π, Āπ)
∣∣∣ > ϵrn

6
√
n


=1− Pθ∗

 1
T

T∑
t=1

sup
π∈[ζ,1−ζ]Q2

∣∣∣M(π, Ātπ)−M(π, Āπ)
∣∣∣ ≤ ϵrn

6
√
n


≤1− Pθ∗

∀t ∈ J1, T K, sup
π∈[ζ,1−ζ]Q2

(
M(π, Āπ)−M(π, Ātπ)

)
≤ ϵrn

6
√
n


≤1− Pθ∗

(
∀t ∈ J1, T K,∀π ∈ [ζ, 1− ζ]Q2

,
(
M(π, Āπ)−M(π, Ātπ)

)
≤ ϵrn

6
√
n

)

≤1− Pθ∗

(
∀t ∈ J1, T K,∀π ∈ [ζ, 1− ζ]Q2

,∃Ă ∈ At(Z1:T );
(
M(π, Āπ)−M(π, Ă)

)
≤ ϵrn

6
√
n

)

≤1− Pθ∗

(
∀t ∈ J1, T K,∀π ∈ [ζ, 1− ζ]Q2

,∃Ă ∈ At(Z1:T ); ∥Ă− Āπ∥∞ <
ϵrn

6c
√
n

)
.

We then show that for any ϵ > 0, for every t ∈ J1, T K and every π ∈ [ζ, 1 − ζ]Q2 , for
any n such that n > 6c

√
n/[ϵrn(δ − η)], there exists some Ă ∈ At(Z1:T ) such that

∥Ă − Āπ∥∞ < ϵrn/(6c
√
n), i.e. such that for every q, l, |ăql − āql| < ϵrn/(6c

√
n). For

every 1 ≤ q ≤ Q, we can construct Ăq· = (ăq1, . . . , ăqQ) as follows. On the event
Ωη(θ∗), for every q ∈ J1, QK, for any n such that n > 6c

√
n/[ϵrn(δ − η)], we have

Nq(Zt)ϵrn/(6c
√
n) > 1 for every t ∈ J1, T K. We then construct (n̆ql)1≤l≤Q as follows and

take ăql = n̆ql/Nq(Z1:T ) for every l ∈ J1, QK.

• for l = 1 choose n̆q1 as the closest integer to Nq(Zt)āq1. It is in the inter-
val (Nq(Zt)āq1 − 1, Nq(Zt)āq1 + 1) so we have |āq1 − n̆q1/Nq(Zt)| < 1/Nq(Zt) <
ϵrn/(6c

√
n). Moreover, note that 0 ≤ n̆q1 ≤ Nq(Zt) because 0 ≤ Nq(Zt)āq1 ≤

Nq(Zt).

• Repeat for l = 2, . . . , Q

– if ∑l−1
l′=1(Nq(Zt)āql′− n̆ql′) ≥ 0 choose n̆ql as the closest bigger (or equal) integer

to Nq(Zt)āql.

– if ∑l−1
l′=1(Nq(Zt)āql′ − n̆ql′) < 0 choose n̆ql as the closest smaller (or equal)

integer to Nq(Zt)āql.

As before, n̆ql is in the interval (Nq(Zt)āql − 1, Nq(Zt)āql + 1) so we have |āql −
n̆ql/Nq(Zt)| < 1/Nq(Z1:T ) < ϵrn/(6c

√
n). Moreover 0 ≤ n̆ql ≤ Nq(Zt) because
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0 ≤ Nq(Zt)āql ≤ Nq(Zt). We also have (by induction)
∣∣∣∣∣
l∑

l′=1
(Nq(Zt)āql′ − n̆ql′)

∣∣∣∣∣ =
∣∣∣∣∣
(
l−1∑
l′=1

Nq(Zt)āql′ − n̆ql′
)

+Nq(Zt)āql − n̆ql
∣∣∣∣∣ < 1.

In the end, we have |∑Q
l=1(Nq(Zt)āql−n̆ql)| < 1 i.e. |Nq(Zt)−∑Q

l=1 n̆ql| < 1, meaning that∑Q
l=1 n̆ql = Nq(Zt), both Nq(Zt) and ∑Q

l=1 n̆ql being integers. Then, if n > 6c
√
n/[ϵrn(δ−

η)], there exists Ă ∈ At(Z1:T ) such that ∥Ă− Āπ∥∞ < ϵrn/(6c
√
n). This leads to

Pθ∗

(
1
T

T∑
t=1

∣∣∣M(π, Ātπ)−M(π, Āπ)
∣∣∣ > ϵrn

6
√
n

)
≤ QT exp(−2η2n) + 1− 1n>6c

√
n/[ϵrn(δ−η)]

which concludes the proof.

A.2.7 Proof of Lemma 2.5.5

We can upper bound the expectation as follows

Eθ∗

[∣∣∣∣∣Nq(Z1)Nl(Z1)
n(n− 1) − α∗

qα
∗
l

∣∣∣∣∣
]

=Eθ∗

[∣∣∣∣∣
(
Nq(Z1)
n

− α∗
q

)
Nl(Z1)
n− 1 + α∗

q

(
Nl(Z1)
n− 1 − α

∗
l

)∣∣∣∣∣
]

≤Eθ∗

[∣∣∣∣∣Nq(Z1)
n

− α∗
q

∣∣∣∣∣ Nl(Z1)
n− 1

]
+ α∗

qEθ∗

[∣∣∣∣∣Nl(Z1)
n− 1 − α

∗
l

∣∣∣∣∣
]

≤

√√√√√Eθ∗

(Nq(Z1)
n

− α∗
q

)2
Eθ∗

[
Nl(Z1)2

(n− 1)2

]

+ α∗
q

√√√√√Eθ∗

(Nl(Z1)
n− 1 − α

∗
l

)2
.

We have for any q ∈ J1, QK

Eθ∗

[
Nq(Z1)2

]
=
∑
i,j

Eθ∗

[
1Z1

i =q1Z1
j =q

]
=
∑
i

α∗
q +

∑
i ̸=j

α∗2
q = nα∗

q + n(n− 1)α∗2
q .

This implies that

Eθ∗

(Nq(Z1)
n

− α∗
q

)2
 = Eθ∗

[
Nq(Z1)2

n2

]
− α∗2

q

= 1
n
α∗
q + n− 1

n
α∗2
q − α∗2

q = 1
n
α∗
q(1− α∗

q),
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and identically

Eθ∗

(Nl(Z1)
n− 1 − α

∗
l

)2
 = Eθ∗

[
Nl(Z1)2

(n− 1)2

]
+ α∗2

l − 2 n

n− 1α
∗2
l

= n

(n− 1)2α
∗
l −

1
n− 1α

∗2
l = 1

n− 1α
∗
l

(
n

n− 1 − α
∗
l

)
.

This leads to

Eθ∗

[∣∣∣∣∣Nq(Z1)Nl(Z1)
n(n− 1) − α∗

qα
∗
l

∣∣∣∣∣
]
≤

√√√√ 1
n
α∗
q(1− α∗

q)
(

n

(n− 1)2α
∗
q + n

n− 1α
∗2
q

)

+ α∗
q

√
1

n− 1α
∗
l

(
n

n− 1 − α
∗
l

)

≤
√

1
(n− 1)2 + 1

n− 1 +
√

n

(n− 1)2 ≤ 2
√
n

n− 1 , (A.2.4)

using the fact that 0 ≤ α∗
q ≤ 1 for every q ∈ J1, QK.

A.2.8 Proof of Lemma 2.5.6

We first consider the case when T → ∞, and π is constant over time. We use the
following lemma.

Lemma A.2.2. For any θ ∈ Θ, we have for ϵ small enough (precisely 0 < ϵ <

min1≤q ̸=q′≤Q max1≤l≤Q |π∗
ql − π∗

q′l|/2)

min
σ∈SQ

∥πσ − π∗∥∞ > ϵ =⇒ M(π∗)−M(π) > 2δ2

Q2 ϵ
2.

This gives an upper bound on the probability of interest

Pθ∗

(
min
σ∈SQ

∥π̂σ − π∗∥∞ > ϵ
√
vn,T

)
≤ Pθ∗

(
M(π∗)−M(π̂) > 2δ2

Q2 ϵ
2vn,T

)
.

By definition of θ̂ = (Γ̂, π̂), we write

M(π∗) = Fn,T (Γ̂, π∗) + M(π∗)− Fn,T (Γ̂, π∗) ≤ Fn,T (Γ̂, π̂) + M(π∗)− Fn,T (Γ̂, π∗),

implying that

M(π∗)−M(π̂) ≤
[
Fn,T (Γ̂, π̂)−M(π̂)

]
+
[
M(π∗)− Fn,T (Γ̂, π∗)

]
.
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We then obtain the following upper bound, that converges to 0 as n and T increase by
assumption,

Pθ∗

(
min
σ∈SQ

∥π̂σ − π∗∥∞ > ϵ
√
vn,T

)
≤Pθ∗

(
Fn,T (Γ̂, π̂)−M(π̂) > δ2

Q2 ϵ
2vn,T

)

+ Pθ∗

(
M(π∗)− Fn,T (Γ̂, π∗) > δ2

Q2 ϵ
2vn,T

)
.

When the number of time steps T is fixed and π is allowed to vary over time, the
proof is almost the same. Indeed, minσ1,...,σT ∈SQ

∥π̂1:T
σ1:T − π∗1:T∥∞ > ϵ

√
vn means that

there exists t ∈ J1, T K such that minσt∈SQ
∥π̂tσt − π∗t∥∞ > ϵ

√
vn and we can apply

Lemma A.2.2 to this π̂t to obtain that M(π∗t)−M(π̂t) > 2ϵ2δ2vn/Q
2. This implies that

MT (π∗1:T ) −MT (π̂1:T ) > 2ϵ2δ2vn/(TQ2), which allows to conclude in the same way as
before.

A.2.9 Proof of Lemma 2.5.7

We have

log Pθ̆(Z1:T = z1:T |X1:T )
Pθ̆(Z1:T = z∗1:T |X1:T ) = log Pθ̆(X1:T | Z1:T = z1:T )

Pθ̆(X1:T | Z1:T = z∗1:T ) + log Pθ̆(Z1:T = z1:T )
Pθ̆(Z1:T = z∗1:T )

=
T∑
t=1

∑
1≤i<j≤n

X t
ij log
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t
j
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i z∗t
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ij) log
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t
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
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log
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i

+
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log
γ̆zt

iz
t+1
i

γ̆z∗t
i z∗t+1

i

.

We decompose this sum as

log Pθ̆(Z1:T = z1:T |X1:T )
Pθ̆(Z1:T = z∗1:T |X1:T )

=
T∑
t=1

∑
1≤i<j≤n

X t
ij log
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i z∗t
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log
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log
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iz
t+1
i

γ̆z∗t
i z∗t+1

i

+
T∑
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X t
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π̆zt
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t
j

π∗
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iz
t
j

π∗
z∗t

i z∗t
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π̆z∗t
i z∗t
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z∗t

i z∗t
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1− π̆z∗t
i z∗t

j

 . (A.2.5)
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In the first sum of the right-hand side of (A.2.5), the terms are different from zero only
for triplets (i, j, t) in D∗. Similarly in the last sum, the terms are different from zero for
triplets (i, j, t) in D∗ ∪ D̆. As a consequence, we obtain

log Pθ̆(Z1:T = z1:T |X1:T )
Pθ̆(Z1:T = z∗1:T |X1:T )

=
∑
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 .
We now write the last sum in the right-hand side as

∑
(i,j,t)∈D∗∪D̆

X t
ij log
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Distinguishing between the cases where X t

ij = 1 and X t
ij = 0, we obtain
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In the end, we decompose

log Pθ̆(Z1:T = z1:T |X1:T )
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 ,
which gives the result.

A.2.10 Proof of Lemma 2.5.8

We first notice that
∣∣∣Dn,T (z1:T , π)

∣∣∣ =1
2
∣∣∣{(i, j, t) ∈ J1, nK2 × J1, T K; πzt
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t
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i z∗t
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∣∣∣{(i, j) ∈ J1, nK2; πzt
iz

t
j
̸= πz∗t

i z∗t
j

}∣∣∣ .
For every t ∈ J1, T K, we can apply Proposition B.4. from Celisse et al. (2012), as their
Assumption (A4) is required to hold only for z∗t (see proof) and is valid on Ωη(θ) with
the constant δ − η. We obtain

∣∣∣{(i, j) ∈ J1, nK2; πzt
iz

t
j
̸= πz∗t

i z∗t
j

}∣∣∣ ≥ (δ − η)2

2 nr(t).

We conclude by noticing that ∑T
t=1 r(t) = r.
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A.2.11 Proof of Lemma 2.5.9

The inclusion of the sets is straightforward. Now we have
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A.2.12 Proof of Lemma 2.5.10

First, let us decompose the quantity at stake as follows
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, (A.2.6)

and upper bound the two terms in the right-hand side of (A.2.6). For the first one we
will follow the proof of Theorem 3.9 from Celisse et al. (2012). Let z1:T denote a fixed
configuration. We work on the set {Z1:T = z1:T} and write
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Then
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, (A.2.7)

where the last inequality comes from Theorem 2.3.2 where the bound is uniform with
respect to z1:T .

Now, for the second term of (A.2.6), we use the following lemma.

Lemma A.2.3. There exist c1, c2 > 0 such that for any ϵ > 0, for any sequence
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. (A.2.8)

We then combine the two upper bounds obtained in (A.2.7) and (A.2.8) in order to
conclude, the assumption ϵrn,T

√
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√
nT ) < 1 being satisfied for n and T large

enough because rn,T = o(
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nT/ log n). We obtain the expected result, using the fact that

log(T ) = o(n), that rn,T increases to infinity and that vn,T = o
(√

log(nT )/n
)
,

Pθ∗

(∣∣∣∣∣ 1
n(T − 1)

T−1∑
t=1

n∑
i=1

Pθ̂σ

(
Zt
i = q, Zt+1

i = l |X1:T
)
− α∗

qγ
∗
ql

∣∣∣∣∣ > ϵyn,T

)

≤Pθ∗ (∥π̂σ − π∗∥∞ > vn,T ) + o(1).
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A.2.13 Proof of Lemma 2.5.11

We have the following inequalities by definition of ẑ1:T , J (χ, θ) and χ̂(θ) and because
the Kullback-Leibler divergence is non-negative

J (ẑ1:T , θ) ≤ J (χ̂(θ), θ) ≤ ℓ(θ) ≤ ℓc(θ, ẑ1:T ), (A.2.9)

with J (ẑ1:T , θ) = ℓ(θ)−KL(δẑ1:T ,Pθ(·|X1:T )). We write this Kullback-Leibler divergence
(from Pθ(·|X1:T ) to Qχ = δẑ1:T , with χ = (τ, η) such that τ tiq = ẑtiq and ηtiql = ẑtiqẑ

t+1
il ) as

follows

KL(δẑ1:T ,Pθ(·|X1:T )) =− logPθ(ẑ1:T |X1:T ).

We then obtain

J (ẑ1:T , θ) = logPθ(X1:T ) + logPθ(ẑ1:T |X1:T ) = Pθ(X1:T |ẑ1:T ) + logPθ(ẑ1:T )

=ℓc(θ; ẑ1:T ) +
n∑
i=1

logαẑ1
i

+
n∑
i=1

T∑
t=2

log γẑt−1
i ẑt

i
.

Combined with (A.2.9), this leads to the following inequality for any parameter θ ∈ Θ

|J (χ̂(θ), θ)− ℓ(θ)| ≤
∣∣∣J (ẑ1:T , θ)− ℓc(θ, ẑ1:T )

∣∣∣ ≤ − n∑
i=1

logαẑ1
i
−

n∑
i=1

T∑
t=2

log γẑt−1
i ẑt

i

≤ nT log(1/δ).

We can conclude that

sup
θ∈Θ

∣∣∣∣∣ 2
n(n− 1)T J (χ̂(θ), θ)− 2

n(n− 1)T ℓ(θ)
∣∣∣∣∣ ≤ 2 log(1/δ)

n− 1 .
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A.2.14 Proof of Lemma 2.5.12

This proof is quite similar to that of Lemma 2.5.10. For any ϵ > 0, let us write

Pθ∗

(∣∣∣∣∣ 1
n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)(Zt
i = q, Zt+1

i = l)− α∗
qγ

∗
ql

∣∣∣∣∣ > ϵrn,T

√
log n√
nT

)

≤Pθ∗

(∣∣∣∣∣ 1
n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)(Zt
i = q, Zt+1

i = l)− Nql(Z1:T )
n(T − 1)

∣∣∣∣∣ > ϵ

2rn,T
√

log n√
nT

)

+ Pθ∗

(∣∣∣∣∣Nql(Z1:T )
n(T − 1) − α

∗
qγ

∗
ql

∣∣∣∣∣ > ϵ

2rn,T
√

log n√
nT

)

and upper bound the two probabilities in the right-hand side of this inequality. We
already proved in Lemma 2.5.10 that the second term converges to 0 thanks to the
assumptions on the sequence {rn,T}n,T≥1. For the first term, let z1:T denote a fixed
configuration. Let us work on the set {Z1:T = z1:T} and use the same method as in the
proof of Lemma 2.5.10,

1
n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)(Zt
i = q, Zt+1

i = l)

= 1
n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)(Zt
i = q, Zt+1

i = l)1zt
i =q,zt+1

i =l

+ 1
n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)(Zt
i = q, Zt+1

i = l)1(zt
i ,z

t+1
i ) ̸=(q,l),

leading to
∣∣∣∣∣ 1
n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)(Zt
i = q, Zt+1

i = l)− Nql(z1:T )
n(T − 1)

∣∣∣∣∣ ≤2Qχ̂(θ̃σ)(Z1:T ̸= z1:T ).

Then we obtain

Pθ∗

(∣∣∣∣∣ 1
n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)(Zt
i = q, Zt+1

i = l)− Nql(Z1:T )
n(T − 1)

∣∣∣∣∣ > ϵ

2rn,T
√

log n√
nT

)

≤
∑
z1:T

Pθ∗

(
Qχ̂(θ̃σ)(Z1:T ̸= z1:T ) > ϵ

4rn,T
√

log n√
nT

∣∣∣∣ Z1:T = z1:T
)
Pθ∗

(
Z1:T = z1:T

)
.

For each z1:T , we use the following lemma.
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Lemma A.2.4. Denoting P̃σ(·) = Pθ̃σ
(Z1:T = · |X1:T ), we have the following inequality

for any configuration z1:T

∣∣∣Qχ̂(θ̃σ)(z1:T )− P̃σ(z1:T )
∣∣∣ ≤

√
−1

2 log
(
P̃σ(z1:T )

)
.

This gives us

Pθ∗

(
Qχ̂(θ̃σ)(Z1:T ̸= z1:T ) > ϵ

4rn,T
√

log n√
nT

∣∣∣∣ Z1:T = z1:T
)

≤Pθ∗

(∣∣∣Qχ̂(θ̃σ)(Z1:T ̸= z1:T )− P̃σ(Z1:T ̸= z1:T )
∣∣∣ > ϵ

8rn,T
√

log n√
nT

∣∣∣∣ Z1:T = z1:T
)

+ Pθ∗

(
P̃σ(Z1:T ̸= z1:T ) > ϵ

8rn,T
√

log n√
nT

∣∣∣∣ Z1:T = z1:T
)

≤Pθ∗

√−1
2 log

(
P̃σ(z1:T )

)
>
ϵ

8rn,T
√

log n√
nT

∣∣∣∣ Z1:T = z1:T


+ Pθ∗

(
P̃σ(Z1:T ̸= z1:T ) > ϵ

8rn,T
√

log n√
nT

∣∣∣∣ Z1:T = z1:T
)

≤Pθ∗

(
P̃σ(Z1:T ̸= z1:T ) > 1− exp

(
−
ϵ2r2

n,T log n
32nT

) ∣∣∣∣ Z1:T = z1:T
)

+ Pθ∗

(
P̃σ(Z1:T ̸= z1:T ) > ϵ

8rn,T
√

log n√
nT

∣∣∣∣ Z1:T = z1:T
)
. (A.2.10)

Noticing that the assumptions on {rn,T}n,T≥1 imply that

− log
[
1− exp

(
−
ϵ2r2

n,T log n
32nT

)]
= o(n) and − log

[
rn,T

√
log n√
nT

]
= o(n),

we can conclude by applying the result of Theorem 2.3.2 with the estimator θ̃σ = (Γ̃σ, π̃σ)
for both terms of the right-hand side of (A.2.10).

A.2.15 Proof of Lemma A.2.1

The proof follows the lines of the proof of Lemma C.3. from Celisse et al. (2012).
Let E∗

θ∗ [·] denote the expectation given Z1:T = z∗1:T , i.e. E∗
θ∗ [·] = Eθ∗ [· | Z1:T = z∗1:T ].

Introducing a ghost sample {X̃ t
ij}i,j,t that is independent of {X t

ij}i,j,t and has the same
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distribution, we write

E :=E∗
θ∗

 sup
(z1:T ,π)∈

J1,QKnT ×[ζ,1−ζ]Q2

∣∣∣∣∣∣ 2
n(n− 1)T

T∑
t=1

∑
i<j

(X t
ij − π∗

z∗t
i z∗t

j
) log

 πzt
iz

t
j

1− πzt
iz

t
j

∣∣∣∣∣∣


=E∗
θ∗

 sup
(z1:T ,π)∈

J1,QKnT ×[ζ,1−ζ]Q2

∣∣∣∣∣∣ 2
n(n− 1)T E∗

θ∗

 T∑
t=1

∑
i<j

(X t
ij − X̃ t

ij) log
 πzt

iz
t
j

1− πzt
iz

t
j

 ∣∣∣∣ {X t
ij}i,j,t

∣∣∣∣∣∣


≤E∗
θ∗

E
∗
θ∗

 sup
(z1:T ,π)∈

J1,QKnT ×[ζ,1−ζ]Q2

2
n(n− 1)T

∣∣∣∣∣∣
T∑
t=1

∑
i<j

(X t
ij − X̃ t

ij) log
 πzt

iz
t
j

1− πzt
iz

t
j

∣∣∣∣∣∣
∣∣∣∣ {X t

ij}i,j,t




≤E∗
θ∗,X,X̃

 sup
(z1:T ,π)∈

J1,QKnT ×[ζ,1−ζ]Q2

2
n(n− 1)T

∣∣∣∣∣∣
T∑
t=1

∑
i<j

(X t
ij − X̃ t

ij) log
 πzt

iz
t
j

1− πzt
iz

t
j

∣∣∣∣∣∣
 ,

where E∗
θ∗,X,X̃

[·] denotes the expectation with respect to {X, X̃} = {X t
ij, X̃

t
ij}i,j,t under

the true parameter θ∗ and given Z1:T = z∗1:T . At this point, we notice that, if {ϵtij}i,j,t := ϵ

are n2T independent Rademacher variables, then the random variables

Eϵ

∣∣∣∣∣∣
T∑
t=1

∑
i<j

ϵtij(X t
ij − X̃ t

ij) log
 πzt

iz
t
j

1− πzt
iz

t
j

∣∣∣∣∣∣ and
∣∣∣∣∣∣
T∑
t=1

∑
i<j

(X t
ij − X̃ t

ij) log
 πzt

iz
t
j

1− πzt
iz

t
j

∣∣∣∣∣∣
follow the same distribution, which implies that

E∗
θ∗,X,X̃

 sup
(z1:T ,π)∈J1,QKnT ×[ζ,1−ζ]Q2

2
n(n− 1)T Eϵ

∣∣∣∣∣∣
T∑
t=1

∑
i<j

ϵtij(X t
ij − X̃ t

ij) log
 πzt

iz
t
j

1− πzt
iz

t
j

∣∣∣∣∣∣


= E∗
θ∗,X,X̃

 sup
(z1:T ,π)∈J1,QKnT ×[ζ,1−ζ]Q2

2
n(n− 1)T

∣∣∣∣∣∣
T∑
t=1

∑
i<j

(X t
ij − X̃ t

ij) log
 πzt

iz
t
j

1− πzt
iz

t
j

∣∣∣∣∣∣
 .
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As a consequence, we have

E ≤E∗
θ∗,X,X̃

 sup
(z1:T ,π)∈J1,QKnT ×[ζ,1−ζ]Q2

2
n(n− 1)T Eϵ

∣∣∣∣∣∣
T∑
t=1

∑
i<j

ϵtij(X t
ij − X̃ t

ij) log
 πzt

iz
t
j

1− πzt
iz

t
j

∣∣∣∣∣∣


≤E∗
θ∗

 sup
(z1:T ,π)∈J1,QKnT ×[ζ,1−ζ]Q2

2
n(n− 1)T Eϵ

∣∣∣∣∣∣
T∑
t=1

∑
i<j

ϵtijX
t
ij log

 πzt
iz

t
j

1− πzt
iz

t
j

∣∣∣∣∣∣


+ E∗
θ∗

 sup
(z1:T ,π)∈J1,QKnT ×[ζ,1−ζ]Q2

2
n(n− 1)T Eϵ

∣∣∣∣∣∣
T∑
t=1

∑
i<j

ϵtijX̃
t
ij log

 πzt
iz

t
j

1− πzt
iz

t
j

∣∣∣∣∣∣


≤2E∗
θ∗

 sup
(z1:T ,π)∈J1,QKnT ×[ζ,1−ζ]Q2

2
n(n− 1)T Eϵ

∣∣∣∣∣∣
T∑
t=1

∑
i<j

ϵtijX
t
ij log

 πzt
iz

t
j

1− πzt
iz

t
j

∣∣∣∣∣∣
 .

Then using Jensen’s inequality, Assumption 3 and the bound Varϵ(ϵtijX t
ij) ≤ 1, we get

E ≤2E∗
θ∗

 sup
(z1:T ,π)∈J1,QKnT ×[ζ,1−ζ]Q2

2
n(n− 1)T

√√√√√√Eϵ


 T∑
t=1

∑
i<j

ϵtijX
t
ij log

 πzt
iz

t
j

1− πzt
iz

t
j

2



≤2E∗
θ∗

 sup
(z1:T ,π)∈J1,QKnT ×[ζ,1−ζ]Q2

2
n(n− 1)T

√√√√√Varϵ

 T∑
t=1

∑
i<j

ϵtijX
t
ij log

 πzt
iz

t
j

1− πzt
iz

t
j




≤2E∗
θ∗

 2
n(n− 1)T sup

π∈[ζ,1−ζ]
log

(
π

1− π

)√
n(n− 1)T

2

 ≤ √ 2
n(n− 1)T Λ,

where Λ = 2 log[(1− ζ)/ζ], concluding the proof.

A.2.16 Proof of Lemma A.2.2

We assume that minσ∈SQ
∥πσ − π∗∥∞ > ϵ. Without loss of generality, assume that the

permutation (or one of the permutations) minimizing this distance is the identity. Let us
write, using the fact that IQ the identity matrix of size Q maximizes in A (over the set
of Q×Q stochastic matrices) the quantity M(π∗, A) (see the proof of Theorem 3.6 in
Celisse et al. (2012)) and denoting (āqq′)q,q′∈J1,QK the coefficients of Āπ (thus depending
on π),

M(π∗)−M(π) =
∑
q,l

α∗
qα

∗
l

∑
q′,l′

āqq′ āll′

[
π∗
ql log

π∗
ql

πq′l′
+ (1− π∗

ql) log
1− π∗

ql

1− πq′l′

]

=
∑
q,l

α∗
qα

∗
l

∑
q′,l′

āqq′ āll′K(π∗
ql, πq′l′)
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denoting K(p1, p2) = p1 log(p1/p2)+(1−p1) log[(1−p1)/(1−p2)] > 0 the Kullback-Leibler
divergence from a Bernoulli distribution with parameter p2 to a Bernoulli distribution
with parameter p1. For every q, there exists q′ := f(q) such that āqq′ ≥ 1/Q because Āπ
is a stochastic matrix. Using Assumption 2, we obtain

M(π∗)−M(π) ≥ δ2

Q2

∑
q,l

K(π∗
ql, πf(q)f(l)) ≥

δ2

Q2

∑
q,l

2(π∗
ql − πf(q)f(l))2

thanks to a result on Kullback-Leibler divergence for Bernoulli distributions (see for
instance Bubeck (2010), Chapter 10, Section 2, Lemma 10.3). We then want to show
that there exist q, l such that |π∗

ql − πf(q)f(l)| > ϵ.

• If f is a permutation, the assumption minσ∈SQ
∥πσ − π∗∥∞ > ϵ gives the expected

result.

• If f is not a permutation, it is not injective and there exist q1 ≠ q2 such that
f(q1) = f(q2). Thanks to Assumption 1, take l0 ∈ J1, QK such that |πq1l0 − πq2l0| =
maxl∈J1,QK |πq1l − πq2l| > 0. Then

|π∗
q1l0 − πf(q1)f(l0)|+ |πf(q2)f(l0) − π∗

q2l0| ≥ |π
∗
q1l0 − πf(q1)f(l0) + πf(q2)f(l0) − π∗

q2l0|
≥ |π∗

q1l0 − π
∗
q2l0| > 0

leading to either |π∗
q1l0 − πf(q1)f(l0)| ≥ |π∗

q1l0 − π
∗
q2l0|/2 > ϵ or |π∗

q2l0 − πf(q2)f(l0)| ≥
|π∗
q1l0 − π

∗
q2l0|/2 > ϵ, using the fact that ϵ < min1≤q ̸=q′≤Q max1≤l≤Q |π∗

ql − π∗
q′l|/2.

So, as there exist q, l such that |π∗
ql − πf(q)f(l)| > ϵ, we have

M(π∗)−M(π) > 2δ2

Q2 ϵ
2.

A.2.17 Proof of Lemma A.2.3

For any node i ∈ J1, nK, the Markov chain {Zt
i}t≥1 is geometrically ergodic because

its transition matrix Γ satisfies Doeblin’s condition thanks to Assumption 2. For any
z ∈ J1, QK, let us denote δz the Dirac mass at z. There exists a positive constant A and
some r ∈ (0, 1) such that ∀q ∈ J1, QK and ∀t ≥ 1, we have

∥∥∥δqΓt − α∥∥∥
TV
≤ Art,
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where ∥ · ∥TV is the total variation norm. This leads to

∥∥∥δqΓt − α∥∥∥
TV

= 1
2
∥∥∥δqΓt − α∥∥∥1

= 1
2

∑
l∈J1,QK

|Γt(q, l)− αl| ≤ Art.

We now consider the Markov chain {Zt = (Zt
1, . . . , Z

t
n)}t≥1 of the n nodes evolving

through time. Note that it is irreducible and aperiodic. Moreover, its transition matrix
is given by Pn = Γ⊗n, the n-th Kronecker power of Γ and its stationary distribution is
α⊗n. For any z = (z1, . . . , zn) ∈ J1, QKn, let us denote µn,z = ⊗ni=1δzi

. For every t ≥ 1,
we can decompose

∥∥∥µn,zP t
n − α⊗n

∥∥∥
TV

=
∥∥∥∥( n
⊗
i=1
δzi

)
(Γ⊗n)t − α⊗n

∥∥∥∥
TV

=
∥∥∥∥( n
⊗
i=1
δzi

)
(Γt)⊗n − α⊗n

∥∥∥∥
TV

=
∥∥∥∥ n
⊗
i=1

(
δzi

Γt
)
− α⊗n

∥∥∥∥
TV

= 1
2

∥∥∥∥ n
⊗
i=1

(
δzi

Γt
)
− α⊗n

∥∥∥∥
1

= 1
2

∑
(z′

1,...,z
′
n)∈J1,QKn

∣∣∣∣∣
n∏
i=1

Γt(zi, z′
i)−

n∏
i=1

αz′
i

∣∣∣∣∣ .
We use

n∏
i=1

Γt(zi, z′
i)−

n∏
i=1

αz′
i

=
n∑
i=1


i−1∏
j=1

αz′
j

[Γt(zi, z′
i)− αz′

i

] n∏
k=i+1

(µzk
Γt)z′

k

 .
So, reorganizing the terms, we write

∥∥∥µn,zP t
n − α⊗n

∥∥∥
TV

≤1
2

∑
(z′

1,...,z
′
n)∈J1,QKn

n∑
i=1


i−1∏
j=1

αz′
j

 ∣∣∣Γt(zi, z′
i)− αz′

i

∣∣∣ n∏
k=i+1

(µzk
Γt)z′

k


≤1

2

n∑
i=1

∑
z′

1

αz′
1
. . .

∑
z′

i−1

αz′
i−1

∑
z′

i

∣∣∣Γt(zi, z′
i)− αz′

i

∣∣∣ ∑
z′

i+1

Γt(zi+1, z
′
i+1) . . .

∑
z′

n

Γt(zn, z′
n)

≤1
2

n∑
i=1

∑
z′

i

∣∣∣Γt(zi, z′
i)− αz′

i

∣∣∣ ≤ nArt.

Let us recall the definition of an ϵ-mixing time. For any Markov transition matrix M
over the set X with stationary distribution α, for any ϵ > 0, the ϵ-mixing time of the
Markov chain is defined as

τ(ϵ) = min{t ≥ 1; max
x∈X
∥δxM t − α∥TV ≤ ϵ}.
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Denoting by τn(ϵ) the ϵ-mixing time of the Markov chain {Zt}t≥1, we thus obtain

τn(ϵ) ≤ log(nA/ϵ)
log(1/r) .

Now, we introduce a new Markov chain Y = {Y t}t≥1, that is defined by

Y t = (Zt, Zt+1) ∀t ≥ 1.

Notice that it is irreducible and aperiodic, with stationary distribution ρ defined for
every state (qt1, . . . , qtn, qt+1

1 , . . . , qt+1
n ) by

ρ(qt
1,...,q

t
n,q

t+1
1 ,...,qt+1

n ) = αqt
1
. . . αqt

n
γqt

1q
t+1
1

. . . γqt
nq

t+1
n
.

It is easily seen that for any ϵ > 0, its ϵ-mixing time τY,n(ϵ) equals τn(ϵ) + 1. We apply
Theorem 3 from Chung et al. (2012), for any η ≤ 1/8, considering the weight function
f(Y t) = ∑n

i=1 1Zt
i =q,Zt+1

i =l for every t ≥ 1 (of expectation nα∗
qγ

∗
ql under the stationary dis-

tribution). ThenNql(Z1:T ) = ∑T−1
t=1 f(Y t), and denoting ϵn,T = ϵrn,T

√
log n/(2α∗

qγ
∗
ql

√
nT ),

we obtain that there exist c1, c2 > 0 such that for any ϵ > 0, as long as ϵn,T ≤ 1

Pθ∗

(∣∣∣∣∣Nql(Z1:T )
n(T − 1) − α

∗
qγ

∗
ql

∣∣∣∣∣ > ϵ

2rn,T
√

log n√
nT

)
=Pθ∗

(
Nql(Z1:T ) > (1 + ϵn,T )nα∗

qγ
∗
ql(T − 1)

)
+ Pθ∗

(
Nql(Z1:T ) < (1− ϵn,T )nα∗

qγ
∗
ql(T − 1)

)
≤c1 exp

(
−
ϵ2
n,Tnα

∗
qγ

∗
ql(T − 1)

72τY,n(η)

)
≤ c1 exp

(
−c2ϵ

2r2
n,T

)
.

A.2.18 Proof of Lemma A.2.4

For any configuration z1:T ,

∣∣∣Qχ̂(θ̃σ)(z1:T )− P̃σ(z1:T )
∣∣∣ ≤ ∥∥∥Qχ̂(θ̃σ) − P̃σ

∥∥∥
TV
≤
√

1
2KL(Qχ̂(θ̃σ), P̃σ) ≤

√
1
2KL(δz1:T , P̃σ)

≤
√
−1

2 log
(
P̃σ(z1:T )

)
,



A.2 Proofs of technical lemmas 207

the third inequality being true because by definition Qχ̂(θ̃σ) minimizes KL(·, P̃σ) over the
set of variational distributions.





Appendix B

Supplementary material for
Chapter 3

B.1 Identifiability of the Potts model

In the following, we assume that i is fixed and omit the index i in the notation (in the
parameter, random variable, location graph and normalising constant).

Proof of Lemma 3.3.1. Assume that there exists (α, β) and (α′, β′) (satisfying the con-
straint of Assumption 1 on α) inducing the same distribution on the random variable
Z1:L, i.e. such that P(α,β)(·) = P(α′,β′)(·). Then we have for any configuration z1:L ∈ QL

the equality

− logS(α, β) +
Q∑
q=1

αq
L∑
l=1

1zl=q + β
∑

(l,l′)∈E
1zl=zl′

=− logS(α′, β′) +
Q∑
q=1

α′
q

L∑
l=1

1zl=q + β′ ∑
(l,l′)∈E

1zl=zl′ . (B.1.1)

In particular, for any q ∈ J1, QK, for the configuration z1:L = (q, . . . , q) in which every
location belongs to group q, we have

− logS(α, β) + Lαq + |E|β = − logS(α′, β′) + Lα′
q + |E|β′ (B.1.2)

where |E| denotes the cardinality of E, and summing this quantity for every q ∈ J1, QK
and dividing by Q gives us, thanks to the constraint on α (Assumption 1)

− logS(α, β) + |E|β = − logS(α′, β′) + |E|β′. (B.1.3)
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Substracting (B.1.3) from (B.1.2) leads to αq = α′
q for every q ∈ J1, QK. Now, for the

identification of β, we get from (B.1.3) that

− logS(α′, β′) = − logS(α, β) + |E|β − |E|β′,

and using the fact that αq = α′
q, Equation (B.1.1) becomes

β

 ∑
(l,l′)∈E

1zl=zl′ − |E|

 = β′

 ∑
(l,l′)∈E

1zl=zl′ − |E|

 .
In particular, for any configuration z1:L such that at least one pair of neighbour locations
in the graph G belong to two different groups (so that the terms between brackets are
not equal to zero), we obtain that β = β′.

B.2 Mean field approximation

We describe here the mean field approximation in our setup and in particular the
computation of the means used in this approximation and its use in the mean field
EM algorithm. Indeed, instead of using in the algorithm an approximation based on a
simulated configuration of Z1:L as in Section 3.4.4, we could also consider at each step t
of the algorithm a mean field approximation. It consists in replacing the distributions
(of the Markov fields and of the Markov fields given the observations) by distributions
factorising over the locations and nodes such that for each pair of location and node, we
assume that the neighbours of the location and the other nodes at the same location
are fixed to their expectation given the observations. For details about the mean field
approximation, see Section 1.7.5.1.

Note that the mean field approximation is the one that minimises the Kullback-Leibler
divergence from the true conditional distribution (see for example Blei et al. (2017)).
However, the simulated EM has shown better performances than the mean field EM on
experiments (Celeux et al., 2003). In particular, the mean field EM seems to be very
sensitive to its initialisation (Forbes and Fort, 2007).

B.2.1 Approximation

First, let us recall that we denote Zl
i = (Z l

iq)1≤q≤Q ∈ {0, 1}Q with Z l
iq = 1Zl

i=q for every
l, i and q. For this type of approximation, as we will consider the expectations τ li ∈ [0, 1]Q
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of the latent variables Zl
i, we will need the quantities appearing in (3.4.10)1 to be defined

for τ li = (τ liq)1≤q≤Q ∈ [0, 1]Q instead of {0, 1}Q, for every i and l. We will then define the
probability of the observation X l given Z l

i = q and given the expectation value τ ljq′ of
Z l
jq′ for every q′ and for j ̸= i as follows, for any parameter θ

Pπ(X l
i� | Z l

i = q, Z l
−i = τ l−i) ∝

∏
j ̸=i

Q∏
q′=1

(
(πlqq′)X

l
ij (1− πlqq′)1−Xl

ij

)τ l
jq′
, (B.2.1)

and the probability of Z l
i given the expectations of the latent variables at every neighbour

location τ
Ni(l)
i = (τ l′iq)1≤q≤Q,l′∈Ni(l)

Pψ(Z l
i | Z

Ni(l)
i = τ

Ni(l)
i ) =

exp
(
αiZl

i
+ βi

∑
l′∈Ni(l) τ

l′

iZl
i

)
∑Q
q=1 exp

(
αiq + βi

∑
l′∈Ni(l) τ

l′
iq

) , (B.2.2)

these definitions coinciding with the previous ones for τ li ∈ {0, 1}Q.
As mentioned in Celeux et al. (2003), to obtain an approximation of these means,

we rely on the self consistency condition (see Section 1.7.5.1), stating that the mean
obtained based on the mean field approximation must be equal to the mean used to
define this approximation, i.e. for any (i, l), when fixing the other values at their mean
τ , the expectation of Zl

i = (Z l
iq)1≤q≤Q ∈ [0, 1]Q under the approximation must be equal

to τ li . Then at each step t, using the definitions (B.2.1) and (B.2.2), we deduce that the
expectation values for the parameter θ(t−1) satisfy the fixed point equation

τ liq ∝ exp
α(t−1)

iq + β
(t−1)
i

∑
l′∈Ni(l)

τ l
′

iq

∏
j ̸=i

∏
q′

(
(π(t−1)l

qq′ )Xl
ij (1− π(t−1)l

qq′ )1−Xl
ij

)τ l
jq′
. (B.2.3)

In practice, the solution of this fixed-point equation is computed iteratively. We then
replace the distributions of the latent variables and of the latent variables given the
observations by their respective approximations, given in (3.4.8) and (3.4.10), replacing
z̃ by τ .

B.2.2 Estimation of π

The estimation of π in the mean field EM is identical to its estimation in the simulated
EM, using the mean field approximation instead of the mean field like approximation of
the conditional distributions in (3.4.14) and (3.4.15).

1i.e. for any (i, l) the probability of Zl
i given that the neighbours are equal to zNi(l)

i = (zl′

i )l′∈Ni(l)
and the probability of X l given Zl = (zl

1, . . . , zl
i−1, q, zl

i+1, . . . , zl
n)
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B.2.3 Estimation of (α, β)
In this context, the approximation of Q2 under the mean field approximation is as follows

Q̃2(α, β|θ(t−1))

=
n∑
i=1

L∑
l=1

Ez̃,θ(t−1)

[
logPψ

(
Z l
i | Z

Ni(l)
i = τ

Ni(l)
i

)∣∣∣X1:L
]

=
n∑
i=1

L∑
l=1

Ez̃,θ(t−1)

 log
exp

(
αiZl

i
+ βi

∑
l′∈Ni(l) τ

l′

iZl
i

)
∑Q
q=1 exp

(
αiq + βi

∑
l′∈Ni(l) τ

l′
iq

)
∣∣∣∣∣∣∣X1:L



=
n∑
i=1

L∑
l=1


 Q∑
q=1

αiqPτθ(t−1)

(
Z l
i = q

∣∣∣X l
)+ βi

∑
l′∈Ni(l)

Q∑
q=1

τ l
′

iqPτθ(t−1)

(
Z l
i = q

∣∣∣X l
)

− log
 Q∑
q=1

exp
αiq + βi

∑
l′∈Ni(l)

τ l
′

iq


.

The derivative of that quantity with respect to αiq (i.e. the quantity we want to set equal
to zero) is

∂Q̃2(α, β|θ(t−1))
∂αiq

=
L∑
l=1

Pτθ(t−1)(Z l
i = q |X l)−

L∑
l=1

exp
(
αiq + βi

∑
l′∈Ni(l) τ

l′
iq

)
∑Q
q′=1 exp

(
αiq′ + βi

∑
l′∈Ni(l) τ

l′
iq′

) ,
and the one with respect to βi is

∂Q̃2(α, β|θ(t−1))
∂βi

=
L∑
l=1

∑
l′∈Ni(l)

Q∑
q=1

τ l
′

iqPτθ(t−1)

(
Z l
i = q

∣∣∣X l
)

−
L∑
l=1

∑Q
q=1

(∑
l′∈Ni(l) τ

l′
iq

)
exp

(
αiq + βi

∑
l′∈Ni(l) τ

l′
iq

)
∑Q
q=1 exp

(
αiq + βi

∑
l′∈Ni(l) τ

l′
iq

) ,

where Pτ
θ(t−1)(· |X1:L) is the mean field approximation of Pθ(t−1)(· |X1:L) and is defined in

the same way as the mean field like approximation (3.4.10), but based on the definitions
in (B.2.1) and (B.2.2).
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